Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение углерода, фосфора и серы

    Определение кислорода можно осуществить либо путем гидрирования до воды, либо путем взаимодействия с углем с получением окиси или двуокиси углерода (последней — после дополнительного окисления) [74]. В литературе [74] дан детальный обзор опубликованных методик элементного хроматографического анализа, причем наряду с методами определения указанных выше элементов рассматриваются возможности определения галогенов (окисление образца с получением свободных галогенов восстановление до НС1, HBr, HI), мышьяка и фосфора (восстановление до арсина и фосфина). В качестве подходящего адсорбента рекомендуются порапаки Р и Q, которые пригодны для разделения воды, двуокиси серы, метана и др. Даны также сравнительные характеристики восьми стандартных хроматографических анализаторов элементного состава, которые используют, как правило, для определения углерода, водорода и азота. Объем пробы составляет 0,2—3 мл, продолжительность анализа от 8 до 20 мин, погрешность определения (стандартное отклонение) составляет соответственно для углерода 0,18—0,30 абс. %, для водорода 0,08—0,20%, для азота 0,13—0,40%. Детекторами во всех случаях служат катарометры. [c.202]


    Широко применяемой калориметрической методикой определения энтальпий образования является сожжение вещества в калориметрической бомбе в атмосфере кислорода. По этой методике были определены, например, энтальпии образования многих оксидов (углерода, кремния, бора, фосфора, серы, магния, алюминия, титана, кобальта и др.) и энтальпии образования ряда соединений, таких, как, например, карбиды, фосфиды, нитриды, фазы переменного состава и т. д. Особенно широко она [c.32]

    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]

    Для определения углерода, фосфора, серу, селена и галогенов в порошках пробу прессуют в таблетки и анализируют в герметической камере в атмосфере аргона под давлением 20 мм рт. ст. при искровом возбуждении. Чувствительность определения серы и фосфора соответственно 0,07 и 0,05% [345]. [c.135]

    Основные научные работы посвящены разработке микроанализа органических веществ, создателем которого он является. Поставил перед собой задачу приспособить классические методы элементного органического анализа, разработанные Ю. Либихом и Ж. Б. Д. Дюма, для исследования очень малых количеств веществ. Разработал (1911) методы микроанализа органических веществ, обеспечивающие точность определения углерода, азота, серы и галогенов в навеске вещества до 7—10 мг. Затем (1913) ему удалось уменьшить количество анализируемого вещества до 1—3 мг. Сконструировал и изготовил всю необходимую для этих методов аппаратуру. Создал первую модель микрохимических весов с чувствительностью до миллионных долей грамма. Предложил оригинальные композиции аналитических реагентов, ввел принципиально новые способы разложения органических веществ при элементном анализе. Его методы включали определение элементов, наиболее часто встречающихся в органических веществах (углерода, водорода, азота, галогенов, серы, фосфора и др.), многих функциональных групп, молекулярной массы веществ. [c.406]

    Методика прямого определения содержания углерода, фосфора, серы, иода, брома, хлора и селена в твердых образцах основана на смешении порошка пробы (с размером частиц не больше 0,147 мм) с диоксидом кремния в соотношении 1 2, прессовании таблеток и эмиссионном анализе в атмосфере аргона. Для создания контролируемой атмосферы используют цилиндрическую камеру диаметром 125 мм с кварцевым окном. Таблетку помещают на торец нижнего электрода, откачивают камеру и заполняют аргоном до давления 2,7 кПа. Спектры возбуждают в искровом разряде от генератора АКЬ при емкости [c.246]


    Определение элементов неметаллов углерода, фосфора, серы и в отдельных случаях мышьяка, в процессе плавки и для маркировочных анализов представляет значительный интерес, однако спектрографические методы для этой цели не всегда наиболее эффективны. Условия определения указанных элементов при использовании стандартной аппаратуры обычно не рассчитаны на одновременное определение и элементов-металлов. Более перспективны, как показывает опыт, фотоэлектрические спектральные приборы, рассчитанные на использование дальней ультрафиолетовой области спектра. К сожалению, опыт эксплуатации подобных приборов пока недостаточен [144]. [c.64]

    Так как прибор ДФС-31 предназначен не только для определения углерода, фосфора и серы, но и ряда легирующих элементов и кремния существенно -было выяснить, в какой мере атмосфера аргона влияет на результаты определения этих элементов. Были сопоставлены результаты анализов, выполненных на установке ДФС-31 в атмосфере воздуха и аргона. [c.50]

    В окружающей нас природе непрерывно протекают мощные биохимические процессы, в чём легко убедиться, рассматривая круговорот азота, углерода, фосфора, серы и др. Эти элементы в живых организмах находятся в виде органических соединений после смерти организмов они постепенно минерализуются, затем снова связываются растениями, потребляются л ивотными, потом вновь минерализуются и т. д. Процессы минерализации протекают в основном в почве, что дало основание рассматривать почву как постоянно изменяющийся комплекс. Такое представление было выдвинуто Костычевым, а затем широко и плодотворно развито Вильямсом. По Вильямсу почвообразование начинается с появлением в горной породе биологических процессов. В дальнейшем почва, растения и микрофлора образуют один непрерывный комплекс, который проходит через отдельные циклы. Различные типы почв (подзол, чернозем, и др.) являются только определенными фазами процесса почвообразования. [c.431]

    Химический состав металла трубы определяли по ГОСТ 12344-88 Стали легированные и высоколегированные. Методы определения углерода , ГОСТ 22536.5-87 Сталь углеродистая и чугун нелегированный. Методы определения марганца , ГОСТ 12346-81 Стали легированные и высоколегированные. Методы определения кремния , ГОСТ 22536.3-87 Сталь углеродистая и чугун низколегированный. Методы определения фосфора , ГОСТ 22536.2-87 Сталь углеродистая и чугун нелегированный. Методы определения серы . [c.580]

    Определение углерода, фосфора и серы [c.160]

    ОПРЕДЕЛЕНИЕ УГЛЕРОДА, ФОСФОРА И СЕРЫ [c.163]

    Демьянчук А. С., К вопросу об особенностях спектрального определения углерода, фосфора и серы в металлических сплавах, Физ. сб. Львовск. ун-та, вып. 4 (9), 535 (1958). [c.270]

    Для получения спектров в далекой УФ-области (длины волн от 0,8-10- —3,3 10- м) применяют вакуумные спектрографы. Вакуумирование необходимо потому, что в этой области спектра поглощают молекулы многих газов и паров, входящих в состав воздуха. На рис. 7.20 дано схематическое изображение вакуумного спектрофотометра ДСФ-31 со спектральным диапазоном в далекой УФ-области 1,6—3,3-10 м и дифракционной решеткой, выступающей в качестве диспергирующей системы. Регистрация спектра в нем осуществляется фотоэлектрическим способом. Прибор рассчитан на определение в анализируемых пробах таких легких элементов, как углерод, фосфор, мышьяк, сера и др. [c.178]

    Если теперь рассмотреть элементы от натрия до аргона, то нетрудно заметить, что они в значительной степени повторяют свойства элементов от лития до неона. Причем повторение проявляется в определенной последовательности натрий повторяет свойства лития, магний — бериллия, алюминий—бора, кремний — углерода, фосфор — азота, сера — кислорода, хлор —фтора, аргон —неона, т. е. каждый восьмой элемент повторяет свойства первого. Следующий за аргоном калий повторяет свойства натрия и лития, кальций—магния и бериллия и т. д., иначе говоря, свойства элементов периодической системы повторяются. [c.56]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Определение нескольких элементов в одной навеске особенно целесообразно проводить при анализе легко разлагающихся, гигроскопических, неустойчивых соединений, когда взятие навески представляет определенную трудность. Кроме углерода и водорода в одной навеске можно определять галогены, фосфор, серу, а также те элементы, которые не образуют летучих соединений при сожжении. [c.812]

    Точность определения элементов в АЭД не очень высокая, относительное стандартное отклонение от 2 до 20%. Несмотря на это, АЭД может быть использован для получения данных об относительном элементом составе. Чувствительность детектора особенно высока для углерода, фосфора и серы. Динамический диапазон значительно меньше, чем, иапример, для ПИД. [c.253]

    Определение углерода и водорода основано на сожжении полимера до диоксида углерода и воды и последующем определении этих соединений. Одновременно с углеродом и водородом из одной навески полимера можно определить хлор, бром, иод или серу, фосфор или бор. Методы определения элементного состава подробно описаны в работах [5, 42.  [c.42]

    Предназначен для анализа любых марок сталей, включая определение углерода, серы и фосфора, а также для анализа сплавов на основе алюминия, меди, никеля, хрома, цинка, титана и др. [c.389]

    Для биосинтеза химических компонентов клеткам необходим также ряд соединений, содержащих азот, фосфор, серу, калий, магний и другие вещества, которые поступают в растение обычно через корни. У растений существует определенный метаболический путь использования СО2 в качестве единственного источника углерода при синтезе глюкозы. [c.22]

    Приведенное выше определение стандартных условий должно быть дополнено. Стандартное состояние для газа — состояние чистого газа при 10 Па для жидкости — состояние чистой жидкости при 10 Па для твердого вещества — наиболее устойчивое при давлении 10 Па кристаллическое состояние, например графит у углерода, ромбическая сера, белый фосфор, О2 (а не озон ) у кислорода и т. п. [c.56]

    Спектральным методам определения серы и фосфора в нефтепродуктах посвящено сравнительно немного работ, методам определения галогенов — единицы, и практически отсутствуют публикации по определению углерода, водорода, кислорода и азота. Между тем достигнутые успехи в области спектрального анализа уже позволяют разрабатывать методы определения всех составляющих нефтепродуктов, основываясь на методиках, применяемых для анализа других веществ. [c.244]

    ОПРЕДЕЛЕНИЕ УГЛЕРОДА, СЕРЫ, ФОСФОРА, КРЕМНИЯ, МАРГАНЦА В ЧУГУНЕ И СТАЛИ [c.473]

    Определение углерода, серы, фосфора, кремния, марганца в чугуне и стали. . 473 Определение общего углерода. . . 474 [c.496]

    ТОК В 5—10 а в зависимости от сплава и определяемого элемента. В большинстве случаев можно подобрать источник света, пригодный для одновременного определения нескольких элементов но одной и той же спектрограмме. Отдельно от других элементов обычно определяют фосфор, серу и углерод. [c.235]

    Для определения фосфора, серы и углерода применяют вакуумные квантометры. [c.242]

    В особых случаях может оказаться целесообразным нрименять другие методы разложения, как, например, растворять сталь в растворе хлоридов меди и калия для предварительного отделения углерода или при определении углерода в алюминии проводить мокрое сжигание обработкой серной и хромовой кислотами, как описано в разделе Определение общего содержания углерода, ,мокрым сжиганием (стр. 856). Для определения в органических веществах таких компонентов, как галогены, сера, фосфор и азот, анализируемую пробу можно окислить дымящей азотной кислотой при высоких температурах и давлениях в запаянной стеклянной трубке 1. [c.847]

    Важной частью любого исследования чистой культуры является состав среды, в которой происходит рост организмов. Сложная питательная среда типа питательного бульона, часто используемая в бактериологических лабораториях, непригодна для проведения работ с битумами. Такие среды состоят из органических материалов типа пептонов или мясных экстрактов и углеводов в качестве источника углерода и энергии для роста микроорганизмов. В такой среде организмы, которые могут разрушать битум или углеводород, как правило, отдают предпочтение углеводу, а не углеводороду. Поэтому для исследования действия микроорганизмов на битумы нужно получить химически определенную среду, содержащую азот, фосфор, серу и ионы металлов, необходимые для роста, но не содержащую углеводов или каких-либо других легко ассимилирующихся форм углерода. Такой средой является состав, предложенный Филлипсом и Трекслером [20]. Выбор правильного сочетания ингредиентов усложняется тем, что у различных организмов требования к пище неодинаковы. В табл. 5.1 приводится состав среды, использованной для роста организмов класса Pseudomonas на углеводородах. Часто такие среды способствуют также росту организмов других видов. Чтобы установить, будет ли эта среда поддерживать рост организмов определенного вида, следует ввести глюкозу и привить организм. Если будет наблюдаться рост, то среда,, вероятно, может быть пригодна для роста микроорганизмов данного вида при использовании углеводорода или битума в качестве источника углерода вместо глюкозы. [c.179]

    Таковы достоинства и некоторые возможности атомно-абсорбционного метода анализа. Однако наше рассмотрение будет неполным, если мы не остановимся и на ограничениях метода по сравнению с эмиссионным спектральным анализом. В первую очередь к ним следует отнести невозможность определения (по крайней мере в обычных условиях измерения) элементов, резонансные линии которых лежат в вакуумной ультрафиолетовой области спектра. Сюда входят газы, галогены, а также углерод, фосфор и сера. Правда, измерение эмиссии этих элементов также связано с некоторыми затруднениями, в связи с чем их определение относят к специфическим областям спектрального анализа. [c.380]

    Для одновременного определения всех элементо1В целесообразно проводить анализ в атмосфере азота. При определении углерода, фосфора и галогенов хорошие результаты получают также в воздушной среде. Азот и серу можно определять в ат- [c.248]

    Мухина 3. С. и Сударчикова Т. И. Определение примесей в железном порошке. [Определение общего железа, металлического железа, окиси алюминия, кремневой кислоты, марганца, углерода, фосфора, серы], Тр. (Всес. н.-и. ин-т авиац. м-лов ВИАМ ), 1949, 2, с. 19—21. 4875 [c.190]

    Большие успехи достигнуты в области определения углерода, фосфора и серы — наиболее важных элементов в технологии производства стали. Определение этих элементов проводят, используя вакуумные спектрометры, причем нробу возбу>1 дают искровым разрядом в атмосфере аргона. Основные линии этих э. 1ементов расположены в области 2000 А, которую поглощают кис.т1ород воздуха и пары воды. Применение вакуумных спектрометров или спектрометров с аргоновой продувкой -- единственное решение проблемы определения углерода, фосфора и серы. [c.177]

    ОНО, как правило, бывает определенным и зависит как от природы рассматриваемого атома (иона), так и от его окружения. Число частиц (ионов, атомов или молекул), непосредственно окружающих рассматриваемый ион (или атом), называется координационным числом. Так, в ионах (РО4) , (804)2, (С104)" координационное число атомов фосфора, серы и хлора равно четырем, в ионах (50.) , (СОз) , (ЫОз)" координационное число серы, углерода и азота равно трем. [c.85]

    Теоретически ХПК — это масса кислорода (или окислителя в расчете на кислород) в мг/дм , необходимая для полного окисления содержащихся в пробе органических веществ, причем углерод, водород, сера, фосфор окисляются до оксидов, а азот превращается в аммонийную соль. Кислород, входящий в состав окисляемых веществ, участвует в процессе окисления, а водород — в образовании аммонийной соли. Применяемые методы определения ХПК дают результаты, близкие к ХПКтеор. [c.371]

    Определение углерода, водорода, галогенов, фосфора и серы. Если органические соединения содержат фосфор, который не связан с галогенами, то последний при окислении переходит в Р2О5. Этот оксид можно задержать в пробирке для сжигания с помощью кварцевой крошки. [c.813]

    Некоторые специальные задачи исследования могут потребовать применения каталитического гидрирования для того, чтобы определить ненасыщен-ность, метода Церевитинова для определения активного водорода, ацетильного метода для определения гидроксильных групп и прямого определения кислорода [158, 159]. Могут также потребоваться сведения сверх того, что в состоянии дать обычная ректификация и измерения простых физических констант, а именно такие сведения, для которых необходимо определение углерода, водорода, метоксильных групп, галоидов, азота, фосфора, серы и металлов в летучих металлоорганических соединениях. [c.265]

    Разработаны методы определения неметаллических примесей в металлах, в частности фосфора, серы, а также газообразующих — углерода, кислорода, водорода, азота. На фотографии показан современный прибор для быстрого определения серы в металлах. Для определения газообразующих примесей применяют плавление в вакууме, активационный анализ, масс-спектрометрию, ртутную экстракцию легких металлов. Параллельно с разработкой аналитических методов ведется изучение состояния, форм существования газообразующих примесей в металлах. Задачи здесь заключаются в снижении предела обнаружения существующих методов определения примесей (сейчас он редко превыщает 10 —10 %), разработке точных и особенно экспрессных и непрерывных методов, способов локального анализа металлов, приемов определения газообразующих примесей без разрущепия образца, нахождении способов различать поверхностную и объемную концентрацию примесей, создании стандартных образцов. [c.101]

    Для автоматизации производства необходимы контроль нераз-рущающими методами и широкое использование современных физических методов экспрессного анализа результаты анализа должны быть оформлены в виде электрических сигналов. К числу таких физических методов относятся эмиссионный спектральный анализ с фотоэлектрической регистрацией (квантометры, в том числе для вакуумной области спектра), рентгенофлуоресцентный метод также с использованием соответствующих квантометров, автоматические методы определения углерода,серы,кислорода, водорода и азота в металлах и сплавах. В первую очередь решаются задачи автоматизации анализа в кислородно-конверторном производстве стали, которое получило большое развитие. Мы уже говорили в начале книги, что плавка в этом случае длится 15—25 мин, а по ходу ее нужно получать информацию о составе жидкой стали, например о содержании углерода. Эту задачу в значительной степени решают вакуумные квантометры, позволяюш.ие определять в числе прочих элементов углерод, серу, фосфор. При анализе простых сталей определение трех названных элементов составляет 60—707о всех определений. Другое направление внедрения прогрессивных аналитических методов — автоматизация электросталеплавильного производства. Конечно, автоматизированные методы анализа нужны и доменному, и мартеновскому, и коксохимическому производствам, и горнорудным предприятиям. [c.144]

    Определение углерода, хлора, фтора, бора, серы, фосфора. Для определения углерода навески анализируемого материала сжигают и количество СОа определяют газообъемным, титриметрическим или кондуктометрическим методом. В газообъемном методе для определения объема образующегося СОа (при содержании более 1% С) удобен аппарат Вюрца—Штролейна. В титриметрическом методе СО2 поглощают раствором Ва(ОН)а, избыток которого оттитровывают раствором уксусной кислоты по фенолфталеину. Эти методы подробно описаны в книге Дымова [85]. При определении малых количеств углерода (Ы0 —Ы0 %) применяют кондуктометрический метод, основанный на изменении электропроводности раствора гидроокиси бария, применяемого как поглотителя СОг [94, 157, 191]. [c.201]

    Как уже говорилось во введении к этой книге, основы химической экологии были заложены еще Лавуазье. Круговорот веществ на нашей планете, их переход из минерального царства в царство живой природы и обратно осуществляется благодаря процессам сгорания и гниения. Эти процессы — основные факторы возобновления неорганической материи. Представление о кругообороте элементов — углерода, азота, серы, фосфора и других — целиком возникло из наблюдений, показывающих непрерывность их поступления в биосферу и выхода из нее и непрерывность обмена элементами между различными частями биосферы. Во всех этих процессах первостепенную роль играет Мировой океан. Центральным моментом в круговороте углерода является автоматическое поддержание концентрации углекислого газа в атмосфере на определенном уровне. Это постоянство обеспечивается буферной системой карбонат кальция — бикарбонат кальция — углекислый газ. Углекислый газ извлекается из атмосферы в процессе фотосинтеза и возврашд-ется в нее в процессе дыхания. Но и здесь решающая роль принадлежит Мировому океану фотосинтез с участием водорослей и водных растений примерно в 8 раз интенсив- [c.147]

    Определение углерода производилось при = 2, = 2, следовательно, восп = эк-цен- Определение серы и фосфора производилось при = 1, т = 2. В этом случае, как показывает простой подсчет, восп = 0,82 эк-цен- [c.58]


Смотреть страницы где упоминается термин Определение углерода, фосфора и серы: [c.496]    [c.34]    [c.51]    [c.55]    [c.169]    [c.272]   
Смотреть главы в:

Визуальные методы эмиссионного спектрального анализа -> Определение углерода, фосфора и серы




ПОИСК





Смотрите так же термины и статьи:

Определение в фосфорите

Сера, определение

Серии определение



© 2025 chem21.info Реклама на сайте