Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорилирование АДФ. Митохондриальное окисление

    Несопряженное дыхание (свободное окисление) выполняет важные биологические функции. Оно обеспечивает поддержание температуры тела на более высоком уровне, чем температура окружающей среды. В процессе эволюции у гомойотермных животных и человека сформировались специальные ткани (бурый жир), функцией которых является поддержание постоянной высокой температуры тела за счет регулируемого разобщения окисления и фосфорилирования в митохондриальной дыхательной цепи. Процесс разобщения контролируется гормонами. [c.313]


    В клетках или тканях, обладающих в норме аэробным типом обмена, скорость потребления глюкозы в процессе гликолиза возрастает в отсутствие кислорода и снижается в его присутствии. Это явление известно под названием эффекта Пастера. Влияние кислорода на скорость гликолиза осуществляется через сопряженное окислительное фосфорилирование в митохондриях, так как разобщение поглощения кислорода и фосфорилирования с помощью динитрофенола приводит к увеличению скорости гликолиза [25, 33]. В качестве одной из возможных причин конкурентного взаимодействия митохондриального окисления и гликолиза можно предположить их общую зависимость от АДФ как акцептора фосфата. Тогда ингибирование митохондриального фосфорилирования АДФ может приводить к повышению концентрации этого соединения и тем самым к активации стадий гликолиза, зависящих от АДФ. Аналогичные аргументы можно использовать и для объяснения конкуренции между этими двумя процессами за неорганический фосфат. [c.117]

    Окислительное фосфорилирование может прекращаться под действием особых ингибиторов без нарушения основной дыхательной цепи. Одним из таких специфических ингибиторов окислительного фосфорилирования является 2,4-динитрофенол, который резко нарушает процессы образования АТФ и тем самым разобщает процессы окисления и фосфорилирования. Это разобщение может быть также результатом различного воздействия фермента АТФ-азы митохондрий на субстрат (АТФ) в связи с изменением физиологической функции ткани, к которой принадлежит клетка, что зависит от изменения структуры и проницаемости митохондриальных мембран. Разобщение процессов окисления и фосфорилирования может быть также вызвано действием ультразвука, различным облучением, некоторыми антибиотиками и т. п. Вполне возможно, что разобщающее действие рентгеновских лучей заключается в повреждении митохондриальных мембран. [c.274]

    Митохондрии окружены белково-фосфолипидной мембраной. Внутри митохондрий (в т. наз. матриксе) идет ряд метаболич. процессов распада пищ. в-в, поставляющих субстраты окисления АНз для О.ф. Наиб, важные из этих лроцессов-трикарбоновых кислот цикл и т. наз. р-окисление жирных к-т (окислит, расщепление жирной к-ты с образованием ацетил-кофермента А и к-ты, содержащей на 2 атома С меньше, чем исходная вновь образующаяся жирная к-та также может подвергаться Р-окислению). Интермедиаты этих процессов подвергаются дегидрированию (окислению) при участии ферментов дегидрогеназ затем электроны передаются в дыхат. цепь митохондрий-ансамбль окислит.-восстановит. рментов, встроенных во внутр. митохондриальную мембрану. Дыхат. цепь осуществляет многоступенчатый экзэргонич. перенос электронов (сопровождается уменьшением своб. энергии) от субстратов к кислороду, а высвобождающаяся энергия используется расположенным в той же мембране ферментом АТФ-синтетазой, для фосфорилирования АДФ до АТФ. В интактной (неповрежденной) митохондриальной мембране перенос электронов в дыхат. цепи и фосфорилирование тесно сопряжены между собой. Так, напр., выключение фосфорилирования по исчерпании АДФ либо неорг. фосфата сопровождается торможением дыхания (эффект дыхат. контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения). [c.338]


    Механизм окислительного фосфорилирования. Существует несколько теорий, объясняющих механизм тканевого дыхания (окисления) и его сопряжения с фосфорилированием. Наибольшее подтверждение получила теория, разработанная английским биохимиком П. Митчеллом (1961 — 1966). Согласно этой теории, получившей название хемиосмотическая , или протондвижущая , свободная энергия движущихся по дыхательной цепи электронов используется для перекачивания протонов (Н ) через внутреннюю мембрану митохондрий из матрикса во внутримембранное пространство. Это приводит к изменению числа протонов водорода на наружной и внутренней мембранах митохондрий, в результате чего возникает электрохимический градиент протонов водорода (ЛрН) на мембране (рис. 21). За счет протонного градиента ионы водорода возвращаются снова в митохондриальный матрикс через каналы, образованные специальным белком Рц и ферментом Н -АТФ-синтетазой. При этом энергия протонного потенциала используется для синтеза АТФ с участием Н -АТФ-синтетазной системы. Синтез АТФ возможен только при определенной величине протонного потенциала. Если его величина на мембране мала, то АТФ-синтетаза будет функционировать как АТФ-аза, т. е. катали- [c.58]

    В аэробных условиях конечным продуктом гликолитического расщепления является пируват и две молекулы НАДН, образовавшиеся в результате окисления двух молекул глицеральдегид-З-фосфата [реакция (6) гликолиза] последние окисляются до НАД , отдавая свои электроны в митохондриальную цепь переноса электронов (см. рис. 18.4). Таким образом, к суммарному итогу гликолиза (две молекулы АТФ) добавляется еще шесть молекул АТФ, образующихся в результате окислительного фосфорилирования. Следовательно, баланс АТФ при гликолитическом расщеплении глюкозы в аэробных условиях составляет 8 молекул АТФ, из них 2 молекулы АТФ образовались за счет субстратного, а 6 — окислительного фосфорилирования. [c.250]

    Наиболее детально вопрос о распределении биохимических процессов между клеточными органеллами изучен на примере митохондрий. Главным назначением митохондрий является окислительное фосфорилирование. В митохондриях происходят такие процессы, как цикл трикарбоновых кислот, окисление жирных кислот, собственно окислительное фосфорилирование и некоторые другие превращения, о которых будет сказано ниже. Системы, осуществляющие перечисленные процессы, распределены между различными отделами митохондрий. Так, комплекс белков, осуществляющих перенос электронов от NAD-Н к молекулярному кислороду и сопряженное фосфорилирование АДФ, полностью вмонтирован во внутреннюю митохондриальную мембрану. Цикл трикарбоновых кислот функционирует в митохондриальном матриксе, за исключением стадии дегидрирования сукцината, которое осуществляется с помощью сукцинат дегидрогеназы, также входящей в состав внутренней мембраны. Пируватдегидрогеназный комплекс и система ферментов, катализирующих окисление жирных кислот, поставляющие ацетил-СоА в цикл трикарбоновых кислот, целиком сосредоточены в матриксе. [c.433]

    Согласно Митчеллу, первичным событием в окислительном фосфорилировании является транслокация протонов (Н ) на наружную сторону сопрягающей мембраны (внутренней митохондриальной мембраны), осуществляемая за счет процесса окисления в дыхательной цепи. При этом предполагается, что мембрана непроницаема для ионов вообще, особен- [c.132]

    Наличие ядра является главной, но не единственной структурной особенностью эукариотических клеток. В цитоплазме существует ряд других внутриклеточных органелл, окруженных своими собственными мембранами. Окислительное фосфорилирование и ряд предшествующих стадий окисления органических соединений протекают в митохондриях. Эти органеллы окружены двумя фосфо-липидными мембранами. Внутренняя мембрана, построенная из специфических белков, участвует в сопряжении переноса электронов от органических соединений к кислороду с фосфорилированием АДФ. Еще более сложными органеллами являются хлоропласты, в которых проходят все стадии фотосинтеза. Уникальной особенностью этих двух типов органелл является то, что они содержат ДНК, которая реплицируется перед их делением и несет информацию о некоторых белках и РНК, необходимых для формирования и функционирования этих органелл. Тем не менее большая часть информации, необходимой для производства всего набора как митохондриальных, так и хлоропластных белков, находится в хромосомной ДНК. [c.25]

Рис. 10.3. Взаимосвязь митохондриального окисления и окислительного фосфорилирования в митохондриях Рис. 10.3. Взаимосвязь <a href="/info/284758">митохондриального окисления</a> и <a href="/info/38828">окислительного фосфорилирования</a> в митохондриях
    Было предложено множество схем образования высокоэнергетических промежуточных соединений в результате переноса электронов. В этом случае естественна аналогия с субстратным фосфорилировани- ем, при котором высокоэнергетические промежуточные соединения образуются при переходе электронов от субстрата к субстрату. Как мы уже видели (гл. 8, разд. 3,5), альдегидная группа глицеральдегид-З-фосфата превращается в ацилфосфат, который после переноса фосфатной группы на ADP освобождается в виде карбоксилатной группы. В этом процессе свободная энергия окисления альдегида в карбоксильную группу расходуется на синтез АТР. Реакция отличается от митохондриального переноса электронов тем, что продукт 3-фосфоглицери-Новая кислота уже не превращается обратно в глицеральдегид-З-фос- фат. В то же время переносчики электронов дыхательной цепи должны быть регенерированы в каком-то циклическом процессе. Последнее тре- бование вынуждает искать какие-то иные механизмы окислительного фосфорилирования. [c.410]


    Эффекгивность окислительного фосфорилирования в митохондриях определяется как отношение величины образовавшегося АТФ к поглощенному кислороду АТФ/О или Р/О (коэффициент фосфорилирования). Экспериментально определяемые значения Р/О, как правило, оказываются меньше 3. Это свидетельствует о том, что процесс дыхания не полностью сопряжен с фосфорилированием. Действительно, окислительное фосфорилирование в отличие от субстратного не является процессом, в котором окисление жестко сопряжено с образованием макроэргов. Степень сопряжения зависит главным образом от целостности митохондриальной мембраны, сберегающей разность потенциалов, создаваемую транспортом электронов. По этой причине соединения, обеспечивающие протонную проводимость (как 2,4-ди-нитрофенол), являются разобщителями. [c.313]

    Два нз десяти электронов, входящих в цепь переноса через янтарную кислоту, обеспечивают синтез двух молекул АТФ. Остальные восемь электронов, доставляемые в цепь с помощью НАД-Н, участвуют в синтезе двенадцати молекул АТФ. Кроме этого, одна молекула АТФ синтезируется не в цепи переноса электронов, а в наружной митохондриальной мембране по механизму фосфорилирования на уровне субстрата. В итоге цикл трикарбоновых кислот дает пятнадцать молекул АТФ. Суммарное уравнение окисления пировиноградной кислоты (цикл трикарбоновых кислот) можно представить следующим образом  [c.424]

    Чрезмерная активация ПОЛ оказывает негативное влияние на мышечную деятельность. Так, повышение проницаемости мембран нервных волокон и саркоплазматического ретикулума миоцитов, вызываемое ПОЛ, затрудняет передачу двигательных нервных импульсов и тем самым снижает сократительные возможности мышцы. Повреждающее воздействие перекисного окисления на цистерны, содержащие ионы кальция, неизбежно приводит к нарушению функции кальциевого насоса и ухудшению релаксационных свойств мышц. При повреждении митохондриальных мембран снижается эффективность окислительного фосфорилирования (тканевого дыхания), что ведет к уменьшению аэробного энергообеспечения мышечной работы. Повышение проницаемости оболочки мышечных клеток - сарколеммы -может привести к потере мышечными клетками многих важных веществ, которые будут уходить из них в кровь и лимфу. [c.170]

    Выделенные мягкими способами митохондриальные фракции из ряда тканей, в частности из печени, в определенных условиях сохраняют способность к окислительному фосфорилированию. Способность к синтезу АТФ можно легко ликвидировать, так как она зависит от целостности липопротеидного матрикса митохондрий, при этом поврежденная митохондрия может сохранять способность к окислению. Разобщение можно вызвать механическими повреждениями, другими физическими способами и химическими агентами. [c.375]

    ФОСФОРИЛИРОВАНИЕ ДДФ. МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ [c.325]

    Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи—утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии обслуживается соответствующим дыхательным переносчиком НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи (см. рис. 9.7). В дыхательной цепи происходит дискриминация протонов и электронов в то время как протоны переносятся через мембрану, создавая АрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее. [c.311]

    Сконцентрировав свое внимание на окислительном фосфорилировании в митохондриях, мы показываем, что функцию диссипации для этой системы можно записать в виде Ф = = /рЛ +/н Ар,н +где и величины сродства реакций фосфорилирования и окисления соответственно, измеренные вне митохондрий Арн —разность электрохимических потенциалов протонов на митохондриальной мембране, т. е. [c.344]

    Конформационная гипотеза сопр51жения окисления и фосфорилирования. В соответствии с этой гипотезой перенос электронов вызывает изменение конформации липопротеиновых ансамблей в митохондриальной мембране, в том числе АТФ-синтетазы, и переводит ее из неактивного (релаксированного) состояния в напряженное, активное. Современные данные подтверждают различное конформационное состояние крист митохондрий при разных уровнях дыхательной активности. Однако, очевидно, что объяснить активацию АТФ-синтетазного комплекса лишь конформационными переходами не представляется возможным, хотя это явление имеет место. [c.206]

    Объем окислительного фосфорилирования и свободного окисления в значительной мере зависит от проницаемости митохондриальных мембран для фосфатов, катионов магния и др. [c.204]

    Теплообразующая функция мембран. При инкубации митохондрий, хлоропластов и хроматофоров в среде, содержащей разобщитель процессов переноса электронов и синтеза АТФ, энергия, которая выделяется в ходе электрон-транспортных процессов, может полностью рассеиваться в виде тепла. Поэтому возникает вопрос, происходят ли в функционирующем организме реакции переноса электронов, единственным энергетическим эффектом которых является образование тепла (Скулачев, 1972). Установлено, что разобщение окислительного фосфорилирования является одним из физиологических ответов пойкилотермного организма на понижение окружающей температуры. Этот результат, как отмечает В. П. Скулачев, является прецедентом, важным в том смысле, что трансформация энергии окисления в тепло посредством разобщения дыхания и фосфорилирования может служить одним из естественных физиологически полезных путей энергетических превращений в митохондриальной мембране. [c.73]

    Ряд ферментов, известных под общим названием оксидазы жирных кислот , находятся в митохондриальном матриксе в непосредственной близости от дыхательной цепи, локализованной во внутренней мембране митохондрий. Эта система катализирует окисление ацил-СоА до ацетил-СоА, которое сопряжено с фосфорилированием ADP до АТР (рис. 23.3). [c.227]

    Основная рабочая часть митохондрии-это матрикс и окружающая его внутренняя мембрана. Среди специфических особенностей внутренней мембраны следует отметить необычно высокое содержание в ней кардиолипина— фосфолипида, составляющего более 10% всех ее липидов. Полагают, что именно этим обусловлена необычайно малая проницаемость внутренней мембраны для ионов. В состав этой мембраны входят также различные транспортные белки, избирательно пропускающие внутрь ряд небольших молекул, метаболизируемых ферментами, которые находятся в матриксе. В частности, матрикс содержит ферменты, превращающие пируват и жирные кислоты в ацетил-СоА и затем окисляющие последний в цикле лимонной кислоты. Главные конечные продукты этого окисления-двуокись углерода (СО 2), выходящая из клетки, и NADH, который служит основным источником электронов при переносе их по дыхательной цепи (так называют цепь переноса электронов в митохондриях). Ферменты этой цепи встроены во внутреннюю митохондриальную мембрану и важны для всего процесса окислительного фосфорилирования, происходящего в митохондриях и дающего большую часть АТР в животных клетках. [c.10]

    При однократном введении этанола в организм концентрации АцА колеблются в пределах 100—400 нМ [215] (физиологический уровень) и он окисляется в печени со скоростью примерно 12 нмоль-мин мг белка (37° С) [267]. При этом он способен активировать дыхательную цепь митохондрий, значительно увеличивая скорость потребления кислорода изолированными митохондриями в состоянии 3, и дает коэффициент фосфорилирования АДФ/0=2,6. Разобщители окислительного фосфорилирования ускоряют его окисление как in vivo, так и in vitro [131, 132, 216], а ингибиторы транспорта электронов в дыхательной цепи (ротенон и антимицин А) резко подавляют. Последнее свидетельствует в пользу того, что окислительный метаболизм АцА действительно связан с дыхательной цепью, реализуется через НАД-зависимый участок и сопряжен с окислительным фосфорилированием [363]. Однако в концентрациях, превьппающих физиологические, проявляется токсический эффект АцА, выражающийся в подавлении митохондриального дыхания, уменьшении АДФ/0 и стимулирующего влияния разобщителей [267, 396]. Аналогичный эффект наблюдается при хроническом введении этанола животным. Уменьшение энергозависимого потребления кислорода при этом связано с подавлением главным образом НАД-зависимого окисления [132, 483, 583, 613]. [c.158]

    Окислительное фосфорилирование. При протекании многостадийных окислительных реакций в дыхательной цепи происходит дробное выделение энергии окисляющегося субстрата. Различают два вида окисления — сопряженное фосфорилирующее и сопряженное нефосфорилирую-щее. При сопряженном фосфорилирующем окислении в клетке накапливается выделяющаяся при окислении энергия в виде АТФ. При сопряженном нефосфорилирующем окислении энергия, выделяющаяся в дыхательной цепи, используется клеткой для выполнения работы (перенос ионов через мембрану митохондрий, изменение конформации митохондриальной структуры и др.) [9]. [c.406]

    В печени содержатся ферменты, при участии которых происходит фосфоролиз гликогена и дальнейшее превращение его по гли-колитическому пути. Этот процесс может протекать в гомогенате печени. При добавлении в инкубационную среду фтористого натрия из-за связывания ионов магния гликолиз останавливается на стадии образования 3-фосфоглицериновой кислоты, а в среде накапливается НАДН+Н" . Если гликолитические превращения происходят в атмосфере кислорода, образующийся НАДН+Н посредством челночного механизма передает электроны в митохондриальную цепь биологического окисления, где в результате окислительного фосфорилирования образуется АТФ из АДФ и Рн. Течение окислительного фосфорилирования обнаруживают по убыли Рн в инкубационной Среде. [c.135]

    На обеих стадиях окисления жирных кислот атомы водорода или соответ-ствуюшде им электроны передаются по митохондриальной цепи переноса электронов на кислород. С этим потоком электронов сопряжен процесс окислительного фосфорилирования ADP до АТР. Следовательно, энергия, высвобождающаяся на обеих стадиях окисления жирных кислот, запасается в форме АТР. [c.556]

    Наблюдаемая интенсивность митохондриального дыхания зависит не только от природы и концентрации субстрата, подвергающегося окислению, но и от эффективности сопряжения процессов дыхания и фосфорилирования. В интактных митохондриях эти процессы обычно накрепко сцеплены друг с другом (если только количества субстрата и Фд не лимитированы), так что скорость дыхания фактически регулируется величиной отношения [АДФ]/[АТФ.] Когда это отношение достаточно велико ( состояние 3 ), большая часть внутримитохондриального адениннуклеотида находится в форме АДФ и дыхание протекает весьма интенсивно. Напротив, если за счет АДФ накапливается АТФ (т. е. в условиях, когда скорость дефосфорилирования АТФ в процессах, требующих энергии или фосфата, отстает от скорости его образования), дыхание ослабевает ( состояние 4 ). Добавление АТФ может даже ингибировать дыхание вследствие обращения потока электронов Все эти явления составляют то, что принято называть дыхательным контролем. [c.365]

    Помимо наследственных, бывают патологии окислительного фосфорилирования, обусловленные интоксикациями. Так, хроническое потребление этанола бабуином вызывает двукратное снижение концентрации цитохромоксидазы и ее активности, а также некоторое уменьшение содержания фосфолипидов (прежде всего фосфатидил-холина и кардиолипина) благодаря активации фосфолипазы Аг. Отмечено также, что у крыс, получавших этанол, ослабляется связь фактора с митохондриальной мембраной и снижается эффективность окислительного фосфорилирования. В крови пациентов, страдающих первичным желчным циррозом, обнаружены аутоиммунные антитела к АТФ/АДФ-антипортеру. Резкое торможение окисления пирувата, а-кетоглутарата и пальмитоилкарнитина наблюдается в митохондриях бегунов на длинные дистанции. [c.241]

    Так как а-глицерофосфат свободно проходит через мембрану митохондрий, он быстро окисляется митохондриальной а-глицерофосфатдегидрогеназой, тем самым регенерируя диоксиацетонфосфат (рис. 26). При этом происходит перенос электронов и протонов из цитозоля в митохондрии, где их последующая передача кислороду по цепи переноса электронов сопряжена с окислительным фосфорилированием. После этого образовавшийся в митохондриях диоксиацетонфосфат может быть использован для дальнейшего окисления внемитохондриаль-ного НАД-Н. Анализ схемы, приведенной на рис. 26, показывает, что работа этой системы в целом носит циклический и каталитический характер и что а-глицерофосфатный цикл по существу представляет собой челночную систему, в которой связанные с НАД субстраты в восстановленном состоянии входят в митохондрии, а в окисленном выходят из них. Поскольку диоксиацетонфосфат все время саморегенерируется, он необходим только в каталитических количествах для окисления непрерывно образующегося НАД-Н. Это навело С актор а на мысль, что [c.86]

Рис. 7-15. Основной итог превращения энергии, происходящего в митохондрии. В этом процессе, называемом окислительным фосфорилированием, внутренняя митохондриальная мембрана играет роль энергопреобразующего устройства, которое превращает часть энергии окисления NADH (и Рис. 7-15. Основной итог <a href="/info/16287">превращения энергии</a>, происходящего в митохондрии. В <a href="/info/1757866">этом процессе</a>, называемом <a href="/info/38828">окислительным фосфорилированием</a>, <a href="/info/1900631">внутренняя митохондриальная мембрана</a> <a href="/info/1907646">играет роль</a> <a href="/info/1380837">энергопреобразующего</a> устройства, которое превращает <a href="/info/145509">часть энергии</a> окисления NADH (и
    По данным В. П. Скулачева, при охлаждении организма происходит разобщение окисления с фосфорилированием, и вся энергия окислительных реакций превращается в тепло. В этом разобщении участвуют, вероятно, свободные жирные кислоты, которые повышают протонную проводимость митохондриальной мембраны. Процессы образования свободных жирных кислот стимулируются под действием целого ряда гормонов (преладе всего тех, которые повышают концентрацию цАМФ в клетке),. поэтому представляется вероятным, что КПД окислительного фосфорилирования (а следовательно, и количество тепла, выделяющегося при этом) находится под контролем нейроэндокринной системы. [c.248]

    Хотя цикл лимонной кислоты составляет часть аэробного метаболизма, ни в одной из реакций этого цикла, приводящих к образованию NADH и FADHj, молекулярный кислород не принимает прямого участия. Он выходит на сцену только в заверщающей серии катаболических реакций, протекающих на внутренней митохондриальной мембране. В ходе этих реакций электроны, перенесенные при окислении субстратов на NAD и FAD, связываются молекулярным кислородом, а высвобождаемая при этом энергия используется для синтеза АТР из ADP и Pi этот процесс, взятый в целом, называют окислительным фосфорилированием (рис. 9-14). [c.15]

    В определенной ситуации лимитирующим фактором в метаболизме этанола может стать сама дыхательная цепь. Это было показано на изолированных гепатоцитах, полученных от печени сытых животных, когда ингибиторы митохондриального дыхания и малатаспартатного шунта не снижали ускорения окисления этанола, возникающего из-за предварительного хронического его введения. Скорость метаболизма резко возрастала при добавлении субстратов шунтов вместе с 2,4-динитрофенолом — разобщителем окислительного фосфорилирования, но не в его отсутствие/ Это можно объяснить, если предположить, что ускорение [c.167]

    Согласно гипотезе Митчелла, дыхание и фосфорилирование связаиы между собой через посредство электрохимического потенциала и ионов водорода иа митохондриальной мембране. Функционирование дыхательной цепи, локализованной во внутренней митохондриальной мембране, приводит к накоплениЕО ионов Н+ по одну сторону мембраны и образованию иоиов ОН""— по другую. При этом снаружи остаются 2Н+ н окисленный субстрат, а иа внутреннюю сторону передаются два электрона по дыхательной цепи, встроенной в толщу мембраны (например, цитохромоксидазе), соответствующему акцептору водорода В (в рассматриваемом примере кислороду), который затем присоединяет 2Н+ из водной фазы митохондриального-матрикса  [c.263]


Смотреть страницы где упоминается термин Фосфорилирование АДФ. Митохондриальное окисление: [c.472]    [c.410]    [c.567]    [c.49]    [c.335]    [c.167]    [c.30]    [c.132]    [c.176]    [c.221]    [c.68]    [c.56]    [c.77]    [c.78]    [c.112]   
Смотреть главы в:

Химические основы жизни -> Фосфорилирование АДФ. Митохондриальное окисление




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование



© 2025 chem21.info Реклама на сайте