Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обзор реакций в системе

    Вместо обычного курса органической химии автор попытался дать полный обзор реакций типичных групп, преимущественно с точки зрения лабораторной практики и, по мере возможности, указать границы применения так называемых общих реакций . Логическим следствием принятой в этой книге системы изложения является приложение, посвященное идентификации органических соединений. [c.4]


    Вообще говоря, дисперсионные явления наблюдаются в тех случаях, когда реакция системы отстает от действия внешней силы. В диэлектриках это отставание показывает, что разного рода межмолекулярные перестройки требуют конечного периода времени, мерой которого служит т — определенное ранее время релаксации. При наложении высокочастотного поля его частота может превзойти скорость, с которой совершается процесс данной перестройки. По мере увеличения отставания возникает разность фаз между возмущающей и ответной силами и энергия поля переходит в энергию теплового движения. В своем интересном описании принятой сейчас физической картины Смайс [1906, стр. 52—54] упоминает, что для различных видов перестройки (см. табл. 7) требуется разное время. Если вести работу в широком диапазоне частот, то существует возможность различить эти процессы. Более подробно этот вопрос рассматривается в работах, специально посвященных диэлектрикам [726]. Дейвис дал обзор химических применений [481]. [c.33]

    В настоящей монографии может быть сделан лишь краткий обзор реакций окисления, а поэтому мы коснемся только реакций, протекающих в гомогенных жидких системах. К тому же недостаток места не позволяет упомянуть о деталях эксперимента, которые часто являются особенно важными для успешного проведения химической реакции. [c.9]

    Обзор реакций в системе N — О [c.318]

    Обзор реакций в системах с атомами N и Н [c.340]

    В последнее время широкое распространение получают методы механики сплошных сред для описания движения многофазных систем. В этом случае каждая фаза рассматривается как сплошная среда, характеризуемая полем скоростей и давления внутри нее. Вся система представляется в виде многоскоростного континуума взаимопроникающих сплошных сред. Тогда описание движения многофазной системы сводится к заданию условий совместного движения фаз и определению величин, описывающих межфазные взаимодействия. В [31] дается обзор работ, посвященных применению методов механики сплошных сред к многофазным системам, а в [8] приведено их дальнейшее развитие на системы, внутри которых происходит обмен энергий, импульсом и массой, а также на системы, в которых протекают химические реакции. Несмотря на всеобъемлющий характер такого подхода, он остается в большей степени теоретическим, так как предлагаемые математические описания трудно применимы при расчете реальных процессов в силу незамкнутости описания и трудностей вычислительного характера. В свою очередь, например, описание межфазного взаимодействия, поля скоростей и давлений невозможно без упрощающих допущений и проведения экспериментальных исследований. Поэтому основным подходом к описанию движения многофазных систем является получение полуэмпирических соотношений для учета влияния важнейших параметров исходя из общих теоретических закономерностей. [c.289]


    Дан обзор существующих методов расчета равновесного состава в системах с произвольным числом реакций. Приведены математические формулировки задач по расчету равновесного состава. Обобщен имеющийся опыт проведения такого рода расчетов. [c.189]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Поведение системы = — = N r реакции Михаэля аналогично поведению системы С —С С=0, Обзор наиболее исчерпывающих исследований ао присоединению реакционноспособных метиленовых соединений к хинонимидам был опубликован [158] отдельные примеры таких реакций приведены в табл. IX. [c.206]

    Применение микроволнового нагрева в синтезе карбо- и гетероциклических соединений по реакции Дильса-Альдера рассмотрено в работах з . Ранее нами опубликован достаточно подробный обзор в этом направлении Установлено, что применение МВИ позволяет значительно сократить продолжительность реакций циклизации в закрытой системе. [c.200]

    Некоторые из этих реакций будут адиабатическими, другие — неадиабатическими. Это зависит от поведения системы при достижении области пересечения поверхностей потенциальной энергии. Если система проходит через область пересечения с малой скоростью, она не прыгает с нил ней ветви поверхности Я на верхнюю ветвь поверхности Я. В этом случае обычно достаточно времени, чтобы произошел перенос электрона р равно единице) и вся система осталась на более низкой поверхности потенциальной энергии после прохождения через область пересечения. Такие реакции называют адиабатическими. В случае неадиабатических реакций система проходит через область пересечения с высокой скоростью, так что время для переноса электрона мало. Поэтому р меньше единицы, и часть систем будет прыгать на более высокую поверхность потенциальной энергии при прохождении через область пересечения. В соответствии с теорией Маркуса возможны два предельных случая для неадиабатических реакций (как указал Сутин в своем обзоре) один случай соответствует относительно большому расстоянию между реагентами и поэтому малой вероятности переноса электрона и небольшой свободной энергии активации другой предельный случай соответствует относительно малому расстоянию между реагентами п поэтому большой вероятности переноса электрона и большой свободной энергии активации. [c.299]

    Этот раздел делится на подразделы в зависимости от характера связи, с которой реагирует кремнийметаллический реагент. Обширному разделу, в котором описываются реакции кремнийметаллических соединений с органическими соединениями, предшествует обзор реакций кремнийметаллических соединений с элементами и неорганическими соединениями. Обзор реакций с органическими соединениями делится по группам периодической системы. [c.335]

    Из приведенного обзора реакций между углем и галоидами можно сделать вывод, что большая часть углерода в угле находится в виде конденсированных кольчатых систем. Эти кольчатые системы в значительной мере насыщены, они являются, повидимому, нафтеновыми и, вероятно, в большой степени гидроароматическими соединениями, т. е. представляют собой шестичленные циклы. Большое количество водорода и низших углеводородов, образующихся при коксовании угля, является результатом дегидрогенизации этих нафтеновых структур с образованием ароматических систем. Что касается природы кис.чородных связей, то из рассмотрения реакций галоидирования получено мало данных в этом отношении. [c.386]

    Литература по массопередаче с химической реакцией в системах твердое тело — жидкость очень обильна и здесь может быть дана только очень краткая аннотация. Этот вопрос детально рассмотрен в ряде книг [47—52], посвященных каталитическим реакциям. Недавно было представлено много работ по факторам эффективности пористых катализаторов [63—60]. Среди прочих в работах [51—64] обсуждены некаталитические реакции газ—твердое тело. Поверхностные реакции были теоретически исследованы в ряде статей [65—74]. Обзоры исследований в области массопередачн в пограничных слоях были представлены Кузиком и Хаппелем [75] и Вегером и Хельшером [76]. Тема обсуждалась в разделах 3.4, [c.165]


    Подобные уравнения были предложены Овейном и др. [174] для всех нуклеофильных реакций замещения у атома углерода. Однако в этом случае число параметров з величивается до четырех и польза такой системы расчетов сомнительна (более полный обзор см. [175]). [c.526]

    Уреаза катализирует реакцию гидролиза мочевины до аммиака, а ката-лаза — распад Н2О2 до Ы2О + О2. (Обширный обзор по дыхательным ферментам см. в [99].) В ряде случаев в системе необходимо наличие так называемых коферментов, которые обычно имеют меньший молекулярный вес, чем фермент. Функцию коферментов могут нести витамины и простые нуклеотиды, такие, как адонозинтрифосфат (АТФ). [c.561]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]

    НОМ И перед хроматографированием алкилируют метилиодидом. Высоколипофильный катион обеспечивает быструю экстракцию и метилирование при комнатной температуре [242]. Обзор работ, посвященных применению экстрактивного алкилирования для аналитических целей, дан в [1052], другие примеры использования этого метода см. в [1054, 1487]. При алкилировании в двухфазных системах феноляты реагируют с пентафторбензилбромидом и другими бензилгалогенидами и в отсутствие МФ-катализатора, в то же время алкилирование карбоксилатов без катализатора не идет это позволяет легко отличать их друг от друга [1055, 1583]. Катализатор не требуется также и при синтезе некоторых эфиров с использованием в качестве основания лиофильно высушенного KF [1605]. Библиографические ссылки на другие работы, охватывающие все типы реакций получения эфиров, приведены в табл. 3.7. [c.158]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    В заключение обзора различных типов реакций, проведенного в разд. 3.18, необходимо указать, что четвертичные аммониевые соли помимо хорошо известного использования их в качестве фоновых электролитов могут найти и другое применение в электрохимии. Установлено [524], что действие постоянного тока на неактивную редокс-систему u +/[V(G0)6] , представляющую собой гетерогенную систему жидкость/жидкость, вызывает выпадение слоя меди на границе раздела фаз [524]. На платиновом аноде было проведено также окисление системы, содержащей 3 М водный Na N, нафталин или анизол в метиленхлориде в присутствии МФ-катализатора [79]. При этом были получены с выходами до 70% моноцианопроизвод-ные. Эта методика пригодна также для проведения ацилокси-лироваьия. [c.283]

    В литературе приводится обзор исследований кинетики реакций в системах газ — жидкость — твердая частица, выполненных с целью выявления лимитирующих стадий процесса. По утверждению некоторых авторов, в отдельных процессах лимитирующей стадией может явиться перенос вещества через поверхность раздела газовой и жидкой фаз. Примерами могут служить процессы Фишера — Тропша и гидрирования окиси углерода в метан на суспензированном катализаторе, а также гидрирование а-ме-тилстирола, этилена и циклогексена При изучении этих процессов, был сделан общий вывод о том, что в рассматриваемых трехфазных системах скорость процесса в целом лимитируется [c.672]

    Обширный обзор экспериментальных установок, необходимых для исследования напряженных волокон в ЭПР-резонаторе, содержится в работе Рэнби и др. [2]. Эти установки значительно более сложные, чем аппаратура для исследования порошков, хотя требования по регулированию температуры и атмосферы, окружающей образец в резонаторе, почти те же самые. Известны рычажные и гидравлические системы нагружения с сервомеханизмами [29, 37, 44, 60], с помощью которых запрограммированная по определенному закону нагрузка и деформация могут быть приложены к пучкам волокон (или другим растягиваемым образцам) непосредственно в резонаторе. Необходимо, чтобы растяжение упругих образцов проводилось в таком температурном режиме, при котором можно легко наблюдать спектры свободных радикалов. Для термопластичных волокон этот режим соответствует температура.м 200—320 К предварительно ориентированные волокна каучуков необходимо испытывать при температурах 93—123 К- При этих температурах первичные свободные радикалы достаточно подвижны, чтобы быстро вступать в реакции с атомными группами своей или других цепных молекул, с абсорбированными газами, примесями или включениями, действующими в качестве лову- [c.182]

    Еще одним доказательством механизма SnI является то, что замещение у атома углерода в голове моста при проведении реакции в условиях реализации механизма SnI либо не идет вообще, либо происходит очень медленно (см. обзор [24]). Реакции Sn2 с этими субстратами (разд. 10.1) тоже ие идут, хотя и по другой причине. Если протекание реакции SnI требует образования карбокатиона и если карбокатион должен быть планарным или почти планарным, то не удивительно, что атомы углерода в голове моста, которые не могут принять плоскую конфигурацию, не становятся местом образования карбокатиона. Например, при кипячении 1-хлороапокамфана (7) в течение 21 ч с 30 %-ным раствором КОН в 80 %-ном этаноле или в течение 48 ч с нитратом серебра в водном этаноле реакции не происходили [25], хотя аналогичные системы с открытой цепью реагировали легко. В соответствии с этой теорией если размер цикла достаточно велик, то SnI-реакция возможна, так как в этом случае можно ожидать образования карбокатионов, имеющих структуру, близкую к планарной. В действительности так оно и оказалось. Например, SNl-реакции [2.2.2]-бициклических систем протекают значительно быстрее, чем SNl-реакции бициклических систем с меньшими циклами, хотя и идут медленнее соответствующих реакций соединений с открытой цепью. Что касается [c.20]

    По-видимому, в этих реакциях образуется почти плоский карбониевый ион. Ббльщая легкость реакций соединения ЬХ объясняется большей гибкостью бициклооктановой системы. Более подробно с реакциями у узлового атома мо-стиковых систем можно ознакомиться по обзору [114]. [c.389]

    Перимидин — один из немногих гетероциклов, образующих легко окисляющийся кислородом воздуха анион. Это является следствием высокой л-донорности перимидиновой системы, присущей уже нейтральной молекуле перимидина (см. обзор [267]), поэтому специфика алкилирования перимидина заключается в необходимости проведения реакции в атмосфере инертного газа [348, 349]. [c.107]

    Скорость реакции в этом случае зависит как от скорости диффузии через поверхность раздела фаз, так и от скорости гомогенной реакции в органической фазе. Важными факторами являются энергия разрушения водной оболочки аниона и энергия пересольватации органическим растворителем. Следует отметить, что при переходе аниона нз водной в органическую фазу наблюдается кардинальное изменение сольватации оние-вых ионов. Анион перешедшей в органическую фазу ионной пары 0+ V крайне мало сольватирован, что даже дало повод называть реакции таких ионных пар реакциями голых анионов (см. обзор [2]). Очевидно, что для таких реакций выгоднее всего использовать возможно более липофильные катионы и малополярные растворители. Классическим примером переноса анионов из водной фазы в органическую является окрашивание бензольного слоя в малиновый цвет в системе водный раствор КМЛО4 — бензол при добавлении метилтриок-тиламмонийхлорида [3]. В настояш,ее время такой малиновый бензол используют для окисления многих органических соединений. [c.13]

    Несмотря на большое структурное сходство катализаторов межфазного переноса с поверхностно-активными веществами, они весьма различаются по каталитическому действию. Высокоэффективные катализаторы межфазного переноса обычно являются плохими поверхностно-активными веществами. Кинетические данные и способность ониевых солей ускорять реакции даже в неполярных средах подтверждают предположение, что суть их каталитического действия заключается не в образовании мицелл, а в создании каталитического цикла, включающего обмен ионами. Было показано [9], что реакция между 1-хлор-октаном и цианидом натрия катализируется как анионными поверхностно-активными веществами (например, додецилбен-золсульфонатом натрия), так и неионными поверхностно-активными веществами (например, продуктами реакции додеканола и тетрадеканола с 6 моль этиленоксида) однако скорости реакции при этом в 100—1000 раз ниже, чем при применении четвертичных аммониевых солей. Таким образом, мицеллярный катализ можно, конечно, рассматривать как межфазный, однако ои обладает своей спецификой и далее не будет обсуждаться в данной книге (см. обзоры [10—131). Отметим, однако, что, как правило, поверхностно-активные вещества тормозят реакции в двухфазной системе. Это, очевидно, связано с тем, что образование мицелл изменяет физические характеристики системы и, кроме того, большая часть поверхности раздела фаз занимается поверхностно-активным, веществом, что приводит к вытеснению катализатора межфазного переноса. Именно поэтому для каждой системы существует свой оптимальный размер катиона, когда он еще остается катализатором межфазного переноса, но уже не является поверхностно-активным веществом. [c.16]

    Расплавы солей служат прекрасной средой для проведения реакций многих веществ, в том числе неорганических и органических газообразных и твердых соединений, металлов и окисей кроме того, они могут использоваться в качестве бань для поддержания постоянной температуры. Известные к настоящему времени солевые системы позволяют перекрыть температурный диапазон более 1000 С. Свойства расплавленных солевых систем подробно обсуждаются в следующих монографиях и статьях общие сведенпя (1—6] применение в органической химии (7, 8] (реакции обмена галогена в арилгалогенидах и другие реакции), 9] (расплавы органических солей), (10] (обзор) сиектрофото-метрия [11]. Кроме того, свойства расплавов солей детально рассмотрены в книге [12]. Большая часть приведенных нилсе данных взята из этого издания. [c.47]

    Растворители принято делить иа две группы протонные н апротонпые. К протонным отцосятся растворители, имеюш,ие протоны, связанные с гетероатомами (кислоты, нейтральные растворители и некоторые основания). Растворителям, применяемым в электрохимии, посьящен обзор [244. Электрохимические реакции в неводных системах и химия иеводных растворителей описаны в монографиях [245, 246]. [c.204]

    Всякий биохимик должен быть не только химиком, но и биологом, по крайней мере настолько, чтобы иметь представление о разделах биологии, касающихся изучаемых им живых организмов. Например, исследование биохимических законов генетики и наследственности требует хорошего знакомства со строением клеточного ядра и цитоплазмы, протоплазмы клетки и хромосомного состава генов клеточного ядра. В некоторых случаях биохимику интересно исследовать протекание реакций непосредственно в организме (in vivo или in situ), а в других — выделить их из живого окружения и проследить за ними в изолированной системе (in vitro). Вследствие большой сложности даже наиболее распространенных биохимических процессов, как, скажем, метаболизм углеводов, ученым приходится проявлять большую изобретательность при разработке методов изолирования биохимических процессов и их изучения. Поэтому мы начнем с краткого обзора методов, применяемых в биохимии, а затем ознакомимся с основными областями исследований этой многогранной науки. [c.477]


Смотреть страницы где упоминается термин Обзор реакций в системе: [c.398]    [c.166]    [c.59]    [c.122]    [c.14]    [c.42]    [c.220]    [c.132]    [c.357]    [c.390]    [c.165]    [c.386]    [c.454]    [c.484]    [c.129]    [c.107]   
Смотреть главы в:

Химия горения -> Обзор реакций в системе




ПОИСК





Смотрите так же термины и статьи:

Обзоры

Реакции система для



© 2025 chem21.info Реклама на сайте