Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие закономерности спектроскопии

    Аналитическое применение атомно-флуоресцентной спектроскопии, как и всех спектроскопических методов, основано на построении градуировочного графика, который представляет собой графическую зависимость аналитического сигнала (например, значение мощности спектра флуоресценции) или логарифма сигнала от концентрации определяемого элемента или от логарифма концентрации. Обычно отсутствие информации о некоторых экспериментальных параметрах не позволяет предугадать точную форму такого графика. Однако общие закономерности его изменения ясны, и поэтому для выбора оптимальных условий измерений аналитик должен иметь представление о форме ожидаемого градуировочного графика. [c.137]


    Поскольку большинство простых свободных радикалов имеют очень короткое время жизни (они химически нестабильны, даже если стабильны физически), только в последнее время попытки выделить их и исследовать их структуру оказались успешными. Спектроскопия сыграла важную роль в развитии этой области, и в свою очередь изучение спектров свободных радикалов, как двухатомных, так и многоатомных, значительно способствовало пониманию общих закономерностей, определяющих строение молекул. [c.10]

    В книге рассмотрены общие закономерности образования свободных радикалов под действием ионизирующих излучений и их превращений рекомбинация, взаимодействие радикалов с молекулами, превращение радикалов под действием света. Рассмотрены также процессы образования парамагнитных центров при облучении различных сорбентов, образование радикалов из адсорбированных молекул и взаимосвязь этих процессов. В приложениях приведены некоторые подробности, связанные с теорией ЭПР-спектроскопии свободных радикалов, а также изложены некоторые методические вопросы. [c.278]

    При наличии нескольких гетероатомов в функциональных группах неизвестной природы попытки более детальной интерпретации масс-спектра на основе общих закономерностей фрагментации нецелесообразны и могут привести к ошибкам. Природу функциональных групп следует выявить с помощью ИК-спектроскопии (рис. 7.2). [c.122]

    К настоящему времени установлены многие общие закономерности, касающиеся спектроскопических проявлений межмолекулярных сил. Последнее, в свою очередь, позволяет рассматривать спектроскопию межмолекулярных взаимодействий как новое перспективное направление молекулярной спектроскопии, которое особенно бурно развивается в течение последних 10— 15 лет. Отличительной особенностью этого направления по сравнению со спектроскопией молекул, рассмотренной в разделе П, служит тот факт, что в спектроскопии межмолекулярных взаимодействий источником информации о свойствах исследуемых молекул и конденсированных веществ служит не спектр молекулы как таковой (частота, интенсивность, форма полос), а изменение указанного спектра (смещение частоты, изменение интенсивности и формы полос) под влиянием межмолекулярных сил той или иной породы. Существенно при этом, что методы спектроскопии межмолекулярных взаимодействий позволяют во многих случаях определять такие параметры изучаемых систем, которые весьма затруднительно, а иногда просто невозможно найти с помощью других (в том числе традиционных спектроскопических) методов исследования. [c.90]


    Результаты анализа обширного эмпирического материала атомной спектроскопии и расчетов, основанных на анализе физической модели многоэлектронных атомов, позволяют объяснить расхождения между реальной последовательностью заполнения электронных состояний с увеличением X и схемой так называемой идеальной системы элементов , отвечающей воображаемому регулярному (или, как его чаще всего называют, правильному, нормальному) заполнению электронных групп и подгрупп по возрастающим значениям главного квантового числа. Однако в течение длительного времени эти расхождения рассматривались именно как незакономерные отклонения от нормальной, правильной последовательности. И лишь постепенно выяснялась возможность по существу принципиально иного подхода к трактовке этих отклонений благодаря открытию и теоретическому обоснованию иной общей закономерности, относящейся ко всей периодической системе в целом, причем не только к нейтральным атомам в их основном состоянии, но и к возбужденным состояниям атомов. [c.56]

    Несмотря на развитие инструментальных методов исследования, в настоящее время определение полного углеводородного состава возможно только для легких и средних фракций. Это связано с рядом серьезных ограничений, которые возникают при применении аналитических методов к сложным многокомпонентным углеводородным системам. Взаимодействия молекул между собой приводят к серьезным отклонениям от ожидаемого результата. Так, например, установлено, что обработка данных спектроскопии ЯМР приводит к заниженному количеству ароматических групп, так как не учитывается взаимодействие стабильных свободных радикалов нефтяных сред с протонами органических молекул. Тем не менее, существует ряд общих физико-химических закономерностей, которые позволяют проводить инженерные расчеты процессов переработки углеводородных систем. [c.47]

    Хорошо известно, что наши сведения об атомно-пространственном строении веш,ества мы получаем главным образом в результате дифракционных и прежде всего рентгеноструктурных исследований кристаллов. Систематизация этих данных, установление общих и частных закономерностей в строении кристаллов, анализ зависимости строения кристаллов от их химического состава и далее физико-химических свойств кристаллов от их строения — это область кристаллохимии. Книгу А. Уэллса, однако, нельзя рассматривать просто как фундаментальный труд по кристаллохимии неорганических соединений. Термин структурная химия значительно лучше передает его специфику. Дело не только и, пожалуй, не столько в том, что помимо результатов рентгеноструктурных исследований автор привлекает данные электронографии газов, микроволновой и ИК-спектроскопии, а эпизодически также и других физико-химических методов, позволяющих делать предположительные заключения о строении структурных единиц в группах соединений по аналогии . Важнее то обстоятельство, что монография А. Уэллса написана в расчете на химика широкого профиля, не имеющего специальной кристаллохимической подготовки. [c.5]

    Однако подробно останавливаясь на атоме водорода, авторы общих курсов обычно оставляют б стороне весь остальной богатейший материал по спектрам более тяжелых атомов (за исключением, иногда, еще атома гелия), руководствуясь тем, что волновое уравнение допускает решение в замкнутой форме только для самых простейших случаев, а приближенные и полуэмпирические закономерности и методы обычно оказываются не в почете у теоретиков. Поэтому атомные спектры подробно описываются, лишь с совсем другой точки зрения, в книгах специально посвященных спектроскопии атомов. В книгах этого типа основное внимание уделяется систематизации эмпирического материала, а теоретические результаты приводятся без достаточного обоснования. [c.5]

    Вопрос о природе факторов, обусловливающих уширение спектральных полос в конденсированной фазе вещества, является одним из наиболее сложных и наименее изученных в спектроскопии межмолекулярных взаимодействий. Тем не менее можно утверждать, что эти факторы в общем случае принципиально отличаются от тех, с которыми приходится иметь дело в газовой фазе (см. 4.2). В связи с этим ниже мы ограничимся для простоты рассмотрением только колебательных спектров неассоциированных жидких молекулярных систем, на примере которых можно проиллюстрировать некоторые основные закономерности формирования контура индивидуальной спектральной полосы при учете особенностей фазового состояния системы. Необходимо при этом особо отметить, что речь пойдет о факторах, вызывающих уширение полос в спектрах коэффициента Эйнштейна S(v), т. е., иными словами, в анализе причин, обусловленных собственно влиянием межмолекулярных взаимодействий на спектроскопические свойства молекул. Напомним, что согласно вышеизложенному (см. гл. 12) интенсивные полосы поглощения в наблюдаемых спектрах / (v) могут быть дополнительно уширены по сравнению со спектрами В ) за счет эффектов светового поля в конденсированной среде. [c.108]


    Существование в системе различного типа ионных пар доказано данными электронной спектроскопии в видимой и ультрафиолетовой частях спектра и данными ИК-спектроскопии. По наличию батохромного сдвига полосы поглощения, обусловленной контактной ионной парой в присутствии сильно сольватирующего растворителя, можно обнаружить факт сольватации ионной пары, и рассчитать соответствующую константу равновесия [45]. Доказано (см. гл. И1, 3), что способность растворителя к образованию в растворе сольватированных ионных пар зависит от диэлектрической проницаемости среды, стерических факторов, основности растворителя и т. д. [45, 46]. При отсутствии стерических эффектов способность эфиров к сольватации ионов щелочных металлов удовлетворительно коррелирует с основностью растворителя, однако в общем случае установить строгие закономерности влияния среды пока не представляется возможным. Определенные перспективы в отношении выяснения строения сольватно-разделенных ионных пар и причин изменения их реакционной способности по сравнению с контактными ионными парами открываются при использовании метода ЭПР [47—50]. [c.387]

    Методы построения характеристических кривых для оптического и рентгеноспектрального анализа имеют, конечно, много общего. В их основе лежит экспериментальное сопоставление двух рядов чисел, из которых один представляет собой величины закономерно изменяющихся экспозиций, а второй — величины почернений, соответствующих каждому из значений величин первого ряда. Однако в рентгеновской спектроскопии для построения характеристической кривой эмульсии может быть использовано большее число методов, часть которых отличается от обычно применяемых в оптике. Точность каждого из этих методов, так же как и степень удобства, с которой он может быть использован при проведении рентгеноспектрального анализа, различна. В настоящем разделе рассмотрены эти методы наибольшее внимание уделено тем, которые были предложены для целей рентгеноспектрального анализа и по тем или иным причинам не нашли применения в оптическом спектральном анализе. [c.36]

    По-видимому, даже непосвященному в таинства органического синтеза ясно, что такой путь слишком тру-.цоемок и не может применяться в качестве рутинного метода хотя бы по той простой причине, что для осмысленного планирования синтеза дейтерированных аналогов нужно прежде всего знать структуру соединения, а зто лишает смысловой основы расшифровку спектра ПМР как шага на пути установления структуры соединения. Поэтому синтез дейтероаналогов применяется тогда, когда расшифровка сложных спектров имеет самодовлеющее значение, например в исследовании закономерностей спектра ПМР новых классов соединений и т. д. (собственно, закономерности, на которые мы теперь опираемся при структурном применении ПМР, и были в свое время добыты таким трудоемким путем). В рутинном же применении ПМР для структурных исследований отнесение сигналов в значительной мере основывается на изученных ранее особенностях спектров соединений этого класса, на ряде общих закономерностей спектроскопии ПМР, а также на многих частных приемах расшифровки. [c.81]

    Несомненно, что после установления равновесия с жидкой водой или ее парами на поверхности двуокиси циркония образуются хемосорбированные гидроксильные группы [87, 88, 90]. Некоторые гидроксильные группы удаляются уже при 650 К [88], но завершается дегидратация только около 1170 К [90]. Стереохимия и реакционная способность гидроксилированной поверхности двуокиси циркония еще не исследованы. Тем не менее некоторое представление об этих свойствах дает структура тетрагональной модификации, показанная на рис. 10. Можно ожидать, что в реальных условиях на поверхности находятся низкоиндексные грани (111) (см. на рис. 10 грань с атомами циркония А, В и С), несущие, по-видимому, надповерхностный слой из анионов, гидроксильных групп и вакансий следует ожидать также, что общие закономерности в отношении химических свойств для такой поверхности будут почти такими же, как и для других рассмотренных систем. Кислотность поверхности двуокиси циркония исследовали, используя адсорбцию пиридина и ИК-спектроскопию [92]. В результате были обнаружены льюисовские кислотные центры, но они, по-види-мому, имеют меньшую кислотность, чем в случае окиси алюминия или двуокиси титана. [c.72]

    Выше уже отмечалось, что для опытного химика молекулярная спектроскопия является эффективным средством физико-химического исследования молекул и конденсированных тел. Однако одного знания теории и общих закономерностей, связывающих спектроскопические характеристики со свойствами вещества, еще недостаточно для достижения надежных результатов. Необходимо еще правильно поставить спектроскопический эк пepимeнf, чтобы получаемая с его помощью информация о спектрах вещества была в наименьшей степени искаженной влиянием различных мешающих факторов, всегда имеющих место на практике. В связи с этим ниже коротко рассмотрены некоторые принципиальные вопросы, касающиеся техники и методики молекулярной спектроскопии, причем основное внимание уделено методам оптической спектроскопии в ультрафиолетовой, видимой и инфракрасной областях. [c.133]

    Подробно изучено влияние у-излучения на полиэтилен с добавкой ионола (2,6-ди-трег-бутил-4-метилфенол). С использованием методов ИК-спектроскопии, дифференциального термического анализа, путем определения вязкости растворов и термомеханических характеристик полимера выявлены общие закономерности влияния этого стабилизатора он почти полностью подавляет процесс сшивания при облучении в вакууме (антирадное действие) и предотвращает термоокисление полимера в течение ограниченного времени (на термограммах при Т >Тпл экзотермические пики сглажены). [c.140]

    В настоящем обзоре излагаются физические основы фото-, рентгеноэлектронной и рентгеновской спектроскопии, необходимые для понимания различных аспектов применения методов к изучению валентных электронных уровней. Рассмотрены вопрос о сравнении экспериментальных данных с расчетами и степень достоверности различных методов расчета. Приведены энергии ионизации и другие характеристики уровней для более чем двухсот свободных молекул и изолированных групп в кристаллах. Опубликованный к настоящему времени материал в этой области столь велик, что заведомо исключает охват всех исследованных соединений. В рамках настоящего обзора рассмотрены данные для простых и комплексных неорганических соединений и примыкающих к ним простых органических и элементоорганических молекул. В обзор включены также данные по зонной структуре нескольких десятков соединений типаЛ"5 (п=1,2,3,4), а также окислов переходных и непереходных металлов. Совместное рассмотрение свободных молекул и твердых тел диктуется не только совпадением применяемых физических методов, но и единством самой природы химической связи, что выражается в наличии общих закономерностей. В последней главе обзора рассмотрены степень участия различных атомных орбиталей в образовании химической связи, взаимосвязь атомных и молекулярных орбитальных энергий, изменения электронного строения в ряду изо-электронных и изовалентных соединений. [c.6]

    Прежде чем перейти к исследованиям структуры определенных веществ, сделаем С1 ачала несколько общих замечаний. Сюда относится очень важный вопрос, может ли вообще, а если может, то в какой степени, инфракрасный спектр высокомолекулярного вещества служить непосредственно для определения молекулярного веса Именно на этот вопрос методика, как правило, не дает ответа. Действительно, уже исследования нормальных углеводородов показывают ограниченные возможности метода инфракрасной спектроскопии для определения молекулярного веса. В то время как для первых членов этого ряда установлено известное изменение положения характеристических полос поглощения с ростом длины цепи, влияние длины цепи почти полностью пропадает при числе углеродных атомов в цепочке свыше 12. Аналогичные результаты получены для образцов полнизобутилена с молекулярным весом от 1000 до 100 000. В частных случаях тщательное измерение интенсивностей определенных полос поглощения дает некоторую возможность более или менее грубой оценки молекулярного веса. Прежде всего это относится к нижней области интересующей нас шкалы. Другой проблемой является вопрос об исследовании разветвленности и о положении определенных заместителей вдоль углеводородной цепи. В этом случае выводы иногда можно делать только по положению некоторых полос, так как вообще любое разветвление и любое изменение заместителя, вследствие связанного с ними изменения внутримолекулярного поля (т. е. распределения масс), проявляются в спектре. Однако прежде чем можно будет перейти от отдельных фактов к общим закономерностям, должен быть собран обширный материал. [c.502]

    В рассматриваемых нами позиций хорошо объясняются закономерности, обнаруженные методом ИК- и УФ-спектроскопии для нефтей Западной Сибири А.Э. Конторовичем и О.Ф. Стасовой в 1977 г. наличие положительной связи между нафталиновыми и фенантреновыми УВ и уменьшение их доли с ростом сернистости нефти. Также понятно, почему вне зависимости от возраста вмещающих отложений и термобарических условий наблюдается ряд общих черт в составе ароматических УВ нефтей северных областей и нижнесреднеюрского комплекса, а также нижнего мела и юры. Нефти северных районов Тюменской области образовались из окисленного ОВ, о чем свидетельствуют высокие значе- [c.52]

    Лигнин в отличие от полисахаридов - полифункциональный полимер. Его функциональные группы весьма разнообразны метоксильные, гидроксильные фенольные и алифатические, карбонильные альдегидные и кетонные, карбоксильные, а также двойные связи алкенового типа. Для функциональньге групп лигнина характерны все свойства и закономерности химических реакций, известные в органической химии. Эти реакции используются и для количественного определения различных функциональных групп. Однако в последнее время все большее распространение для определения функциональных групп приобретают различные спектроскопические методы дифференциальная УФ-спектроскопия, ИК-спектроскопия, ПМР( Н-ЯМР)-спектроскопня и С-ЯЬ№-спектроскопия (см. 12.7.3). При рассмотрении методов определения функциональных групп будут изложены лишь общие понятия. Подробные методики можно найти в литературе [40]. [c.376]

    Исследование свойств нормальных колебаний позволяет получить общие выводы о поведении наблюдаемых в спектрах полос поглощения при переносе той или иной атомной группы из одной молекулы в другую. Этот вопрос является важнейшим для прикладной спектроскопии, так как большинство современных спектрохимических исследований как раз и имеют своей целью изучить влияния на некоторую группу атомов ее ближайшего, а в ряде случаев и более удаленного окружения. При этом обычно измеряются сдвиги частот колебаний данной группы при изменениях окружения. Величина этих сдвигов и наблюдаемые закономерности в ряде соединений заключают в себе информацию о строении и свойствах самой группы и изменениях в строении молекулы. При этом, очевидно, возникает важнейший вопрос — является ли сдвиг или изменение интенсивности полос поглощения, характерных для данной группы, достаточным признаком нарушения ее строения или нет Известно, что, например, в электронных спектрах поглощения многоатомных молекул дело обстоит именно так. Это обстоятельство существенно облегчает поиск разного рода корреляций. При использовании ИКС положение резко осложняется. Значительные сдвиги частот могут не иметь ничего общего с нарушением электронной структуры молекулы. Например, весьма стабильная в различных соединениях частота колебаний связи С=С меняется в молекуле ацетилена от значения 1974 см до 1851 см в монодейтероацетилене и 1762 см в дидейте-роацетилене, т. е. в общей сложности более чем на 200 см , хотя в очень [c.172]

    В системах катионного типа, напротив, процесс раскрытия цикла протекает хаотически, что приводит к образованию нерегулярных полимеров. Так, значительные количества аномальных продуктов обнаружены при инициировании полимеризации окцси пропилена системой 2пЕ1з/Н20 (1 0,5) и эфиратом трехфтористого бора Непосредственный анализ структуры полимерных цепей, особенно закономерностей чередования звеньев различной структуры, весьма труден, и, если не считать спектроскопию, здесь нет общих [c.367]

    Развитие таких методов, как ИК-спектроскоиия или спектроскопия ЯМР, для исследования органических веществ обычно основывается на хорошо определенных линиях спектра. По мере расширения экспериментальных результатов становятся все более понятными теоретические вопросы метода, причем задача извлечения полезной информации становится тем сложнее, чем сложнее экспериментальные данные. Чтобы облегчить сопоставление результатов или выявить новые закономерности, стараются ввести классификацию результатов. Масс-спектрометрия в течение длительного времени находилась в такой стадии, когда несмотря на необходимость такой классификации, не удавалось найти удобные способы объединения огромного количества конкретной информации. Один из главных камней преткновения в попытках классификации состоял в том, что интерпретация спектров на основе имеющейся общей теории затрудняется отсутствием необходимых сведений о структурах и состояниях ионов. В этих условиях следует, скорее, удивляться тому, что было все же предложено несколько типов классификации, отличающихся главным образом степенью их универсальности. Ниже обсуждаются эти методы классификации. [c.53]

    Измерение степени кристалличности у полиамидов и полиуретанов можно осуществить рентгенографически [27], электрономикроскопически [28], с помощью инфракрасной спектроскопии [29] и другими методами. В каждом случае существование кристалличности может быть доказано однозначно. Характерные явления при процессах плавления и затвердевания также следует рассматривать как доказательство кристаллического строения линейных поликонденсатов [30]. Весьма полезные соображения о закономерности связи между общими свойствами и молекулярной структурой всего класса линейных поликонденсатов высказали Брозер, Гольдштейн и Крюгер [31]. [c.541]


Смотреть страницы где упоминается термин Общие закономерности спектроскопии: [c.7]    [c.334]    [c.59]    [c.189]   
Смотреть главы в:

Химия Справочник -> Общие закономерности спектроскопии




ПОИСК





Смотрите так же термины и статьи:

Общие закономерности



© 2025 chem21.info Реклама на сайте