Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крахмал разделение на компоненты

    Сущность метода заключается в следующем. Раствор исследуемой смеси вводят в хроматографическую колонку — стеклянную трубку, заполненную адсорбентом, предварительно промытым, а затем пропитанным растворителем. Компоненты смеси адсорбируются в верхней части колонки, не разделяясь или разделяясь лишь частично образуется первичная хроматограмма (рис. 10.12, а). Затем ее проявляют . Для этого в колонку подают чистый растворитель (элюент), который десорбирует ранее адсорбированные вещества и перемещает их со своим потоком вниз по колонке. При движении по колонке происходят многократные акты адсорбции и десорбции, приводящие к разделению компонентов смеси в соответствии с законом адсорбционного замещения Цвета (1910 г.), который состоит в следующем если растворенные вегцества А, В, С,. .. по своему относительному сродству к адсорбенту образуют адсорбционный ряд А > В > С. .., тогда каждый из членов адсорбционного ряда вытесняет последующий и, в свою очередь, вытесняется предыдущими, бо.лее сильно адсорбирующимися. В результате на колонке образуется проявленная хроматограмма (рис. 10.12, б). Цвет применил этот метод для разделения на адсорбентах белого цвета (мел, оксид кальция, крахмал, целлюлоза) смеси пигментов листьев [c.304]


    Тонкослойная хроматография. Тонкослойная хроматография применяется при разделении очень малых количеств веществ на небольшом слое адсорбента за короткое время. Существуют два способа приготовления тонкого слоя сорбента — в закрепленном и незакрепленном слое. В качестве сорбента для приготовления закрепленных слоев применяют оксид магния, оксид алюминия, оксид кальция, карбонат магния, силикагель в смеси со связывающими компонентами. Связывающими веществами могут служить сульфат кальция, рисовый крахмал и вода. При приготовлении хроматографической пластинки с закрепленным слоем адсорбента на стеклянную пластинку (9 X 12 см, 13 X 7 см) наносят в виде кашицы смесь адсорбента со связующим веществом (5% от массы адсорбента) и водой. С помощью специального валика равномерно раскатывают эту смесь и делают слой толщиной 2 мм, затем пластинку высушивают при ПО—120°С. После этого на пластинке не должно быть трещин. При работе на тонком, незакрепленном слое можно использовать различные адсорбенты (наибольшее значение имеет оксид алюминия и силикагель). Для приготовления тонкого, незакрепленного слоя можно воспользоваться такими же стеклянными пластинками, как это описано выше. На пластинку насыпают слой сорбента, равномерно раскатывают его валиком, слегка прижимая к стеклу, снимая при этом избыток. Валик можно сделать из стеклянной палочки диаметром 8—10 мм и длиной несколько большей, чем ширина пластинки. На концы палочки надевают резиновые трубочки (длиной 1 см). Толщину их стенок подбирают так, чтобы при накатывании адсорбента образовывался слой до 1 мм. Трубочки должны находиться на таком расстоянии, чтобы после проведения валиком по пластинке оставались свободные от адсорбента полосы. Можно валик сделать металлический, причем он должен накладываться на пластинку для закрепления ее во время нанесения адсорбента удобно пользоваться специальным приспособлением (рис. 20). [c.27]

    Единственным моносахаридом, входящим в состав крахмала, является D-глюкоза. Тем не менее крахмал представляет собой смесь полисахаридов. Его компоненты (амилоза и амилопектин) обычно встречаются в растениях в соотношении 1 4, хотя известны сорта кукурузы, в которых нет амилозы, а в некоторых бобовых и лилейных растениях ее содержание доходит до 75%. Весьма своеобразным свойством амилозы является способность этого полисахарида образовывать комплексы с многочисленными полярными органическими молекулами. На этом основано разделение крахмала на компоненты . Осаждение комплекса амилозы, чаще всего с н-бутанолом , позволяет получить ее в высокоочищенном состоянии амилопектин, выделяемый из маточных растворов, обычно бывает загрязнен некоторым количеством амилозы. [c.533]


    В 1974 г. был предложен метод разделения компонентов крахмала при помощи обезжиренной целлюлозы [80]. Из 2М раствора мочевины целлюлоза не связывает ни амилозы, ни амилопектина. Однако при прибавлении к системе этанола наблюдается заметная обратимая адсорбция амилозы на целлюлозе, достигающая максимума при концентрации этанола 32— 35% (повышение концентрации спирта не увеличивает связывания амилозы). Полное осаждение крахмала из 2М мочевины происходит при концентрации этанола 38—40%. Путем повторной адсорбции амилозы на целлюлозе можно получить раствор очень чистого амилопектина и осадить его спиртом. Такой амилопектин имеет голубое число 0,16, расщепляемость его Р-амилазой 50—51%. [c.128]

    Типы аппаратуры, применяемой при электрофорезе на таких носителях, как бумага, мембраны из ацетата целлюлозы, агароза, крахмал и полиакриламидный гель, очень просты (рис. 3.6). Бумага и мембраны из ацетата целлюлозы поддерживаются двумя стержнями, агарозой и гелем крахмала покрывают стеклянные пластинки, а полиакриламидный гель помещают в стеклянные трубки или между двумя пластинками. Образец наносят на носитель, который контактирует с буферными растворами, находящимися в сосудах с положительным и отрицательным электродами. После электрофоретического разделения компоненты можно сделать видимыми при помощи специфических [c.115]

    В распределительной хроматографии одним из растворителей обычно служит вода. Она является неподвижным растворителем и находится в порах носителя, например крахмала или силикагеля. Разделение при помощи распределительной хроматографии выполняют следующим путем. Анализируемую смесь веществ, растворенную в воде, вводят в колонку и, после того как раствор впитается верхней частью носителя, промывают колонку подвижным растворителем (например, бутиловым спиртом или смесью растворителей). В процессе промывания происходит непрерывное перераспределение веществ смеси между двумя несмешивающимися жидкостями (вода — растворитель). Поскольку разные компоненты смеси имеют различные коэффициенты распределения, то и скорость передвижения отдельных компонентов тоже различна. Наибольшей скоростью движения обладает то вещество, которое имеет наибольший коэффициент распределения. При промывании колонки образуются отдельные зо1 ы чистых веществ. [c.478]

    Процессы выработки пищевой клейковины из пшеницы. Цель технологических процессов приготовления пищевой клейковины — отделение белков и утилизация крахмала. Первые исследования, направленные на разработку промышленных методов такой сепарации применительно к пшенице, проводились очень давно их возобновили в ходе второй мировой войны в США с целью производства крахмала, причем клейковина в этом случае представляла собой побочный продукт. Впоследствии перспективность такой технологии подтвердилась благодаря утилизации и эффективному использованию обоих продуктов. В настоящее время эти два извлекаемых основных компонента в равной степени обеспечивают рентабельность такого разделения, хотя их количественное соотношение различно (9—10 % клейковины на 65—75 % крахмала, отнесенных к массе перерабатываемой муки). [c.487]

    Из полученной суспензии готовилась колонна (как указано на стр. 205), после чего разделение производилось, как обычно. Наблюдение за ходом разделения велось по изменению окраски колонны под действием кислот. В этом случае разделение основано не на различии в адсорбируемости компонентов, а на различной величине их коэффициентов распределения между неподвижным (водой) и подвижным (хлороформом) растворителем. Поэтому новая методика была названа авторами распределительной хроматографией. Техника ее, как видно из сказанного, почти не отличается от обычной, сорбент же играет здесь роль носителя неподвижного растворителя. Помимо силикагеля, широкое применение для указанной цели получили только крахмал и целлюлоза. В качестве неподвижного растворителя чаще всего берут воду, а также некоторые другие полярные жидкости (серную кислоту, метанол, нитрометан) в качестве подвижного растворителя — менее полярные жидкости, не смешивающиеся с первыми во всех соотношениях. Обратное размещение растворителей в колонне невозможно, так как более полярные растворители вытесняют менее полярные из полярных сорбентов. [c.213]

    Следует сказать, что именно это явление разделения окрашенных компонентов раствора на бесцветном сорбенте наблюдал М. С. Цвет — создатель хроматографического анализа. Объектами исследования в первых опытах Цвета служили экстракты листьев растений, а сорбентами — мел. крахмал, сахар и т. п. [15]. [c.53]

    Разделение проводят на стеклянной пластинке с нанесенным слоем силикагеля, закрепленного с помощью крахмала. Пластинку выдерживают в токе растворителя, образующего подвижную фазу, и проявляют. По окраске зон идентифицируют компоненты смеси. [c.214]


    Этот метод основан на различии в распределении компонентов между двумя несмешивающимися жидкостями. Раствор исследуемой смеси в одной из этих жидкостей наносят на носитель — бумагу, силикагель, крахмал — и промывают второй жидкостью. Если, например, один из компонентов растворим лучше в хлороформе, чем в воде, а другой, наоборот, растворяется лучше в воде, чем в хлороформе, то при промывании хлороформом первый компонент продвинется на большее расстояние в направлении потока промывной жидкости, чем второй. Продолжая промывание в течение известного промежутка времени, можно достигнуть полного разделения смеси. [c.49]

    Для полноты укажем, что процессы распределения веществ между двумя жидкими фазами при многократном повторении лежат в основе еще одного важного метода хроматографии— распределительной хроматографии. В распределительной колоночной хроматографии, внешне не отличающейся от адсорбционной, один из растворителей пропитывает материал (силикагель, крахмал, целлюлозу), наполняющий колонку, причем этот материал является лишь носителем одного растворителя. Исследуемая смесь наносится вверху колонки. Второй растворитель протекает через колонку и в процессе течения происходит многократное распределение разделяемой смеси вещества между двумя растворителями и, в результате — полное разделение компонентов. В качестве носителя неподвижной фазы может быть взята фильтровальная бумага. Развитая на этой основе хроматография на бумаге (Мартин, Синг) получила исключительное значение для целей анализа. Наконец, многократрюе использование (до 250—1000 раз) распределения между двумя жидкими фазами, без применения носителя, также широко распространено в виде метода противоточного распределения (Крэйг). [c.129]

    Исс,ледуемый материал наносится в виде узкой полосы иа поддерживающую среду приблизительно посередине между сосудами с буферным раствором, в которых находятся электроды. Каждый из компонентов мигрирует с определенной скоростью, зависящей от его заряда, к катоду или к аноду. В результате все компоненты четко разделяются. После этого носитель можно разрезать на соответствующие части и элюировать каждый из компонентов смеси. Таким образом, зонный электрофорез можно с успехом использовать как для анализа многокомпонентных смесей, так и д.пя препаративного выделения чистых белков. Выбор носителя для зонного электрофореза зависит главным образом от задачи, которая стоит перед экспериментатором. Если основной целью является разделение компонентов, то в качестве носителей используются бумага, крахмал или лучше полиакриламидный гель. Если же целью яв.ляется препаративное получение чистого белка, то лучше всего использовать крахмальный блок, на который [c.77]

    В период 1945—1954 гг. автор книги и сотрудники занимались выделением и идентификацией пахучих веществ, присутствующих в соках цитрусовых. Поскольку содержание таких веществ во фруктах чрезвычайно мало, нам необходимо было разработать микрохроматографический метод очистки и идентификации терпенов. Мы попытались воспользоваться в этих целях бумажной хроматографией, однако вскоре стало очевидно, что она не годится из-за ограниченной адсорбционной способности бумаги. Чтобы повысить адсорбционную способность бумаги, мы попробовали пропитывать ее различными реактивами. В частности, мы первыми ввели пропитку бумаги кремневой кислотой [31]. Полученные результаты оказались довольно обнадеживающими, однако приготовление пропитанной бумаги было весьма трудоемким, а ее емкость все еще недостаточной. Примерно в это время появилась статья Мейнхарда и Холла [30], и нам пришла мысль, что в принципе можно разработать метод, соединяющий в себе преимущества колоночной и бумажной хроматографии. С этой целью необходимо 1) устранить фильтрующий материал, чтобы получить более сильный адсорбент и более твердую поверхность возможно, для этого нужно более тщательно подобрать связующий материал, который бы не давал трещин 2) использовать другие адсорбенты, в особенности кремневую кислоту, т. е. силикагель 3) использовать в качестве адсорбента только материал, проходящий через сито в 100 меш (149 мкм) 4) использовать в качестве неорганического связующего алебастр вместо крахмала, поскольку последний может мешать обнаружению, образуя с проявляющим реактивом окрашенное соединение 5) использовать полоски и пластинки больших размеров, чтобы обеспечить более эффективное разделение 6) проводить элюирование покрытых адсорбентом пластинок в закрытой емкости восходящим током растворителя, как это делают в бумажной хроматографии 7) использовать покрытые адсорбентом пластинки для двумерной хроматографии и 8) применять для опрыскивания хроматограмм такие реактивы, которые позволили бы не только обнаружить разделенные компоненты, но и определить типы присутствующих соединений. [c.19]

    В литературе много раз обсуждался вопрос о целесообразности применения тонких порошков адсорбентов без связующего, однако до сих пор наиболее популярным адсорбентом является силикагель G, в котором в качестве связующего используется алебастр, впервые введенный в употребление Кирхнером и сотр. [2]. Автор настоящей книги предпочитает вводить в адсорбенты в качестве связующего крахмал, если, конечно, он не мешает обнаружению компонентов. Это ограничение не столь серьезно, как может показаться. Так, Кирхнер и сотр. [2] нашли, что для обнаружения компонентов на пластинках, содержащих крахмал в качестве связующего, пригодна даже смесь концентрированных серной и азотной кислот, если только не нагревать пластинки. Смит и Фолль [177] указывают, что в числе прочих реактивов для обнаружения разделенных компонентов на пластинках с крахмалом в качестве связующего пригодны треххлористая сурьма, фосфорная кислота и трихлоруксусная кислота. При применении одного и того же растворителя разделение на слое с крахмалом в качестве связующего происходит быстрее, чем на слое с гипсом, и можно получить гораздо более твердую поверхность. При этом скорость разделения не снижается. Благодаря большой твердости поверхности можно быстро провести разметку пластинки мягким свинцовым карандашом, не портя ее. Кроме того, в некоторых ситуациях гипс просто неприменим. Так, например, Зейлер [178] нашел, что при разделении фосфатов гипс реагирует с разделяемыми компонентами с образованием нерастворимого фосфата кальция, поэтому в качестве связующего он выбрал крахмал. [c.55]

    Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т. д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бут-леровских структур, и отдельно в виде некоего несколько экзотического приложения — вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par ex ellen e , и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала — амилозы — обусловлены различием кон фигурации лишь одного асимметрического центра элемен тарного звена этих стереоизомерных полисахаридов. [c.10]

    ОСАДОЧНАЯ ХРОМАТОГРАФИЯ (ОХ), разновидность жидкостной хроматографии, основанная на разл. р-римости осадков, образующихся прн взаимод. компонентов анализируемой смеси в подвижной фазе с реагентом-осадителем, к-рый в смеси с носителем составляет неподвижную фазу. Напр., при разделении галогенид-ионов реагентом-осадите-лем служит соль серебра. В качестве носителя используют дисперсное в-во (в частности, А12О3, силикагель, целлюлозу, крахмал, уголь, иониты) или фильтровальную бумагу, а в качестве подвижной фазы-чистый р-ритель или р-р, в к-ром р-римость осадков разного состава различна (напр., р-р к-ты или щелочи). Разделение смеси в ОХ происходит в результате многократного повторения актов образования и растворения осадков скорость перемещения осадков пропорциональна их р-римости в данном элюенте и определяется произведением активностей образующихся малорастворимых соединений. Хроматограммой в ОХ называют картину распределения хроматографич. зон по слою неподвижной фазы после завершения разделения. [c.413]

    ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ (ТСХ), вариает хроматографии, основанный на различии в скорости перемещения компонентов смеси в плоском тонком слое (толщина 0,1-0,5 мм) сорбента при их движении в потоке подвижной фазы (элюента). Последняя представляет собой, как правило, жидкость, однако осуществлен и газовый вариант ТСХ. В качестве сорбентов используют мелкозернистые силикагель, Al Oj, целлюлозу, крахмал, полиамид, иониты и др. Суспензиями этих сорбентов покрывают пластинки из стекла, фольги или пластика для закрепления слоя применяют крахмал, гипс или др. связующие, Пром-стью вьшускаются готовые пластинки с уже закрепленным слоем сорбента. Элюентами служат обычно смеси орг. р-рителей, водных р-ров к-т, солей, комплексообразующих и др. в-в. В зависимости от выбора хроматографич, системы (состава подвижной и неподвижной фаз) в разделешш в-в осн. роль могут играть процессы адсорбции, экстракции, ионного обмена, комплексообразования. На практике часто реализуются одновременно неск, механизмов разделения. [c.608]

    Тонкослойная хроматография является эффективным методом для разделения малых количеств веществ на небольшом слое адсорбента и за короткое время. Хроматографирование можно проводить в закрепленном и незакрепленном слое адсорбента. В качестве адсорбента для приготовления закрепленных слоев применяют оксиды магния, алюминия, кальция, карбонат магния, силикагель в смеси со связующими компонентами, такими, как сульфат кальция, рисовый крахмал и вода. Для приготовления хроматографической пластинки с закрепленным слоем адсорбента на стеклянную пластинку (9Х12 см, 13X7 см) наносят смесь адсорбента со связующим веществом (5% от массы адсорбента) и водой в виде кашицы Специальным валиком (см ниже) смесь равномерно раскатывают в слой толщиной 2 мм Затем пластинку высушивают при 110—120°С. После высушивания пластинки на ней не должно быть трещин [c.50]

    Как уже отмечалось выше, не существует носителя, который бы полностью отвечал требованию абсолютной инертности. Для удерживания гидрофильной фазы в качестве носителя наиболее широко применяюта/лг/ш-гель, диатомит, крахмал и целлюлозу. В случае гидрофобной неподвижной фазы носителями служат силанизированный диатомит, каучук, ацетили-рованная или импрегнированная бумага и силиконовый полимер. Все эти носители имеют значительную поверхность, поэтому полностью исключить адсорбцию не представляется возможным. Наибольшие затруднения возникают при приготовлении силикагеля, требующего очень точного соблюдения условий. Напротив, при использовании крахмала адсорбция в известной степени благоприятствует успешному разделению веществ на колонке. По имеющимся в настоящее время данным, наиболее инертным из перечисленных носителей является диатомит. Однако равномерная набивка колонки диатомитом и правильное проявление полос требует известного навыка. На фильтровальной бумаге часто отмечается нежелательное размазывание пятен, образование хвостов , которые могут быть вызваны не только адсорбцией, но и ионизацией разделяемых веществ, присутствием одного из компонентов в слишком высокой концентрации или химическим изменением разделяемых веществ в процессе хроматографирования (гидролиз, окисление и т. д.) [c.450]

    Это разделение твердой и жидкой фаз состоит в отделении рзЬтБоримых белков от других компонентов, остающихся нерастворимыми (волокна, крахмал и пр.). Оно должно быть достаточно производительным, чтобы на содержание белков и технологические свойства изолята не влияло присутствие нерастворимых соединений, которые не были удалены. Поскольку назначение твердого остатка состоит либо в дополнительном извлечении из него других ценных продуктов, таких, как крахмал, либо в использовании для кормления животных или для иных, не связанных с питанием целей (производство метана), он должен содержать только минимум экстрагируемых белков. Это требует выбора соответствующего оборудования. [c.433]

    Крахмал может быть разделен на два компонента (явление, впервые открытое в начале 1940 годов, хотя гетерогенность крахмала отмечалась и раньше). Эти два компонента — амилоза и амплопектнн — в крахмалах из разных источников содержатся в разных количествах содержание спелости составляет <2 " [c.235]

    Слово хроматография происходит от греческого слова hromatismos, что означает цвет. В ранних вариантах хроматографии разделение проводили иа бумаге, а объектами разделения обычно были окрашенные природные продукты. [Приведенное в примечании объяснение причины возникновения слова хроматография не является точным. Этот метод открыт в 1903 г. выдающимся русским ученым-ботаником М. С. Цветом, разделявшим окрашенные компоненты хлорофилла растений на колонках, заполненных сорбентами белого цвета (крахмал, карбонат кальция, тальк и т. п.). Хроматография на бумаге была введена в практику Мартином и Синджем в 1941 г., т. е. через 35 лет после открытия хроматографического метода и появления соответствующего термина. — Прим. ред.]. [c.431]

    Хроматографию можно определить как дифференциалык>-миграционный метод разделения, в котором поток растворителя нли газа-носителя вызывает перемещение (миграцию) компонентов смеси с различной скоростью через пористую сорбционную среду. Этой средой может быть твердый адсорбент (например, окись алюминия, древесный уголь или крахмал), жидкость, удерживаемая твердым носителем (например, вода, удерживаемая целлюлозой, или силиконовое масло, нанесенное на целит), или ионообменник. Состоит ли механизм сорбции в адсорбции средой с активной поверхностью, в распределении между двумя жидкими фазами илн он заключается в чельто другом — в любом случае селективное удерживание различных компонентов смеси сорбирующей средой приводит к тому, что они перемещаются в этой среде с неодинаковыми скоростями. [c.210]

    Для разделения одно- и двухатомных сланцевых фенолов мы решили применить метод экстракции в таком виде, как он применяется при распределительной хроматографии. Этот метод предложен Мартином и Синджом в 1941 г. (1941), которые разделили в аналитических количествах смесь, составленную из производных разных аминокислот. Метод основывается на том, что разделяемые компоненты смеси распределяются по их растворимости между двумя сольвентами в колонне, наполненной адсорбентом. В качестве адсорбента находят применение крахмал, окись алюминия, раздробленная бумага и чаш е всего силикагель. Один сольвент образует на адсорбенте фиксированную фазу, а другой малоадсорбируемый сольвент движется через первый вниз, извлекая отдельные компоненты из смеси по их растворимости. Выбор подходящих сольвентов является одной из самых сложных проблем при этой методике. Известно, что силикагель адсорбирует полярные растворители сильнее неполярных. В литературе (Брукс и др., 1959) приводятся значения индексов адсорбции на силикагеле для некоторых органических соединений  [c.283]

    Носителем может быть малорастворимое вещество с высокоразвитой поверхностью, индифферентное к компонентам хроматографируемого раствора. Так, в качестве носителей используют силикагель, крахмал, оксид алюминия, сульфат бария, кварц, асбест, стеклянный порошок, а также иониты. Разделение осадков происходит тем лучше, чем сильнее различаются осадки по своей растворимости. [c.388]

    Адсорбент (окись алюминия, силикагель, сахар, крахмал, целлюлоза) должен иметь большую поверхность (по возможности более 100 м /г), быть химически инертным по отношению к подвижной фазе и разделяемым веществам. Компоненты смеси адсорбируются с различной силой н-еподвижной фазой, поэтому они с разной скоростью перемещаются по колонке при пропускании через нее элюента (например, бензина, циклогексана, бензола, галогенированных алифатических углеводородов — четыреххлористого углерода, хлороформа, хлористого метилена). При достаточной длине колонки и правильном выборе элюента образуются отдельные зоны, разделенные слоями чистого адсорбента. При постепенном пропускании элюента вещества могут быть последовательно вымыты из колонки. [c.65]


Смотреть страницы где упоминается термин Крахмал разделение на компоненты: [c.108]    [c.52]    [c.52]    [c.316]    [c.177]    [c.69]    [c.137]    [c.417]    [c.8]    [c.109]    [c.236]    [c.114]    [c.396]    [c.5]    [c.417]    [c.168]    [c.220]    [c.306]   
Химия углеводов (1967) -- [ c.484 , c.533 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал

Крахмал, разделение

Разделение компонентов



© 2025 chem21.info Реклама на сайте