Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость теория

    Определите растворимость бромида серебра в 0,001 М при 25°С. Произведение растворимости бромида серебра возьмите из справочника 1М.1. Воспользуйтесь предельным законом теории Дебая — Гюккеля. [c.308]

    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]


    С целью проверки изложенная выше теория концентрированных )астворов электролитов была распространена на смешанные растворы 24] и с ее помощью вычислены кривые совместной растворимости в воде двух солей с общим ионом по опытным значениям коэффициентов активности водных растворов каждой из этих солей в отдельности. Для ряда солей наблюдалось хорошее совпадение расчетных и экспериментальных кривых. [c.28]

    Целью предлагаемой работы по теории перегонки и ректификации неидеальных растворов является стремление посильно заполнить пробел по ряду вопросов, не освещенных в существующих учебниках ректификации и процессов и аппаратов химической технологии. Основное внимание обращено на рассмотрение условий парожидкого равновесного сосуществования фаз и процессов испарения, конденсации и ректификации в системах частично растворимых веществ обоих известных видов. Широкое распространение подобного рода систем в промышленной практике послужило основанием для предпринятой попытки систематизации доступного по данному вопросу материала. Последний подобран по многим литературным источникам, переработан и дополнен собственными исследованиями. [c.3]

    Таким образом, применяя аналитические соотношения, известные из теории процессов перегонки растворов, характеризующихся монотонным изменением летучих свойств компонента, к частично растворимым системам, образующим постоянно кипящие смеси с минимумом точки кипения, можно получить все необходимые уравнения для расчета однократных и постепенных процессов испарения и конденсации. При этом очень важно учитывать характер парожидкого равновесия в рассматриваемой системе и строго указывать границы, в которых применимо то или иное уравнение. [c.52]

    Задолго до создания какой-либо теории действия хлористого алюминия на парафины и нефтяные масла было замечено, что легкие продукты реакции были полностью предельными, а непредельные вещества соединялись с хлористым алюминием, образуя черную смолообразную смесь, не растворимую в масле. [c.96]

    Лишь для неполярных веществ (главным образом—органических), растворы которых обнаруживают небольшие положительные отклонения от закона Рауля—Генри, удается построить полуколичественную статистическую теорию растворимости, согласно которой основным фактором, определяющим растворимость твердого тела в различных жидких растворителях, является разность квадратных корней внутренних давлений жидких компонентов. С ростом этой разности растворимость уменьшается (см. стр. 252). [c.232]


    Сложное взаимодействие факторов, определяющих растворимость, приводит к тому, что в некоторых случаях растворимость уменьшается с ростом температуры, тогда как количественные теории предсказывают рост растворимости с температурой. [c.232]

    В табл, VII, 7 приведены значения 7а=Ха, ид./- г, вычисленные по уравнению (VII, 53) на основании опытных данных растворимости иода в различных растворителях, и величины b2=(AUl V для иода, вычисленные по уравнению (VII, 51а). Табл. VII, 7 демонстрирует применимость теории регулярных растворов в частном случае указанных растворов иода. В самом деле, как видно из последнего столбца таблицы, величина 8з практически одинакова для растворов иода во всех жидкостях, что соответствует требованиям теории. Кроме того, значения Sa удовлетворительно согласуются сс значением 8а=13,6, которое получается Другим путем  [c.251]

    Сложность теории растворимости высокомолекулярных веществ, до сих пор недостаточно разработанной, заключается между прочим в том, что для каждой фракции полимера с молекулярным весом имеется свой коэффициент распределения между двумя жидкими слоями. [c.258]

    К сожалению, до настоящего времени нет теории, с помощью которой можно было бы предсказать и вычислить растворимость. Обусловлено это уже упоминавшимися причинами — сложностью взаимодействия в растворе и отсутствием общей теории жидкого состояния. Исключениями являют- [c.140]

    Ранее уже отмечалось, что растворимость и диффузия газов во многом определяются долей свободного объема и подвижностью структурных элементов матрицы мембраны. На основе безактивационной модели диффузии и теории свободного объема получены общие соотношения для анализа влияния давления на коэффициенты диффузии в растворах полимеров [см. уравнения (3.25), (3.31), (3.44), (3.46)]. [c.94]

    Жидкостные реакции, как правило, протекают в присутствии инертного растворителя, поскольку им является, по крайней мере, продукт реакции. Не столь многочисленными исключениями из этого правила будут лишь те реакции, в которых продукты представляют собою газы или пары с низкой растворимостью. Поэтому целесообразно рассматривать в общем виде теорию скоростей химических реакций в жидкостях как теорию реакций, протекающих в растворах. [c.28]

    Теоретические основы. Процесс представляет собой одну из разновидностей процесса экстракции — экстрактивную кристаллизацию — и основан на разной растворимости твердых и жидких углеводородов в некоторых растворителях при низких температурах. Твердые углеводороды ограниченно растворяются в полярных и неполярных растворителях их растворимость -подчиняется общей теории растворимости твердых веществ в жидкостях и характеризуется следующими положениями  [c.223]

    Представьте себе, что вы преподаватель химии и вам нужно провести семинар по одной из следующих тем 1. Теория валентных связей. 2. Метод молекулярных орбиталей. 3. Направление химического процесса. 4. Гидролиз. 5. Произведение растворимости. 6. Окислительно-восстановительные реакции. 7. Восстановительные потенциалы. 8. Теория сильных электролитов. [c.162]

    На современном уровне знаний теория растворимости не имеет на своем вооружении метода расчета фазовых переходов и расчета перераспределения компонентов между фазами даже для отдельных конкретных систем, таких, как пропан — углево- [c.212]

    В теории растворимости можно выделить два направления, развивающиеся самостоятельно и полностью математически обоснованные. Первое направление, созданное В. К- Семенченко н развитое М. И. Шахпароновым, носит название теории молекулярных силовых полей. Оно математически описывает закономерности всех классов реальных растворов, в том числе и растворов твердой фазы в жидкой. [c.213]

    Переход экстрагируемых компонентов из исходного раствора в растворитель происходит вследствие разности концентраций, и поэтому данный процесс относится к числу диффузионных. Перемещение молекул целевого компонента происходит до тех пор, пока концентрация не достигнет некоторой предельной величины, которая определяется как состояние физического равновесия. В связи с этим теория процесса экстрагирования основывается на законах, относящихся к явлению растворимости, состоянию межфазного равновесия и диффузии, по аналогии с теоретическим обобщением закономерностей таких известных и широко распространенных диффузионных процессов, как абсорбция и ректификация. [c.9]

    В теории растворов существует понятие идеальной растворимости. Для двух жидкостей это состояние равнозначно неограниченной их растворимости друг в друге и может сравниваться с растворимостью идеального газа в жидкости. В связи с этим идеальная растворимость двух жидкостей имеет место в системе, к которой применим закон Рауля, определяющий давление пара растворенного вещества над растворителем  [c.12]


    О целесообразности применения систем из катализатора и ингибитора уже говорилось в разделе 1.8. Подбор ингибитора базируется на общей теории ингибиторов, рассмотрение которой выходит за рамки" этой книги. Твердые ингибиторы, т. е. поверхности, обрывающие цепи, в общем, удобнее применять, чем растворимые, конечно, при сравнимой эффективности. К сожалению, теория твердых ингибиторов разработана гораздо хуже, чем растворимых. [c.170]

    Хотя накоплен огромный материал по растворимости разнообразных веществ в различных растворителях, однако, как мы уже отмечали, количественная теория растворимости еще не разработана. На пути ее создания возникают большие трудности, так как объектами служат, главным образом, концентрированные растворы. Однако установлен ряд закономерностей, характеризующих влияние природы растворителя на растворимость. К их числу от- [c.142]

    Тепло - и массообмен в ЦПА. Имеются подробные сведения [42—47] об исследовании в различных моделях ЦПА процессов теплопередачи, абсорбции и десорбции хорошо растворимых газов и пылеулавливания приведены соответствующие расчетные формулы, полученные с применением теории подобия, на основе разработанных ранее принципов моделирования пенных аппаратов [178, 232, 307]. [c.257]

    Несмотря на то, что явление растворимости одних веществ в других известно давно (более ста лет) и нашло широкое практичес — кое применение в различных процессах химической технологии, количественной теории для расчета экстракционных процессов до сих пор нет. А в работах Гильдебранда, Реми ка, Семенченко, Шахпаронова М.И., Золотарева П. А. идр. разработаны качественные основы теории растворимости и предложены полуэмпиричес — Е ие критерии для подбора оптимального растворителя. [c.214]

    Энергетические взаимодействия в системе среда-Ь ПАВ + металл. Энергия связи ПАВ с масляной средой определяется ван-дер-ваальсовыми силами. Она зависит от растворимости ПАВ и от химического сродства углеводородной части ПАВ и среды. Так, например, большой энергией связи обладают молекулы ПАВ, углеводородная часть которых имеет достаточно большую молекулярную массу и разветвленную структуру с алкильными радикалами. Из теории дисперсионных сил известно, что чем выше энергия связи, тем больший контакт по длине молекулы осуществляется по СНг-группам. [c.206]

    Ингибиторы коррозии, растворимые в топливах и маслах, представляют собой органические вещества, содержащие -в молекуле углеводородный радикал и одну или несколько функциональных групп. Они относятся к поверхностно-активным веществам и подчиняются общей теории ПАВ, развитой в работах акад. П. А. Ребиндера. В качестве защитных присадок к нефтепродуктам могут быть использованы соединения, относящиеся к двум большим классам ПАВ водомасло- и маслорастворимым. [c.298]

    Немецкий промышленный мотод, применяемый для производства -толуол-сульфокислоты [55], включает обработку толуола моногидратом кислоты ири тем-иературе пе выше 108° с последующим нагреванием в течение 6 час. ири температуре 116—118°. Реакционная смесь выливается п кислоту крепостью 60° но Боме и затем добавляется пода, чтобы получить прозрачный раствор при 70—75°. При охлаждении раствора до 20° кристаллизуется практически пе растворимый -изомер, который затем отделяется центрифугированием в виде моногидрата выход его 78—79% от теории. Следует отметить, что в этой методике доведение реакции до конца пут( М удаления воды из реакционной смеси не дает никакого преимущества, так как я елательный изомер в конечном итоге кристаллизируется с серной кислотой. [c.532]

    Согласно закону действия масс, скорость химической реакции пропорциональна активным массам реагентов. Этот закон был впервые установлен на основании результатов экспериментальных наблюдений Гульдбергом и Вааге в 1864—1867 гг. (см., например, литературу ), а затем теоретически обоснован на базе теории молекулярных столкновений в жидкостях и газах. В первоначальной трактовке под активной массой понимали концентрацию в единицах массы на единицу объема, но время от времени высказывались и другие интерпретации данного термина. Так, например, Аррениус предполагал, что осмотическое давление, а Вант-Гофф считал, что растворимость, так же как и концентрация, связаны с активной массой. [c.22]

    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    Основные положения теории Медведева были развиты в других работах, в которых считается, что зоной реакции полимеризации является мономолекулярный слой квазикристаллической структуры, образованный эмульгатором и морюмером. В этом слое молекулы эмульгатора образуют систему микрокапилляров,, представляющих в поперечнике шестигранники. Капилляры, строение которых определяется природой эмульгатора и условиями полимеризации, являются своеобразными ячейками — местом протекания элементарных реакций полимеризации. Приведенные взгляды подтверждены кинетическими уравнениями, выражающими зависимость скорости и степени полимеризации от концентрации эмульгатора и инициатора при полимеризации хлоропрена [39]. Принимается, что все стадии полимеризации инициирование, рост и обрыв полимерных цепей — происходят в адсорбционных слоях эмульгатора, независимо от растворимости всех компонентов в воде. [c.150]

    Следует указать, что теории разработаны в основном для полимеров с молекулами—линейными цепями, какими и являются. многие (но не все) соединения, пока они растворимы (каучук, целлюлоза). Для других растворимых высокомолекулярных веществ, например белков, где молекулы, по-видимому, шарообразны и, можетбыть, включают в себя молекулы растворителя, изложенные здесь в самых общих чертах представления и результаты теории атермальных растворов неприменимы. [c.257]

    Однако не вызывает сомнений, что результаты различных экспериментальных работ, выполненных, например, Данквертсом и Кеннеди Найсингом и др. , Хикита и Асаи подтверждают теорию, изложенную в главе HI, при условии, что растворимость и коэ и-циенты диффузии СОа определены методами, описанными в главе I, а для константы скорости реакции учтено влияние ионной силы (например, с помощью графика, приводимого Данквертсом и Шарма ). Значения коэффициента диффузии иона гидроксила, наилучшим образом соответствующие результатам опытов, примерно в 1,7—2,1 раза больше, чем для СОа- [c.239]

    X у (средняя область концентраций). На поверхности этой системы могут образовываться а) отдельные слои соединений двух металлов б) слой смеси окислов в) слой двойного соединения типа шпинели, иапример М1Мв20 . Поведение сплавов при образовании на них однородных слоев (области концентраций 1 и 2), когда ионы легирующего металла растворимы в поверхностном соединении основного металла, может быть описано для диффузионного механизма процесса теориями Вагнера—Хауффе и Смирнова. [c.83]

    При производстве нефтяных масел ряд основных технологических процессов основан на различной растворимости компонентов сырья в избирательных растворителях. Для разделения углеводородных смесей избирательные растворители были впервые использованы А. М. Бутлеровым в 1870 г., а промышленное применение такие растворители нашли после того, как в 1911 г. Эделеа-ну предложил использовать для очистки керосиновых фракций сернистый ангидрид. Большой вклад в йзучение теории избирательного растворения углеводородов в ряде растворителей и разработку промышленных процессов внесли советские и зарубежные ученые Н. И. Черножуков, И. Л. Гуревич, А. Г. Касаткин, Н. И. Гальперин, Л. Г. Жердева, А. А. Карасева, А. 3. Биккулов, Д. О. Гольдберг, В. А. Каличевский, Фрэнсис, Пул, Феррис и др. [c.42]

    Определите растворймость бромида серебра в 0,001 т КВг при 25° С. Произведение растворимости бромида серебра возьмите из справочника [М.]. Воспользуйтесь предельным законом теории Дебая [c.209]

    Несмотря на то, что явление растворимости одних веществ в других известно давно и нашло широкое практическое применение, в частности в нефтеперерабатывающей и нефтехимической промышленности, количественной теории растворов, позволяющей делать выводы о растворимости одних веществ в других, до сих пор нет. В работах Гильдебранда, Ремика, Семенченко, Шахпаро-нова и других делались попытки использовать те или иные параметры веществ или совокупность параметров в качестве критерия взаимной растворимости этих веществ. Однако это оказалось неприемлемым для характеристики сложнейших взаимодействий, происходящих в растворах, в том числе в процессах производства нефтяных масел. [c.42]

    Твердые углеводороды масляных фракций ограниченно растворяются в неполярных растворителях. Растворимость их подчиняется общим законам теории растворимости твердых веществ в жидкостях. Согласно этой теории, растворимость твердых углеводородов в неполярных растворителях, в том числе в жидких компонентах масляных фракций, уменьшается с повышением их концентрации и молекулярной массы, а также температуры кипения фракции. Растворимость твердых углеводородов увеличивается при повышении температуры, и при температуре плавления парафины и церезины, так же как и жидкие углеводороды, неограниченно растворяются в неполярных растворителях. Растворимость твердых углеводородов в масляных фракциях и неполярных растворителях, имеющая большое значение при выборе условий процессов депарафинизации рафинатов и обезмасливаиия гачей и петролатумов, может быть рассчитана по уравнению [2]  [c.46]

    На основе обобщенной теории деасфальтизации при соблюдении равномерного ра спределения температуры в деасфальтизационной колонне происходит ряд процессов, связанных с изменением растворимости ком/понентов гудрона в пропане. В верхней часги колонны, где температура наиболее высокая, протекает процесс противоточной многоступенчатой фракционирующей экстракции, в результате которой получаются деасфальтизаты, обогащенные парафино-нафтеновыми углеводородам и. В области, ограниченной температурамп ввода сырья и пропана, троисходит выделение из раствора в цропане осиавного количества смолистых веществ. При температуре ввода пропана идет процесс коагуляции асфальтенов, содержащихся в сырье. В нижней части колонны происходят пептизация частиц асфальтенов смолами и выделение некото рой часта дисперсионной среды в виде насыщенного раствора высокомолекулярных углеводородов в пропане, обусловленное уплотнением коллоидной структуры асфальтовой фазы. [c.77]

    Влияние на растворимость природы компонентов. К сожалению, до настоящего времени нет теории, с помощью которой можно было бы предсказать н вычислить растворимость. Это обусловлено сложностью взаимодействия частиц в растворе, а также отсутствием общей теории жидкого состояния. Тем не мепее, многие наблюдаемые зависимостп, связанные с растворимостью, можно объяснить. [c.234]

    Долецалек [47] попытался количественно объяснить отклонения от закона Рауля химическими реакциями в растворах. По Долецалеку, отрицательные отклонения от закона Рауля объясняются ассоциацией компонентов друг с другом, а положительные отклонения — диссоциацией в растворе ассоциированных комплексов одного из компонентов. Однако эта теория, невидимому, справедлива лишь для ограниченного класса растворов. Для многих систем с точки зрения этой теории необходимо предполагать наличие сложных молекулярных соединений, реальное существование которых мало вероятно. Особенно большие затруднения возникают при объяснении отклонений от идеального поведения в системах, образованных ограниченно растворимыми компонентами. По Долецалеку необходимо принять, что в таких системах один из компонентов тем более ассоциирован и тем в большей степени диссоциирует в растворе, чем меньше его взаимная растворимость с другим компонентом. Несостоятельность такого объяснения очевидна. [c.60]


Смотреть страницы где упоминается термин Растворимость теория: [c.66]    [c.253]    [c.589]    [c.250]    [c.167]    [c.59]    [c.144]    [c.345]    [c.98]   
Идентификация органических соединений (1983) -- [ c.121 , c.135 ]

Водородная связь (1964) -- [ c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте