Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты окисление

    Наиболее широко МКД используется для исследования неорганических и комплексных соединений, включающих основания нуклеиновых кислот и полинуклеотиды. Так, в электронном спектре металлопорфиринов, имеющих симметрию 04н, наблюдаются две полосы (рис. Х1У.8). Оба возбужденных состояния дважды вырождены. Из кривой МКД видно, что коэффициент А первого перехода во много раз больше второго. Для различных металлов это соотношение составляет в среднем 9 1. Значение В коэффициента существенно зависит от заместителей в кольцах. МКД очень чувствителен к степени окисления железосодержащих порфиринов. [c.260]


    Сопряженные реакции имеют огромное значение в биологии. Биосинтез белков и нуклеиновых кислот в клетке идет с увеличением изобарного потенциала потому, что сопряженно с синтезом происходит гидролиз одной из пирофосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ), который сопровождается, наоборот, уменьшением изобарного потенциала. В свою очередь образование АТФ приводит к росту АО и идет как сопряженная реакция с процессами окисления. [c.50]

    Это свойство сопряженных реакций играет исключительно важную роль в живой природе. Например, синтез важнейщих компонентов живой материи — белков и нуклеиновых кислот соответственно из аминокислот и нуклеотидов сопровождается существенным увеличением энергии Гиббса. Эти процессы становятся возможными потому, что протекают сопряженно с гидролизом аденозинтрифосфорной кислоты (АТФ), который сопровождается существенным уменьшением энергии Гиббса, перекрывающим ее рост при синтезе указанных полимеров. Наоборот, образование АТФ из продуктов ее гидролиза, сопровождающееся увеличением энергии Гиббса, происходит сопряженно с окислением органических соединений (идущим с существенным уменьшением энергии Гиббса). [c.391]

    Разрушительному действию подвергаются ДНК, липиды, нуклеиновые кислоты. Основой биологического механизма, выполняющего защитные функции, служит фермент супероксиддисмутаза. Изучение этого фермента началось еще в 1938 г., когда из крови вола был выделен белок сине-зеленого цвета, содержащий медь. Позже выяснилось, что он содержит также цинк и обладает ферментативной активностью ио отношению к реакции окисления супероксид-радикала. Предполагают, что реакция идет по схеме [c.190]

    При полном окислении 1 г углеводов освобождается 17,6 кДж энергии. Некоторое количество выделяющейся энергии превращается в тепло, а большая часть ее аккумулируется в АТФ (см. тему Нуклеиновые кислоты ) и затем расходуется в процессах жизнедеятельности. [c.607]

    Во-вторых, в пентозофосфатном пути окисления глюкозы образуются важнейшие структурные предшественники для анаболических процессов в клетке, в том числе рибозо-5-фосфат — для биосинтеза нуклеотидов и нуклеиновых кислот, эритрозо-4-фосфат — для биосинтеза трех аминокислот фенилаланина, тирозина, триптофана. [c.255]

    Главную подгруппу V группы составляют азот, фосфор, мышьяк, сурьма и висмут. Каждый из элементов имеет электронную конфигурацию на внешнем уровне пз пр и может проявлять в своих соединениях степень окисления от -3 до +5. Азот и фосфор — типичные неметаллы, мышьяк проявляет и металлические свойства, сурьма и висмут — типичные металлы. Наибольшее значение из элементов данной группы имеют азот и фосфор. Оба этих элемента входят в состав живых организмов и очень важны для эффективного роста растений. Азот является одним из химических элементов белков, а фосфор — нуклеиновых кислот. Хорошо известно, что соединения азота и фосфора в составе удобрений вносят в почву для повышения урожайности. [c.187]


    С помощью дифференциальной импульсной вольтамперометрии на пирографитовом электроде оказывается возможным получить сведения об аминокислотном составе нуклеиновых кислот [67], а также об их структуре в объеме раствора [68]. Показана также возможность прямого электрохимического окисления белков на пропитанном графитовом электроде. Это открывает перспективы создания новых электроаналитических методов анализа. [c.113]

    Электрохимические исследования аминокислот, нуклеиновых кислот и белков непосредственно связаны между собой, поскольку первые являются структурными элементами более сложных макромолекул. Электрохимические исследования двадцати основных 1-а-аминокислот [230—232] показали, что только шесть из них — цистеин, цистин, метионин, гистидин, тирозин и триптофан — окисляются на пирографитовом и стеклоуглеродном электродах. В области pH от 1 до 10 их окисление протекает необратимо при н.и.э.>1,0 В, причем с ростом pH потенциал полуволны или максимум тока смещается в отрицательную сторону. Процессы окисления сопровождаются пассивацией электрода продуктами реакции. По данным ЯМР- и ИК-спектроскопии, продукты реакции имеют сложную полимерную структуру, что не позволяет пока перейти к детальному анализу механизма. Тем не менее полученные результаты оказались полезными при интерпретации электрохимического поведения белков, адсорбированных на графитовых электродах [245, 246]. [c.163]

    Функция неизвестна возможно, участвует в липоид-иом -обмене, может препятствовать кариесу зубов Действует совместно с инсулином при усвоении углеводов. Соединяется с фосфатами нуклеиновых кислот влияет на синтезы нуклеиновой кислоты, липида и холестерина Осадитель в реакциях окисления — восстановления. (Участвует в фиксации азота в растениях) [c.277]

    Строение клетки определяется теми веществами, из которых образованы стенки клетки, представляющие ее каркас, и веществами, находящимися внутри клеток. Целлюлоза, описанная в предшествующей главе, является наиболее важной составной частью стенок клеток растений. В живых организмах основными конструктивными материалами являются белки более того, и внутренние части клеток состоят в значительной степени пз белков. Так, красная кровяная клетка состоит из тонкой мембраны, в которой заключена среда, состоящая из воды (60%), различных веществ (5%) и гемоглобина (35%) — белка, содержащего железо, и имеющего молекулярный вес около G8 ООО гемоглобин обладает свойством обратимо связывать кислород. Именно благодаря этому свойству кровь соединяется с большим количеством кислорода в легких и переносит его к тканям, обеспечивая таким образом возможность окисления питательных веществ и веществ, входящих в состав организма. Ранее уже упоминалось, что простейшие формы материи, способные к самовоспроизводству — вирусы, состоят главным образом из нуклеиновых кислот. [c.480]

Рис. 13-3. Поток солнечной энергии и круговорот углерода, кислорода и азота на примере одной из экосистем. В этой изолированной экосистеме в результате фотосинтеза, осуществляемого травянистой растительностью, фиксируется атмосферная СО , образуются органические соединения и выделяется кислород. Почвенные микроорганизмы фиксируют атмосферный азот, переводя его в аммиак и нитраты, используемые затем растениями в качестве источников азота для синтеза белков и нуклеиновых кислот. Зебры получают кислород из воздуха, а необходимый им углерод и аминокислоты-из растений в результате окисления крахмала, белка и других компонентов растительной пищи. Львы поедают зебр, а их экскременты попадают в почву, где микроорганизмы перерабатывают их, завершая цикл. Рис. 13-3. Поток <a href="/info/103702">солнечной энергии</a> и <a href="/info/510849">круговорот углерода</a>, кислорода и азота на примере одной из экосистем. В этой изолированной экосистеме в <a href="/info/97029">результате фотосинтеза</a>, осуществляемого травянистой растительностью, фиксируется атмосферная СО , <a href="/info/1658106">образуются органические соединения</a> и <a href="/info/1416439">выделяется кислород</a>. <a href="/info/1668274">Почвенные микроорганизмы</a> фиксируют <a href="/info/631491">атмосферный азот</a>, переводя его в аммиак и нитраты, используемые затем растениями в <a href="/info/627804">качестве источников азота</a> для <a href="/info/76658">синтеза белков</a> и <a href="/info/548">нуклеиновых кислот</a>. Зебры <a href="/info/1915161">получают кислород</a> из воздуха, а необходимый им углерод и аминокислоты-из растений в <a href="/info/399341">результате окисления</a> крахмала, белка и <a href="/info/1529853">других компонентов</a> <a href="/info/593539">растительной пищи</a>. Львы поедают зебр, а их экскременты попадают в почву, где микроорганизмы перерабатывают их, завершая цикл.
    Другим ВОЗМОЖНЫМ способом экспериментальной проверки значений энергии высшего занятого и низшего свободного электронного уровней является полярографическое исследование оснований. Б процессе полярографии происходит передача электронов соединения электроду (окисление) или, наоборот, переход электронов от электрода к соединению (восстановление). Легкость процессов может быть непосредственно сопоставлена с высотой соответственно высшего занятого и низшего свободного электронных уровней. При этом оказывается, что полярографическое окисление также дает результаты, в основном согласующиеся с предсказываемыми теоретически. Так, на графитовом электроде все пуриновые основания, за исключением самого пурина, дают окислительную волну, причем гуанин окисляется легче, чем аденин Таким образом, электронодонорные свойства оснований нуклеиновых кислот, по-видимому, достаточно хорошо предсказываются теоретически на основании современных представлений, особенно при использовании усовершенствованных методов расчета. [c.161]


    Реакция с четырехокисью осмия, широко применяемая в органической химии для окисления двойных связей была использована также для окисления двойных связей пиримидиновых оснований нуклеиновых кислот [c.333]

    Анализ продуктов периодатного окисления широко используется для установления строения олиго- и полисахаридов, а также различных производных моносахаридов. Этот подход был использован, в частности, и при выяснении строения мономерных компонентов нуклеиновых кислот. Таким путем была получена информация о размерах окисного цикла углеводного остатка в нуклеозидах месте связи этого остатка и пуринового основания в нуклеозидах конфигурации у гликозидного центра рибозы и о положении фосфатной группы в нуклеотидах, образующихся при расщеплении РНК . [c.532]

    Ассоциация биологически важных молекул с образованием комплексов лежит в основе построения надмолекулярных структур клетки и является важным этапом в функционировании белков и нуклеиновых кислот в живых организмах. Например, перенос кислорода из легких в различные органы, потребляющие кислород, происходит с помощью специального белка, содержащегося в красных кровяных тельцах — эритроцитах, так называемого гемоглобина, который способен образовывать комплекс с кислородом. В легких происходит ассоциация кислорода с гемоглобином (НЬ) с образованием комплекса НЬ+ + Оа ч НЬОа. В органах, потребляющих кислород, комплексдиссо- циирует, и выделившийся кислород расходуется на реакции окисления. [c.226]

    Цепными реакциями помимо реакций с галогенами и процессов термического распада являются многие реакции окисления органических и неорганических веществ кислородом, а также процессы полимеризации мономеров, содержащих двойные связи. Например, полимеризация амида акриловой кислоты СН 2 = СН — ONHg, которая в последние годы нашла широкое применение в биохимии для получения полиакриламидных гелей, позволяющих эффективно проводить разделение сложных смесей белков и нуклеиновых кислот. [c.317]

    В этой связи здесь хотелось бы сказать прежде всего о первопроходческих работах в данном направлении Ю. А. Жданова. Являясь активным поборником введения принципа историзма в химию, Ю. А. Жданов еще с 1950-х годов разрабатывает вопросы химической эволюции [21, 22] и, в частности, определения высоты химической организации веществ. В 1960-е годы он предложил применять два параметра для оценки структурного и энергетического уровней органических соединений. Один из них — информационная емкость соединения в расчете на один атом. Этот параметр не зависит от величины и сложности молекулы и служит объективным критерием структурных богатств как одного соединения, так и всего класса (углеводы, аминокислоты, терненоиды, нуклеиновые кислоты, стероиды, алкалоиды). В качестве энергетического параметра Ю. А. Ждановым выбрана средняя степень -окисления атома углерода в молекуле она характеризует электронное окружение атома и отражает соотношение в органическом соединении противоположных тенденций к спонтанному окислительно-восстановительному диспропорционированию. Эта величина выявляет отношение данного соединения к всеобщей среде живого— воде, взаимодействие с которой даже в отсутствие окислителей может привести одни органические соединения к окислению, другие—к восстановлению. [c.192]

    Из 90 элементов периодической системы Д. И. Менделеева, находящихся в естественных условиях на Земле, лишь восемнадцать элементов входят в состав биологических систем. Шесть элементов — углерод, водород, азот, кислород, фосфор, сера — играют исключительную роль в биосистемах они входят в состав белков и нуклеиновых кислот и составляют основу жизни на земле. Среди них легчайшие атомы, у которых наиболее распространенными и устойчивыми степенями окисления являются 1 (Н) 2 (О) 3 (Ы) 4 (С) 5 (Р) 6 (5) и которые отвечают наиболее стабильным электронным конфигурациям. Существенное значение для жизнедеятельности организмов имеют 12 следующих элемен- [c.561]

    О-Рибоза. О-Рибоза может быть получена из дрожжей путем гидролиза содержаш ихся в них нуклеиновых кислот [51 ]. Из 2 кг дрожжей можно получить 1—2 г чистой рибозы [52]. Синтетическим методом О-рибозу получают из глюкозы путем окисления ее в щелочной среде кислородом воздуха в арабоновую кислоту, эпимеризации последней, получения рибо-нолактона и восстановления последнего амальгамой натрия в )-рибозу [37, 53, 54]. [c.113]

    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    Как гипохлорит-анион, так и гидроксил-радикал являются сильными окислителями. Они способны модифицировать белки, нуклеиновые кислоты, индуцировать перекисное окисление липидов (от которого наиболее сильно страдают полиненасыщенные мембранные липиды) и в результате цепных реакций приводить к множественным нарущениям мембран и к гибели клеток. Важным дополнением этих реакций является способность КО-радикала при взаимодействии с супероксид-анионом образовывать пероксинитрит, который может индуцировать так называемый апоптоз (запрограммированная гибель клеток), а в ходе своего спонтанного распада превращаться в гидроксил-радикал. Последний может образовываться также из гипохлорит-аниона в присутствии ионов железа. [c.315]

    Большинство витаминов в составе ферментных систем катализируют реакции превращения аминокислот и белков, жиров, стероидов, углеводов и нуклеиновых кислот в животном организме к таким химическим процессам относятся реакции окисления и восстановления, переноса электрона, переаминирования, трансметилнрования, изомеризации, карбоксилирования, декарбоксилирования, переноса ацильных и одноуглеродных групп, реакции, в частности, связанные с кроветворением, с кальцификацией костей и др. При участии витаминов обеспечивается нор1мальное функционирование всех животных тканей, органов и желез внутренней секреции, нормальные процессы обмена веществ [И, 12, 14—21]. [c.12]

    Синтетические процессы в клетках — синтез белков, нуклеиновых кислот, пуринов, пиримидинов, липидов, сахаров и др. представляют собой, как правило, эндергонические процессы, т.е. процессы, требующие затраты свободной энергии. Биосинтез осуществляется в открытой термодинамической системе— клетке в результате сопряжения с экзергоническими процессами гидролиза АТФ и окисления НАД-Н, НАДФ-Н и ферредоксина, в ходе которых освобождается энергия. Б конечном счете восстановленные коферменты также возникают за счет АТФ — наиболее универсального аккумулятора энергии (глюкоза фосфорилируется АТФ). Основные биосинтетические реакции идут с участием ферментов киназ или синтетаз. [c.108]

    Соединения азотистых оснований с пентозой называют нуклеозидами. Нуклеозиды, выделяемые из нуклеиновых кислот, представляют собой Л -гликозиды. Нуклеозиды, содержащие в качестве углеводной части О-рибозу, называют рибо-нуклеозидами, а содержащие 2-дезокси-0-рибозу — дезоксирибонуклеозидами. Методами периодатного окисления, спектрального и рентгеноструктурного анализа доказано, что природные нуклеозиды образуются при участии 7У -пи-римидиновых оснований, Л д-пуриновых оснований и имеют р-конфигурацию гликозидной связи. В качестве примера приведены структуры нуклеозидов  [c.174]

    Окисление. Широкое применение а химии нуклеиновых кислот находит окисление (/с-гликольной группы в рибонуклеозидах, олиго- и полирнбонуклеотидах. Эта реакция проходит в мягких условиях под действием солей йодной кислоты с образованием диальдегида. Такого рода диальдегиды весьма реакционноспособны. [c.394]

    Фосфор в виде фосфорной кислоты входит в состав важнейших органических соединений, нуклеиновых кислот и фосфолипидов. В отличие от азота и серы фосфор встречается в бактериальных клетках только в окисленном состоянии (Р2О5). Фосфор вступает в связи с углеродом только через кислород или азот. Эти связи образуются с затратой энергии. Поэтому органические соединения фосфора являются аккумуляторами энергии в микробных клетках. Соединениями, аккумулирующими энергию, являются аденозиндифосфорная (АДФ) и адено-зинтрифосфорная (АТФ) кислоты. Фосфор входит в состав ферментов, используется микроорганизмами в виде солей ортофос-форной кислоты. [c.92]

    На рис. 73 и 74 представлены некоторые данные, характеризующие электрохимическое поведение нуклеиновых кислот и белков на парафинированном графитовом электроде. На импульсных кривых нуклеиновых кислот наблюдаются два пика — вблизи 0,9 и 1,2 В. Их высота увеличивается при денатурации ДНА. Сопоставление с данными для пуринов позволяет прийти к выводу, что эти максимумы соответствуют окислению гуанино-вых и адениновых остатков [67]. При окислении адсорбированных белков (не содержащих сульфидных и сульфгидрильных групп) наблюдается максимум вблизи н.к,э. = 0,8 В. Он выражен особенно отчетливо на импульсных кривых (рис. 74, кривая 1), но отсутствует при повторном измерении линейных /, -кривых (рис. 74, кривая 3). На основании анализа результатов по окислению аминокислот авторы работ [67, 264] делают предположение, что исследованные ими белки окисляются преимущественно по тиразиновым и триптофановым остаткам. [c.163]

    Нуклеиновые кислоты привязываются к аминоэтилцеллюлозе в большинстве случаев с помощью периодатного окисления [22, 41] [c.180]

    Вероятно, окислительное декарбоксилирование гексозы в пен-тозу по пентозофосфатному пути вообще свойственно растениям, а образовавшаяся в результате пентоза может превращаться в гексозу под воздействием других ферментов этого пути. Имеющиеся данные показывают, что пентоза не обязательно превращается в гексозу. Если данный путь является источником фонда субстратов, находящихся в динамическом равновесии, то промежуточные соединения могут быть удалены без нарушения всего процесса. Таким образом, пентозофосфатный путь может представлять собой не только путь окисления глюкозы, но и источник пентозы для синтеза нуклеиновых кислот, а также эритрозы для синтеза ароматических соединений. Другая важная функция этого пути может заключаться в образовании НАДФ-Нг, необходимого для восстановительного биосинтеза (см. стр. 97). [c.140]

    В литературе есть данные о тормозящем действии промежуточных форм окисления фенольных соединений на биосинтез белков и нуклеиновых кислот. В опытах с опухолевыми клетками животных показано ингибирование включения радиоактивного фосфора при введении фенольных соединений [18]. При короткой экспозиции отмечается исчезновение ника быстрообменивающейся фракции РНК, которая, по-видимому, является наиболее чувствительной к действию полифенола. [c.287]

    Появление сигнала ЭПР со структурой, отвечающей феноксиль-ному радикалу, не может быть отнесено за счет окисления ингибитора, так как в случае замены облученного белка на интактныи сигнала не возникает. Полученные данные доказывают наличие реакций обменного взаимодействия радикалов белка с ингибитором, подобно механизму ингибирования в химических процессах. Очевидно, что свободно-радикальные процессьс могут развиваться в организме после облучения, затрагивая не только белки, но и нуклеиновые кислоты, липиды, углеводы. [c.319]

    Снижение содержания углеводов при внесении повышенных доз азотных удобрений объясняется тем , что на многих этапах азотного обмена (при восстановлении нитратов до аммиака, биосинтезе аминокислот из аммиака, биосинтезе амидов, азотистых оснований, нуклеиновых кислот, белков и других азотистых соединений) растение затрачивает большое количество энергии, которую оно получает в процессе окисления углеводой. Углеродный скелет образуюш,ихся азотистых соединений также строится за счет углеводов или продуктов их превращений. Поэтому при интенсивном биосинтезе азотистых соединений содержание углеводов (или жиров) в растениях понижается. [c.417]

    В живых организмах встречаются также и другие пуриновые и пиримидиновые основания, которые, однако, не входят в состав нуклеиновых кислот. К ним относятся оротовая кислота, играющая роль промежуточного продукта при биосинтезе пиримидинов (см. стр. 467), а также гиноксаптин ксантин и мочевая кислота — продукты катаболизма пуринов. С другой стороны, нуклеотиды этих соединений — инозиновая и ксантиловая кислоты — являются ключевыми промен уточными продуктами в биосинтезе пуринов (см. стр. 461). Замещенные окисленные пурины теофиллин, теобромин и кофеин входят в состав важных соединений растительного происхождения. [c.123]

    Биологическое окисление служит главным источником энергии, необходимой для осуществления множества эндергонических биологических процессов. Свободная энергия, получающаяся при переносе пары электронов от субстрата к молекуле кислорода или к другому конечному акцептору электронов, превращается в результате ряда еще не вполне выясненных реакций (см. гл. XV) в химическую энергию макроэргического (богатого энергией) промежуточного продукта — аденозинтрифосфата (АТФ). Свободная энергия, выделяющаяся при полном гидролизе нирофосфатных связей АТФ, используется затем в какой-либо сопряи енной энергетически невыгодной ферментативной реакции (см. гл. II), благодаря чему эта реакция и может быть доведена до конца. Липман первым указал на фундаментальную роль гидролиза АТФ как двил ущей силы биохимических процессов. Эти процессы включают мышечное сокращение, фотосинтез, биолюминесценцию, разряд электрических органов, а также биосинтез белков, нуклеиновых кислот, сложных углеводов, липидов и т. д. [c.208]

    Для непрерывного окисления ацетил-КоА в цикле лимонной кислоты (ЦЛК) необходимо постоянное присутствие оксалоащ тата. Это обычно обеспечивается циклической природой самого процесса однако из сказанного следует также, что если компоненты цикла — все или только некоторые из них — расходуются на синтетические процессы (биосинтез аминокислот, пуринов, пиримидинов, пентозных предшественников нуклеиновых кислот и коферментов, порфиринов и т. д.), то должны существовать какие-то способы для возмещения расхода. У животных эти анаплеротические цепи реакций обеспечиваются реакциями карбоксилирования, посредством которых происходят взаимопревращения пирувата и дикарбоновых кислот цикла. Еще один процесс, в котором используется предварительное карбоксилиро-вапие,— это превращение пировиноградной кислоты в пропионовую кислоту при брожении у пропионовокислых бактерий. Этот процесс служит как бы обходным путем для того, чтобы преодолеть препятствие в виде пируватки-пазной реакции на пути синтеза углеводов. В конечном итоге оксалоацетат легко декарбоксилируется ферментативным и неферментативным путем. В превращении Сд С1 = С4 участвуют главным образом следующие реакции  [c.298]

    Окисление до Ы-окисей аденозина и цитидина протекает быстро в слабокислой среде. Оптимум pH для реакции ж-хлорпербензой-ной кислоты с аденозином находится при pH 5,5, а с цитидином — при pH 6,0 скорости реакции с обоими нуклеозидами близки З2э. Другие основные компоненты нуклеиновых кислот в этих условиях не подвергаются окислению . Напротив, в слабощелочной среде гуанозин, уридин и тимидин взаимодействует с перекисью водорода и перкислотами с расщеплением гетероциклического ядра (см. стр. 478). Взаимодействие редких компонентов РНК с перкислотами не изучалось. [c.389]


Смотреть страницы где упоминается термин Нуклеиновые кислоты окисление: [c.7]    [c.13]    [c.225]    [c.731]    [c.354]    [c.41]    [c.764]    [c.425]    [c.480]   
Биоорганическая химия (1987) -- [ c.386 , c.394 , c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте