Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись углерода абсорбция

    Двуокись углерода извлекается из отходящих газов путем поглощения растворами моноэтаноламина (МЭА) с последующей регенерацией поглотителя при десорбции СО и сжижением ее при необходимости получения товарного продукта [52, 192]. Исследование процессов абсорбции и десорбции двуокиси углерода растворами МЭА показало высокую интенсивность их протекания в пенНых аппаратах. Так, коэффициент абсорбции, рассчитанный по разовой фазе, составляет (750—400)-Ю кг/(м -ч-Па), к. п. д. одной полки — 10—12% при степени карбонизации абсорбента 0,2— 0,42 моля СО2 на один моль МЭА. При десорбции К = 10— 20 м/ч к. п. д. = 25-40%. [c.281]


    Процесс частичного окисления основывается на взаимодействии углеводородов с обогащенным кислородным потоком в некаталитическом пламени для получения газа, содержащего водород и окись углерода с небольшими количествами двуокиси углерода, водяного пара и метана. Затем проводят взаимодействие этой газовой смеси с водяным паром над катализатором реакции водяного газа и абсорбцией удаляют двуокись углерода, получая водород концентрацией 90—98%. В зависимости от дальнейшего назначения водорода применяют различные дополнительные операции очистки продукта. [c.182]

    При абсорбции раствором карбоната и бикарбоната натрия двуокись углерода реагирует следующим образом  [c.125]

    Газ для синтеза аммиака обычно получают из исходного сырья, содержащего углерод. Окислы углерода, которые дезактивируют катализатор синтеза аммиака (гл. 7), должны быть удалены из синтез-газа перед его использованием. На большинстве современных аммиачных установок окись углерода конвертируют в две стадии с паром в двуокись углерода, абсорбируют СОа в скруббере и окончательно очищают синтез-газ метанированием остатков СО и СОа До уровня следов. Другие схемы очистки — такие, как абсорбция СО раствором меди или очистка путем низкотемпературной дистилляции (промывки) — обычно имеют более высокую эксплуатационную стоимость, а иногда также более высокие капитальные затраты, чем каталитическая очистка, но им все же может быть отдано предпочтение в некоторых случаях на отдельных заводах. [c.117]

    Пример У-2. Реакция второго порядка. Двуокись углерода абсорбируется раствором гидроокиси натрия в насадочной колонне при 20 °С. Требуется найти скорость абсорбции (отнесенную к единице объема насадки) в точке, где парциальное давление СОз составляет 1 атм, а концентрация щелочи 0,5 жоль/л. Сопротивлением со стороны газовой фазы можно пренебречь. Дано = см сек а= 1 см  [c.122]

    Двуокись углерода из газа для синтеза аммаака чаще всего предварительно вымывается водой при повышенном давлении (10—30 ат).- Использование относительно большой растворимости СОг в воде (и малой растворимости На и Na) является основой зтого метода. Расширение водного раствора, покидающего скруббер, в турбине позволяет нагнетать воду для повторной абсорбции СОг (рис. IX-2). Вследствие этого нагрузка электродвигателя 6, приводящего в движение насос 5, уменьшается на 30—50%.Вода из турбины поступает на предв-арительную дегазацию, поскольку отходящий газ, содержащий 60% Oj и 40% Нг и Nj, можно вернуть на первую ступень компрессора и затем в производство. Благодаря этому не только уменьшаются потери водорода, но одновременно после конечного дегазатора, помещенного на регенерационной башне, получается чистый Oj ( 98—99%). Двуокись углерода такой чистоты можно применять в производстве мочевины (см. стр. 379) или сухого льда. В данном случае разность давлений используется как движущая сила для выполнения работы нагнетания. [c.353]


    Нетрудно прийти к заключению, что при одновременной абсорбции СОг и Нг5 раствором соли сероводород абсорбируется в режиме мгновенной реакции, в то время как двуокись углерода, по-видимому, абсорбируется либо в режиме медленной, либо в режиме быстрой реакции. Таким образом, можно рассчитывать на селективность по отношению к сероводороду. [c.160]

    Промышленный генератор СО2 позволяет получать при сжигании чистых (неодоризованных) СНГ чистый углекислый газ исключительно простым способом. При окислении СНГ при избыточном количестве воздуха образуется смесь СО2, паров воды и азота, которая может сразу же компримироваться и вдуваться непосредственно в напиток, так как пары воды конденсируются, а азот, обладающий меньщей, чем СО2, растворимостью, пройдет через жидкость, не абсорбируясь. При другом способе получения СО2 накапливается за счет абсорбции в одном из многочисленных селективных растворителей (моноэтаноламин, модифицированный карбонат калия, некоторые аминоспирты, сульфинол и т. п.), а затем регенерируется в виде концентрированного газа из растворителя. Дальнейшая очистка осуществляется при глубоком охлаждении (СО2 затвердевает при —78,5 °С, при этом отделяется большая часть газообразных примесей, имеющих более низкую точку кипения). Твердая двуокись углерода (сухой лед) используется для газирования напитков, в частности в тех случаях, когда масштабы розлива по бутылкам невелики, а организация местного производства СО2 неэкономична. [c.272]

    В случае абсорбции под давлением возможны различные варианты десорбции горючих примесей. Целесообразно проводить этот процесс путем снижения давления до давления регенерации полнее примеси удаляются при подогревании раствора. Разработан [117] вариант получения чистой двуокиси углерода, основанный на отводе ее из регенератора двумя потоками. Через верх регенератора уходит часть СО 2 и все примеси, а. несколько ниже (на 2—3 тарелки) отбирается чистая двуокись углерода. [c.173]

    Двуокись углерода поглощают горячим карбонатным раствором при температуре около Ш0°С и давлении 18—20 ат. Для регенерации карбонатного раствора давление редуцируют до значений, близких к атмосферному. Поскольку регенерацию раствора осуществляют при той же температуре, что -и абсорбцию, подогрева раствора перед регенерацией и его охлаждения перед абсорбцией не требуется [81]. [c.124]

    Двуокись углерода ири 1 атм взаимодействует с раствором, содержащим 1 моль/л КаОН при 20 "С. Pa твopи гo ть СО2 можно принять равной З-Ю . ноль см -атм), а ее коэффициент диффузии в растворе 1,5-10 см- сек. Константу скорости реакции между СО2 и ОН в растворе принять равной Ю л (моль-сек). В течение какого промежутка времени взаимодействие газа и жидкости можно рассматривать как реакцию псевдопервого порядка Построить график зависимости количества абсорбированной СО2 от времепи контакта для этого периода. Вычислить повышение температуры на поверхности к концу этого периода. Теплоты абсорбции и реакции принять равными соответственно 4760 и 1500 кал моль. Температуропроводность воды составляет около 1,46-10 см сек. [c.54]

    Абсорбцией водой в промышленных системах очистки удаляют аммиак, сернистый ангидрид, двуокись углерода, водород, фтористые соединения, четырехфтористый кремний, xjtopn Tbin водород и хлор. Водная абсорбция аммиака (и других азотистых оснований) из газов не имеет большого значения как процесс очистки газа (кроме очистки коксового и некоторых других газов, Б которых присутствуют также HgS и Oj). Процессы, разработанные для извлечения аммиака из таких газов водой, тесно связаны с процессами удаления кислых компонентов и рассматриваются совместно в гл. четвертой и десятой. Водная абсорбция сернистого ангидрида является основой процесса, применяемого в промышленном масштабе для очистки дымовых газов тепловых электростанции (процесс Баттерси). Однако в этом случае в качестве абсорбента используют иголочную воду (из реки Темзы), а для поддержания гцелочности добавляют известь. Этот процесс вместе с другими абсорбционными процессами очистки от SO2 описывается в гл. седьмой. [c.111]

    Используя уравнение материального баланса по свободной СОа и предполагая, что в основную массу раствора поступает вся поглощенная двуокись углерода, получим с учетом уравнения (11,83),. расчетное уравнение для скорости абсорбции [61, 63]  [c.153]

    Данквертс и др. , абсорбируя двуокись углерода щелочными растворами в насадочной колонне диаметром 10 см, установили, что результаты, полученные ими, согласуются с данными моделей Хигби и Данквертса. Результаты Ричардса и др. по абсорбции СОа буферными растворами в присутствии катализаторов в колонне того же диаметра согласуются с моделью Данквертса. Данные Таварес да Силва и Данквертса по абсорбции сероводорода растворами аминов в такой же колонне более согласуются с моделью обновления, чем с пленочной моделью (в этом случае между предсказаниями обеих моделей имеются существенные различия). Данквертс и Гиллхэм показали, что модель поверхностного обновления Хигби могла быть успешно использована для определения скорости абсорбции двуокиси углерода раствором NaOH в колонне диаметром 50 см. Все это говорит в пользу надежности применения моделей поверхностного обновления и свидетельствует о том, что методы, рассмотренные в этой главе,могут успешно применяться для установления влияния химической реакции на скорость абсорбции. Следует, однако, подчеркнуть, что в большинстве случаев данные для пленочной модели были бы почти такими же, что и для моделей обновления поверхности. [c.108]


    Двуокись углерода, содержащуюся в получаемом водороде, удаляют любым из известных процессов, например, водной промывкой, абсорбцией аминами или горячими растворами поташа. [c.169]

    Двуокись углерода удаляют из образующейся смеси абсорбцией, например этаноламином. В настоящее время на многих нефтеперерабатывающих заводах водород получается при производстве высокооктанового бензина как побочный продукт каталитического риформинга. Этот побочный водород нефтезаводов является вторым важным звеном, связывающим оксопроцесс с нефтепереработкой. [c.262]

    Наиболее сложным случаем является десорбция нескольких газов при нагревании. В этом случае десорбция каждого из компонентов облегчается наличием других компонентов, выполняющих функцию десорбирующих агентов. В результате температура десорбции ниже (или степень десорбции выше), чем при десорбции одного растворенного газа. Это наблюдается, например, при абсорбции сероводорода и органических сернистых соединений различными растворителями из газов, содержащих двуокись углерода. В извлечении двуокиси углерода нет необходимости, однако наличие СО 2 в растворе облегчает десорбцию сернистых соединений и позволяет соответственно увеличить степень очистки газа от сернистых соединений. [c.51]

    В тех случаях, когда двуокись углерода поступает на синтез карбамида, концентрация горючих примесей в ней строго ограничивается, поэтому необходимо проводить дополнительную очистку газа. Например, в случае абсорбции под давлением концентрация водорода в двуокиси углерода может достигать 1—2% нри очистке по обычной схеме (см. рис. 1У-31). Чем выше давление, тем больше концентрация водорода. Это объясняется в первую очередь различной зависимостью растворимости двуокиси углерода и водорода от давления. [c.172]

    Чтобы предупредить забивку насадки, предложено [224] часть раствора (до 5%) выводить из абсорбера с целью выделения из него солей железа и поддержания их допустимой концентрации в циркулирующем растворе. Для этого через раствор пропускают двуокись углерода или конвертированный газ (чтобы отношение ионов бикарбоната и карбоната составило 10 1). Подкисление проводят при давлении абсорбции (во избежание десорбции СОа) аппарате с мешалкой и обогревом. Карбонаты железа отделяют фильтрованием. [c.262]

    Избирательная абсорбция сероводорода. Наблюдения показали [10], что если продолжительность контакта для газа мала (около 5 сек), то, применяя водные растворы аммиака, можно достигнуть избирательного извлечения сероводорода из газа, содержащего также двуокись углерода. [c.71]

    Охлажденный поток поступает в конвертор окиси углерода, в котором СО взаимодействует с водяным паром, образуя дополнительное количество водорода и двуокись углерода. Последнюю удаляют двухступенчатой абсорбцией сначала каким-либо растворителем или горячим раствором поташа, а затем водным раствором моноэтаноламина. [c.21]

    Абсорбируемый газ (аммиак, двуокись углерода) из баллона 15 через ресиверы 14 и ротаметр 10 поступал в смеситель 12, заполненный кольцами Рашига. Сюда же через ротаметр 9 и ресивер 11 поступал воздух из газодувки 13. Полученная таким образом газовоздушная смесь через патрубки 4 поступала в колонну 1, где осуществлялся процесс абсорбции в результате ее контакта со стекающей вниз пленкой воды. Вращение ротора 2 производилось от электродвигателя 5 через клиноременную передачу. Путем смены шкивов меняли окружную скорость вращения ротора от 2,22 до 27 м/с. [c.73]

    Пример Х-1. Двуокись углерода при 1 атм и 20 °С абсорбируется раствором, содержащим 0,5 моль л Naa Og, 0,5 моль л NaH Og и 0,01 моль л NaO l, в насадочной колонне с ki= 10" 2 см сек. Вычислить скорость абсорбции, зная А = = 310 моль л, Da = 1,5-Ю 5 см сек, 2000 л1 моль сек) и он<=  [c.245]

    Аппарат был испытан на системах аммиак — вода, аммиак — серная кислота, сернистый газ—вода (абсорбция) и двуокись углерода— вода (десорбция). Скорость движения газовой смеси варьировалась от 1 до 4 м/с, плотность орошения от 0,695-10 до 4,16- [c.130]

    Пример Х-2. Двуокись углерода абсорбируется при температуре около 20 °С раствором, который первоначально содержал 1,0 моль л КНз, но теперь имеет степень карбонизации (отношение числа молей СОд к числу молей первоначально присутствующего амина), равную 0,47. Таким образом, [ЫНз] = 0,06 моль1л и ЫН2С00" = ЫН = 0,47 моль л. Вычислить скорость абсорбции, если = = 2. Ю см сек, А = 2- моль л, Кс = 1,5- моль л, лт = л моль-сек) и = 1,5. 10 5 см сек. [c.248]

    Для того чтобы превратить эти низкокалорийные газы в метан, окислы углерода должны быть подвергнуты реакциям взаимодействия с водородом. Практически это осуществляется либо за счет подачи избыточного количества водорода, либо за счет удаления избыточных количеств окислов углерода, из которых с помощью абсорбции щелочными поглотителями может быть удалена лишь двуокись углерода. Отсюда вытекает весьма важный вывод о том, что прежде чем продолжить процесс производства газа, необходимо метанизировать по крайней мере всю окись углерода. [c.176]

    При 20 °С и давлении 1,013-10 Па в 1 м N-метилнирропидона растворяется 4 м СОг) растворимость сероводорода в 12 раз больше, поэтому N-метилнирролидон можно применять для селективного извлечения сероводорода из газов, содержащих двуокись углерода. N-метилпирролидон не токсичен и нй обладает корро-зион-ной активностью. Недостаток его, как и большинства растворителей, применяемых для абсорбции двуокиси углерода, — относительно высокая стоимость. [c.267]

    Пример Х-3. Двуокись углерода при 1 атм и 20 С контактирует с неподвижным раствором, содержащим 10 моль л NaOH. Через какой промежуток времени после начала абсорбции скорость реакции можно будет считать практически мгновенной  [c.261]

    Перед конечной стадией процесса обработки—удалением двуокиси углерода — газ еще раз охлаждается и осушается. Абсорбер двуокиси углерода применяется в основном того же типа, что и в других процессах получения ЗПГ, т. е. для абсорбции кислых газов используются растворы аминов. Отработанный насыщенный растворитель подогревается, и поглощенная двуокись углерода отделяется в разделительной колонне для того, чтобы регенерированный раствор можно было использовать повторно. Содержание двуокиси углерода в газах снижается примерио от 17 до 0,5—1 об. %.  [c.112]

    Получение водного раствора карбоната аммония с концентрацией 25—27% осуществляют абсорбцией водой углекислого газа и газообразного аммиака в двух последовательно работающих абсор- берах — карбонизаторе и промывном скруббере, орошаемых циркулирующей жидкостью (противотоком движению газов). В качестве источника двуокиси углерода используют газ известково-обжигательных печей. В первый карбонизатор поступает двуокись углерода и 80% аммиака от общего его расхода. К газам, поступающим из первого во второй карбонизатор, добавляют остальные 207о аммиака. Далее газы пропускают через промывной скруббер, орошаемый слегка подкисленным 10—15% раствором аммиачной селитры, и выводят в атмосферу. Тепло, выделяющееся в карбониза-торах при абсорбции, отводят охлаждением циркулирующего рас  [c.513]

    В каменноугольных газах содержатся летучие кислотные компоненты — хлористый водород, сероводород, цианистый водород, двуокись углерода, органические кислоты. Все они соединяются с аммиаком во время охлаждения газа и вследствие растворимости образующихся солей в воде частично удаляются при процессах водной абсорбции. Аммиак в виде солей сильных кислот (главным образом хлористый аммоний) обычно называют связанным аммиаком в легко диссоциирующихся солях слабых кислот, таких как карбонат, бикарбонат, сульфид, гидросульфид и другие, его называют несвязанным . Методы выделения аммиака из различных солей, образующихся при очистке газа, кратко рассмотрены в последней части главы. [c.229]

    Основное количество окиси углерода, содержащегося в неочищенном синтез-газе, сначала подвергают каталитической конверсии взаимодействием с водой с образованием двуокиси углерода и дополнительного количества водорода. Двуокись углерода легко можно удалить абсорбцией водой или щелочными растворителями, кмк было подробно описано в предыдущих главах однако получаемый газ все ехце содержит 2—4% окиси углерода, которую необходимо удалить практически полностью, чтобы предотвратить отравление катализатора синтеза аммиака. Хотя разработаны и некоторые другие процессы удаления небольших количеств окиси углерода, например метанирование или абсорбция жидким азотом, на протяжении многих лет важное промышленное значение сохраняет процесс абсорбции медноаммиачными растворами. [c.349]

    Избирательность абсорбции сероводорода зависит от способа контактирования газа с жидкостью. Измерение скорости растворения сероводорода и двуокиси углерода в разбавленных водных растворах аммиака (0,5—2%) показало, что при неподвижной поверхности, комнатной температуре и давлении газа 1 ат сероводород растворяется вдвое быстрее, чем двуокись углерода [И, 12]. Опытным путем [И] найдено также, что в случае абсорбции кислых газов падающими каплями жидкости при одинаковых условиях давления и температуры сероводород растворяется в 85 раз быстрее, чем двуокись углерода. Опыты, проведенные тем же автором с типичным коксовым газом, содержащим около 0,5% НаЗ и 2,0% СО2, показали, что при контактировапип с избытком разбавленного водного раствора аммиака при 21° С в колонне с механическим распыливанием сероводород растворяется примерно в 17 раз быстрее, чем двуокись углерода. [c.72]

    При исследовании процессов, происходящих при охлаждении коксового газа, конденсации, абсорбции и десорбции его компонентов, возникает необходимость определять большое число различных веществ, содержащихся в коксовом газе и в образующихся производственных растворах. К таким веещствам относятся не только компоненты коксового газа (аммиак, сероводород, двуокись углерода, цианистый водород, пиридиновые основания, фенолы, влага), но и продукты их взаимодействия и электролитической диссоциации (ионы аммония, сульфид и бисульфид, карбонат и бикарбонат, цианид, роданид и др.), а также вещества, входящие в состав поглотителей, используемых при очистке газа, и продукты взаимодействия поглотителей с компонентами коксового газа (серная и фосфорная кислоты, каменноугольное и нефтяное поглотительные масла). [c.59]

    Щелочную очистку применяли для очистки от меркаптанов природного газа [8], содержащего 0,1—0,3% СО . Для полного поглощения двуокиси углерода требуется большое количество щелочи. В условиях равновесия двуокись углерода вытесняет меркаптан из раствора. Однако при концентрации двуокиси углерода более 0,1% скорость ее абсорбции в значительной мере лимитируется процессами, протекающими в жидкой фазе [9]. Это позволяет путем подбора условий абсорбции достичь степени извлечения этилмер-кантана 95% при извлечении двуокиси углерода 35—38%, а следовательно, резко сократить расход щелочи. [c.334]

    Предложено много способов, основанных на избирательной абсорбции одного из компонентов — аммиака или СО2. Например, избирательная абсорбция аммиака из газов дистилляции раствором нитрата карбамида (способ Инвента ) 2io-2i2 Непоглощенную двуокись углерода или выбрасывают в атмосферу или повторно используют в цикле 2>з-217 Другим примером является избирательная абсорбция из газов дистилляции двуокиси углерода (способ Хемико ) 2 218-221 По этому способу синтез проводится при 170 ат и 175—185° в присутствии большого избытка ам-, миака (NH3 СО2 = 6 1), что позволяет повысить степень превращения карбамата аммония в карбамид до 76%. Поглощение СО2 из газов дистилляции производится с помощью моноэтанол-амина 222  [c.546]

    Предполагают [2], что различие в скоростях абсорбции СО2 и НдЗ ьызвано неодинаковыми скоростями диффузии этих газов в растворах сульфида. карбамината и карбоната аммония. Однако правильнее объяснить это положение, вероятно, можно, основываясь на том, что сероводород сразу же ионизируется в растворе, образуя ионы Н8 и Н+, которые быстро реагируют с ионами гидроксила. Двуокись углерода же сначала взаимодействует с водой, образуя угольную кислоту, которая после ионизации реагирует с аммиаком. Скорость реакции гид])атации очень мала, она, по-видимому, и является стадией, определяющей скорость суммарного процесса. [c.72]

    Абсорбция аммиака водой протекает быстро, причем скорость процесса полностью определяется сопротивлением газовой пленки фактически эта система является классической для химико-технологического изучения сопротивления газовой пленки. Скорость абсорбции сероводорода водными растворами аммиака также довольно велика, хотя она и зависит от концентрации аммиака. При достаточной концентрации аммиака на поверхности раздела фаз скорость абсорбции сероводорода, по-видимому, определяется сопротивленпем газовой пленки. В то же время абсорбция двуокиси углерода водой или слабыми щелочными растворами считается типичным примером систем, в которых определяющим скорость фактором является сопротивление жидкостной пленки. Это связано с тем, что сопротивление жидкостной пленкп прн абсорбции двуокиси углерода значительно больше, чем при абсорбции сероводорода и аммиака, а не с тем, что сопротивление газовой пленки в первом случае меньше, чем во втором. Таким образом, при кои-тактированпи газа, содержащего сероводород, аммиак и двуокись углерода, с водой абсорбция аммиака происходит значительно быстрее, чем СО2. Это различие абсорбируемости может быть еще больше, если вести процесс в условиях, когда сопротивление газовой пленки уменьшается или сопротивление жидкостной пленки увеличивается. [c.72]

    Описание процесса (рис. 10). Газ для синтеза аммиака получают конверсией газообразных углеводородов под давлением с последующей одноступенчатой конверсией окиси углерода и абсорбцией двуокиси углерода процессом гирботол. Остаточные окись и двуокись углерода удаляются на ступени метанирования. предшествующей сжатию. [c.20]


Смотреть страницы где упоминается термин Двуокись углерода абсорбция: [c.61]    [c.678]    [c.127]    [c.335]    [c.66]    [c.84]    [c.331]    [c.260]   
Абсорбция газов (1966) -- [ c.52 , c.578 , c.678 ]

Очистка технологических газов (1977) -- [ c.0 ]

Технология связанного азота Синтетический аммиак (1961) -- [ c.0 ]

Общая химическая технология неорганических веществ 1964 (1964) -- [ c.191 , c.427 , c.441 , c.574 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.191 , c.427 , c.441 , c.574 ]

Курс технологии связанного азота (1969) -- [ c.141 , c.152 , c.164 ]

Технология связанного азота (1966) -- [ c.0 ]

Очистка технических газов (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбция аммиака и двуокиси углерода

Абсорбция аммиана и двуокиси углерода

Абсорбция двуокиси углерода аминам

Абсорбция двуокиси углерода аммиачной водой

Абсорбция двуокиси углерода ацетоном

Абсорбция двуокиси углерода буферными растворами

Абсорбция двуокиси углерода растворами амина

Абсорбция двуокиси углерода растворами аминоспиртов (метод Жирботол)

Абсорбция двуокиси углерода растворами щелочей

Абсорбция сероводорода и двуокиси углерода

Абсорбция сероводорода и двуокиси углерода растворами щелочных солей

Аммиачная вода, абсорбция двуокиси углерода

Водная абсорбция двуокиси углерода

Движущая сила абсорбции Двуокись углерода

Движущая сила абсорбции Двуокись углерода абсорбция аммонизированным

Движущая сила абсорбции Двуокись углерода взаимодействие с аммиаком

Движущая сила абсорбции Двуокись углерода давление над метастабильным

Движущая сила абсорбции Двуокись углерода изменение концентрации по высоте

Движущая сила абсорбции Двуокись углерода рассолом

Движущая сила абсорбции Двуокись углерода раствором

Двуокись углерода кинетика абсорбции

Двуокись углерода коэффициент абсорбции

Двуокись углерода скорость абсорбции

Двуокись углерода теплота абсорбции

Двуокись углерода, абсорбция аммиачными растворами

Двуокись углерода, абсорбция водой

Двуокись углерода, абсорбция растворами едких щелочей

Двуокись углерода, абсорбция растворами карбонатов

Двуокись углерода, удаление из газо абсорбцией метанолом

Двуокись углерода, удаление из газо физической абсорбцией Флуорпроцесс

Двуокись углерода, удаление из газов абсорбция

Диэтаноламин абсорбция двуокиси углерод

Изотермическая абсорбция двуокиси углерода, расчет

Козффициент абсорбции двуокиси углерода

Колонны абсорбция двуокиси углерода

Листья желтые и белые, абсорбция двуокиси углерода

Метанол, абсорбция двуокиси углерода

Основы процессов абсорбции окиси и двуокиси углерода

Очистка газов от двуокиси углерода и сероводорода методом абсорбции органическими растворителями

Очистка газов от двуокиси углерода методом низкотемпературной абсорбции метанолом

Поташный метод абсорбции двуокиси углерода

Содовый метод абсорбции двуокиси углерода

Удаление двуокиси углерода и сероводорода методом физической абсорбции органическими растворителями

Щелочная абсорбция двуокиси углерода

Этаноламины, абсорбЦия двуокиси углерода



© 2025 chem21.info Реклама на сайте