Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен концентрирование

    Эту реакцию можно использовать не только для того, чтобы отделить олефины от парафинов, но и для разделения смеси низших олефинов. В последнем случае пользуются их различной реакционной способностью по отношению к серной кислоте. Например, из газовой смеси, содержащей этилен, пропилен, -бутилены, изобутилен и парафины, изобутилен поглощают холодной 50—65%-ной серной кислотой, н-бутилены — холодной 75%-НОЙ, пропилен — холодной 90%-ной, а этилен — горячей 90—96%-ной серной кислотой. Метановые углеводороды серной кислотой не поглощаются. Подробности этого процесса как в отношении стадии абсорбции, так и в отношении стадии гидролиза алкилсерных кислот в соответствующие спирты описаны в гл. 8. Применимость этого метода широка его можно использовать для разделения газовых смесей, содержащих от 2 до 100% олефинов. Сернокислотное поглощение олефинов применяли во время первой мировой войны в Англии для удаления небольших примесей этилена из коксового газа. Однако такой метод получения спиртов менее выгоден по сравнению с методом, предусматривающим предварительное выделение и концентрирование олефинов с последующей гидратацией. Поглощение олефинов серной кислотой все еще применяют в тех случаях, когда разделение физическими методами затруднительно, например при извлечении изобутилена из смеси с н-бутиленами и другими С4-углеводородами. [c.116]


    Процесс получения изопропилбензола алкилированием бензола пропиленом (или концентрированной пропиленовой фрак-. цией) аналогичен процессу алкилирования беизола этиленом и осуществляется в присутствии тех же катализаторов  [c.124]

    Анализ проводят на самодельном объемно-хроматографическом газоанализаторе (рис. 51). Адсорбционная колонка / изготовлена из тугоплавкого стекла пирекс с внутренним диаметром 10 мм и длиной рабочей части 500 мм. Ее наполняют силикагелем МСК Воскресенского химкомбината, предварительно обработанным химически чистой концентрированной соляной кислотой и 0,1 н. раствором едкого кали, поперечник зерен силикагеля 0,25—0,5 мм. Колонка предназначена для раздельного оп- ределения этана, этилена, пропана, суммы пропилен + бутан + изобутан, суммы бу-тиленов, а также для отделения первой фракции, содержащей метан, воздух и водород. Колонка снабжена электрическим нагревателем (нихром). Если необходимо измерить температуру выхода отдельных компонентов газовой смеси, то к нижней части колонки припаивают тройник. Один конец тройника предназначен для ввода термопары в колонку, другой конец, присоединенный к барботажной бюретке, — для выхода газа. [c.139]

    Пропилен сжиженный концентрированный ТУ 38 10276—74  [c.587]

    СО2 и Нг5 в пропилене. Концентрирование основано на способности в-в кислого характера образовывать с триэтаноламином при низкой т-ре практически нелетучие соединения, которые легко разрушаются при повышении т-ры, [c.85]

    Серная кислот.а. Серная кислота концентраций 96 или 98% является прекрасным катализатором реакции алкилирования изопарафиновых углеводородов олефинами (кроме этилена). Алкилирование пропиленом требует применения более концентрированной кислоты, чем алкилирование более высокомолекулярными олефинами. В этом случае применялась кислота даже крепостью 101,7% [6]. В ходе алкилирования концентрация кислоты снижается вследствие образования осадка и разбавления кислоты водой, как вводимой вместо с углеводородным сырьем, [c.310]

    Алкилирование бензола пропиленом производят в присутствии катализатора хлористого алюминия при температуре 50° С. В качестве катализаторов использовали также концентрированную серную кислоту, фтористый водород, фтористый бор и др. [c.69]

    Таким образом, если из пирогаза предварительно выделить углеводороды >С , то сжатый пирогаз без дальнейшего разделения может быть направлен на двухступенчатую установку последовательной абсорбции, где в первом по ходу газа абсорбере будет в более мягких условиях четко поглощаться пропилен, а во втором -в значительно более жестких условиях — этилен. Оставшиеся непоглощенными водород, метан, этан и пропан могут быть направлены сразу на пиролиз в топливную сеть или предварительно использованы для концентрирования отработанной кислоты в токе [c.422]


    В качестве такого сырья было предложено использовать концентрированный пропилен, выделяемый из газов пиролиза [c.96]

    Каталитический способ применим также к пропилену, однако в этом случае он не имеет большого значения, так как реакция протекает легко уже с 85%-ной серной кислотой, а при работе под давлением—с еще более разбавленными кислотами. [4]. Концентрирование серной кислоты при этом не представляет особых затруднений. Следует отметить, что в США в настоящее время экономичный процесс производства спирта из этилена освоен в таком масштабе, что ацетальдегид даже выгоднее получать из этого спирта, чем карбида. Например, фирма Юнион карбид корпорейшн за последние 10 лет производит ацетальдегид не из ацетилена, а только из этилового спирта. Еще проще, чем из пропилена, соответствующие спирты (а именно, вторичный бутанол [4] и третичный бутанол [5]) можно получить из бутилена и изобутилена. [c.354]

    Метод концентрированной кислоты. Газы стабилизации с крекинг-установок с содержанием 20—24% пропилена вначале отмывают в скрубберах от сероводорода [26]. Затем удаляют высшие углеводороды фракционной перегонкой и концентрируют пропилен до минимум 50%. Показано [27], что абсврбцию пропилена можно существенно улучшить с помощью абсорбционного масла, большей [c.55]

    При действии на пропилен смеси концентрированной серной и уксусной кислот образуется изопропилацетат [c.359]

    Более усовершенствованный вариант этого процесса, отработанный на опытной установке, имеет следующие условия и основные показатели при исходном концентрированном 97-99 %-ном пропилене температура 170-190°С, давление 1,7-1,9 МПа, мольное соотношение водяной пар/пропилен 0,4-0,5, объемная скорость 1300 час . Прореагировавший пропилен расходовался 98,5 % на образование спирта, 1,4 % - диизопропилового эфира и 0,1 % -полимеров. Длительность работы катализатора без снижения ак- [c.436]

    Цеолитсодержащие катализаторы. Использование концентрированных кислот (H2SO4, НР) в процессе производства алкилата вызывает ряд проблем. Их, возможно, не возникнет при алкилировании на цеолитсодержащих катализаторах. Как известно, каталитическая активность цеолитов обусловлена бренстедовскими кислотными центрами. На этих центрах образуется промежуточный карбоний-ион, который участвует во многих реакциях, в том числе и алкилирования. Исследования показали возможность применения цеолитсодержащих катализаторов для алкилирования бензола пропиленом взамен AI I3, обладающего рядом недостатков при эксплуатации. [c.305]

    Табюто и Готье [1806] поглощали пропилен концентрированной серной кислотой в присутствии меди и сульфата меди. [c.342]

    Жидкофазная сернокислотная гидратация пропилена [102] позволяет изготовлять 30—40%-ный пропилен, и в этом заключается преимущество метода. Процесс осуществляется при низком давлении и высокой степени превращения, изопропиловый спирт получается более высокой концентрации, чем при газофазной гидратации. Недостатком является применение серной кислоты и связанные с этим проблемы коррозии, а также пеобходилюсть концентрирования (упарки) возвращаемой в процесс кислоты и, наконец, высокий расход кпслоты. Тем не менее, на сегодняшний день жидкофазная гидратация считается более экономичной по сравнению с газофазной. [c.65]

    Этилен реагирует с концентрированной серной кислотой при обычных температурах очень медленно, но при 80—85° реакция сильно ускоряется, особенно с кислотой, содержлщэй98 Уа Н ЗО . Реакция идет почти количественно с образованием моно- и диэтилсульфатов [41]. Скорость поглощения этилена увеличивается при давлениях 17,6—35,2 кг/см [9, 13а, 49], это указывает на то, что кислота реагирует главным образом с растворенным этиленом, а пе на поверхности за счет контакта кислоты с газом. В более ранней работе было показано, что при постоянном давлении (низком) скорость абсорбции меняется незначительно, если применяется перемешивание или встряхивание кислоты [15]. При средних давлениях с использованием 98 /д-ной кислоты увеличивается образование диэтил-сульфата. Если применяется 98 /о-ная кислота при 80—85°, пропилен должен быть удален полностью, так как он при этих условиях быстро обугливается. [c.353]

    Хлористая медь и другие соединения меди весьма полезны для выделения и очистки диенов с сопряженными двойными связями. По Френсису в 1951 г. в США был выдан 21 патент на процесс поглощения олефинов модными солями [5]. Твердая безводная полухлористая медь образует твердый комплекс с этиленом [231, а также с пропиленом и изобутиленом, однако эти комплексы оказываются стойкими только нри высоком парциальном давлении этих олефинов. Водный раствор полухлористой меди и хлористого аммония образует комплексы с циклопентеном и циклогексеном, которые разлагаются приблизительно при 90 с выделением олефинов [18]. Было предложено применять водные растворы медных солей, содержащие соли дныетиланплина, для поглощения этилона из газов с 10% этилена для нолучения концентрированного этилена рекомен/ овалось нагревание [12]. [c.388]


    Процесс сернокислотной гидратации пропилена осуп ествляет-ся следуюш пм образом (аналогично представленной на рпс. 4 схеме сернокислотной гидратации этилена). Пропилен в виде иропан-пропиленовой фракции поступает в абсорбер. Сюда же подается серная кислота с концентрацией около 70%. Применение более концентрированной кислоты приводит к увеличенному выходу полимеров пропилена. Повышение температуры также способствует образованию побочных продуктов. Вследствие этого процесс проводят в мягких температурных условиях (65—70° С). Для снятия экзотермического тепла реакции сульфирования пропилена применяют рециркуляцию изопропилсерной кислоты, охлажденной в выносных холодильниках. [c.44]

    Из сказанного следует, что в настоящее время и в ближайшие годы единственным промышленно освоенным и экономичным методом производства синтетического изопропанола является метод сернокислотной гидратации пропилена. Достоинством этого метода является возможность использования иропан-пропиленовой фракции с содержанием пропилена 30—40% без предварительного концентрирования. Указанная фракция может быть получена в достаточных количествах с газофракционирующих установок нефтеперерабатывающих заводов, а также с установок пиролиза и газоразделения. Кроме того, пропилен в виде 40%-ной пропан- [c.47]

    НОЙ соляной кислоты при 60°С. Смесь 80%-ной тиогликолево кислоты и 36%-НОЙ соляной кислоты в примерном соотношении 1 при перемешивании нагревали до 50 °С в течение 0,5 ч и добавлял ацетон. При этом температура реакционной смеси поднималась Д( 60 °С. Время реакции 1 ч. Выход кислоты 91% от теоретического продукт был идентифицирован по т. пл. (131—133 °С) и ИК-снектру Далее был проведен синтез дифенилолпропана из пропилен-бис тиогликолевой кислоты и фенола в присутствии концентрированно соляной кислоты при 70 °С. Выход дифенилолпропана o тaвляJ 70% от теоретического его т. пл. (после перекристаллизации и смеси толуола с водой) составила 156 С. [c.92]

    В начальный период абсорбции 80%-ная H2SO4 поглощает пропилен почти в Г,5 раза быстрее, чем 70%-ная. Однако с повышением степени насыщения различие в скорости поглощения почти исчезает. Поэтому на абсорбцию целесообразно подавать 70%-ную кислоту (насыщение 0,6—0,7 моль СзНа/моль H2SO4). Снижение концентрации кислоты от 80 до 70% уменьшает выход полимеров и в значительной мере упрощает процесс упаривания, так как кислота может подвергаться концентрированию без предварительной очистки. [c.221]

    Дэвис и сотрудники [56а] обстоятельно исследовали абсорбцию газообразных олефинов серной кислотой различной концентрации. Они нашли, что скорость абсорбции пропорциональна давлению олефина, если реакция проводится при постоянном объеме, и не зависит от перемешивания серной кислоты, не считая влияния увеличения поверхности кислоты при перемешивании, Повидимому, в поверхностной пленке реакция идет быстрее, чем в основной массе жидкости. Скорость абсорбции зависит в значительной степени от природы олефина. Например, 80%-ная и более концентрированная серная кислота растворяет пропилен в 300 раз скорее, чем этилен. Пропилен и бутилен-1 растворяются приблизительно с равной скоростью, которая в 1,7—2,6 раза меньше скорости растворения бутилена-2. Триме-тилэтилен абсорбируется в несколько раз быстрее, чем изобутилен, который в свою очередь реагирует в 10—80 раз скорее, чем бутилен-2. Изопропилэтилен реагирует с серной кислотой приблизительно с той же скоростью, что и пропилен. Отмечено, что при абсорбции 60%-ной серной кислотой изобутилен непосредственно превращается в третичный бутиловый сиирт, в то время как пропилен дает только изопропилсерную кислоту. При действии 80%-ной серной дислоты бутилен-2 превращается главным образом в спирт [566]. В оригинальной литературе [56 подробно рассмотрена возможность использования различия [c.15]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]

    Изрпропилсерная кислота. Изопропилсерная кислота имеет значение как промежуточный продукт при изготовлении изопропилового спирта и диизопропилового эфира из пропилена. Этот олефин реагирует с серной кислотой значительно легче, чем этилен [176, 178], и может абсорбироваться более слабой кислотой. Чтобы получить высокий выход изопропилсерной кислоты, необходимо употреблять менее концентрированную кислоту, так как при концентрированной кислоте преобладаю Г побочные реакции [233]. Абсорбция улучшается в присутствии инертного растворителя для пропилена при условии обеспечения тесного контакта раствора с кислотой [234]. Введение инертного растворителя уменьшает полимеризацию, происходящую при непосредственном растворении пропилена в серной кислоте. Наиболее удовлетворительные результаты получаются при использовании 87%-ной кислоты. Можно также избежать полимеризации, если вести абсорбцию 65—80%-ной кислотой при температуре 10—30° и давлении выше 3,5 ат [235]. В одном из патентов [236] рекомендуется проводить реакцию в жидкой фазе и при низкой температуре, поддерживая последнюю испарением части пропилена. В другом патенте [237] предлагается растворять пропилен в концентрированной серной кислоте при температуре —15°, обеспечивая соприкосновение смеси газов с кислотой в течение некоторого времени. Серная кислота, разбавленная примерно равным объемом ледяной уксусной кислоты, растворяет пропи- [c.45]

    Бутилены серной кпслотой абсорбируются легче, чем пропилен и этилен, и поэтому можно приготовить смесь бутилсерных кислот [242], практически свободную от низших гомологов, применяя серную кислоту соответствующей концентрации. Изобу-тилен можно абсорбировать 65%-ной кислотой [243], а прочие бутилены—85° о-ной кислотой при 30° или с концентрацией 88% и выше прп температурах 3° и ниже [244]. Запатентована [245] абсорбция бутиленов в жидкой фазе иод давлением при температуре 30—35°. При растворении в 78°о-ной кислоте жидкий бути-лен-2 образует ничтожное количество полимеров, тогда как абсорбция более концентрированной кислотой соировождается значительной полимеризацией [233]. Бутилсерная кислота, полученная из бутилена-1 пли бутилена-2, в результате омыления дает вторичный бутиловый спирт [246]. [c.46]

    Катализаторы процесса. Алкилирование изобутана олефинами на отечественных установках проводится в присутствии серной кислоты. Для алкилирования бутиленами применяется 96—987о-ная серная кислота, для алкилирования пропиленом необхо.адма кислота более высокой концентрации — в среднем 98—1007о. В процессе алкилирования постепенно происходит снижение концентрации серной кислоты, вызываемое взаимодействием кислоты с непредельными углеводородами и влагой. При понижении концентрации реакции алкилирования замедляются, а реакции полимеризации ускоряются. Поэтому отработанную кислоту заменяют свежей, концентрированной. [c.298]

    Для хлоргидринирования этилена и пропилена были взяты растворы НСЮ в ТБФ, МЭК и эти.тацетате. Газообразные этилен и пропилен использовали как в концентрированном виде, так и в смеси с азотом. Возможность применения разбавленных газообразных олефинов в реакциях хлоргидринирования интересовала нас особо. Как известно [204], в газообразных выбросах некоторых производств химической промышленности содержатся значительные количества ненасыщенных углеводородов, утилизация которых позволила бы заметно улучшить экономические и экологические показатели [c.83]

    В странах, где проводится крекинг нефтяного сырья, пропилен является наиболее доступным олефином. В противоположность этилену пропилен можно получать в достаточно концентрированном виде из газов большинства крекинг-процессов. Кроме того, выделение пропилена из крекинг-газов не требует глубокого (JXлaждeния. В качестве исходного сы1)ья для производства авиационных бензинов пропилен имеет меньшую ценность, чем бутилены пропилен также не может служить исходным продуктом для синтеза дивинила. [c.126]

    Как уже упоминалось выше, при поглощении этиленч слишком концентрированной серной кислотой образуется карбилсульфат. Такого же типа реакция происходит в некоторой степени с пропиленом и с высшими олефинами. Однако наряду с этим образуются также сульфоны, по-видимому, в результате действия кислоты на метильную или соседнюю с двойной связью метиленовую группы  [c.149]

    При работе на другом олефиповом сырье удельный расход серной кислоты значительно повышается по сравнению с обычным для алкилирования бутиленами расходом 57 кг м . При алкилировании пропиленом удельный расход кислоты возрастает до 228 кг/м алкилата, а при алкилировании амиленами — до 114 кг1м . При фтористоводородном алкилировании, всегда включающем регенерацию отработанного катализатора, удельный расход его, независимо от характера олефинового сырья, составляет 0,7—1,4 кг/м алкилата. Кроме того, при алкилировании пропиленом требуется более концентрированная серная кислота, чем при работе на бутиленах. [c.176]

    Для удаления из полимеризата непро-реагировав1Ш1х мономеров и с целью уменьшения энергетических затрат при дегазации полимеризат подвергается концентрированию в работающих в периодическом режиме концентраторах Ь-Ь (рис. 70), снабженных скребковыми мешалками и рубашками для подачи греющего пар<1. Сконцентррфованный полимеризат сливается в сборники З1-З3, откуда насосами 8, 9 и 10 подается на заправку стабилизатором в интенсивный смеситель 11. Углеводороды, отгоняемые из концентраторов Ь-Ь, отделяются от жидкости в сепараторах 21-2з, подаются в конденсаторы 4 и 5, охлаждаемые водой и пропиленом, разделя-Ю1 ся в сборнике-отделителе 6. Нескондешж- [c.100]

    Для первичных спиртов реализуется, вероятно, иной механизм дегицратации в концентрированной серной кислоте. Первичные спирты подвергаются дегидратации в гораздо более жестких условиях по сравнению со вторичными и третичными спиртами. Пропанол-1 дает пропилен при нагревании с 96%-й серной кислотой при 170-190 С, в этих же условиях из этанола получается этилен  [c.262]

    Кривая зависимости ОЧММ дебутанизированного алкилбензина, полученного из фракции С4, от концентрации Н2804 имеет четко выраженный максимум при концентрации 95-96 %. При С-алкилировании пропиленом лучше использовать более концентрированную — 100-101 %-ную кислоту. Разбавление Н2804 водой более интенсивно снижает активность катализатора, чем высокомолекулярными соединениями. В этой связи рекомендуется тщательно осушать сырье и циркулирующие в системе углеводороды. [c.253]

    Полшропшен по сравнению с полиэтиленом более прочен (табл. 8.4). Он может длительно работать под нагрузкой при 100°С. Температура размягчения 160-170 °С, морозостойкость (—30 —35) °С. Пропилен обладает высокой стойкостью в кислотах (в П2804 — до 96 %, в концентрированной НКОз), в органических растворителях, ароматических углеводородах, минеральных и растительных маслах. Он неустойчив в олеуме, хлорсульфоновой кислоте, дымящей азотной кислоте и бромной воде. [c.244]

    Пропилен может быть также получен следующим образом 100 г н. пропилового спирта, 25 мл концентрированной серной кислоты и 60 г сульфата алюминия А12(804)з8Н20 нагревают в колбе до начала выделения газа. Когда количество отходящего газа начинает уменьшаться, постепенно добавляют из капельной воронки еще 60 мл серной кислоты. Нагревание продолжают до тех пор, пока не прекратится выделение газа. [c.150]

    Пропилен алкилирует бензол легче, чем этилен. Эта реакция детально изучена в присутствии растворов , вернее молекулярных соединений, фтористого бора с рядом органических и неорганических веществ [75]. Установлено, что степень алкилирования и состав продуктов реакции зависят от скорости пропускания пропилена в смесь бензола и катализатора, а главное от природы того вещества, в котором растворяется ВРз. В присутствии фтористого бора, растворенного в простых и сложных эфирах, алкилирование практически не проходит. По мере увеличения кислотности растворителя повышается каталитическая активность ВРз. При применении фтористого бора в органических кислотах бензол алкилируется пропиленом тем легче, чем сильнее кислота. Наиболее активными катализаторами оказались растворы фтористого бора в концентрированной серной кислоте и феноле. Но катализатор ВРз Нг504 с течением времени теряет активность, а поэтому постепенно понижается скорость алкилирования. Катализатор ВРз + СеНвОН не теряет каталитической активности при работе и дает сложную смесь продуктов алкилирования вплоть до тетраизопронилбензола. Чистый фтористый бор мало активен как катализатор, хотя в некоторых патентах [76— 78] он рекомендуется в качестве катализатора для этой реакции. Основные продукты алкилирования — диизопронилбензолы состоят на 98% из п- и на 2% из о-диизопропилбензола. Результаты наиболее характерных опытов суммированы в табл. 53. [c.147]


Смотреть страницы где упоминается термин Пропилен концентрирование: [c.236]    [c.190]    [c.76]    [c.122]    [c.588]    [c.326]    [c.213]    [c.2256]    [c.360]    [c.488]    [c.31]    [c.362]    [c.399]    [c.83]   
Новые процессы органического синтеза (1989) -- [ c.96 , c.97 ]

Технология нефтехимического синтеза Часть 1 (1973) -- [ c.52 , c.59 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.48 ]

Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.118 ]




ПОИСК







© 2025 chem21.info Реклама на сайте