Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологическая гетерогенность

    Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии. [c.51]


    Химическая кинетика. Она изучает скорости химических реакций и их зависимости от температуры, давления, концентрации, среды, перемешивания и т. д., а также вопросы катализа гомогенных и гетерогенных химических реакций и способы, позволяющие регулировать и направлять течение различных химических процессов и выход продуктов реакции. В этом разделе физической химии рассматривается также механизм действия биологических катализаторов— ферментов. [c.6]

    Иногда такая классификация не является достаточно четкой, например, для широкого класса биологических реакций при участии ферментов. Ферменты действуют как катализаторы при получении белков и сами представляют собой вещества белковой природы коллоидального размера (10—100 ммк). Следовательно, растворы, содержащие ферменты, занимают промежуточное положение между гомогенными и гетерогенными системами. Хотя такие системы называют иногда микрогетерогенными, мы не выделяем их в отдельный класс, поскольку при рассмотрении их кинетики они трактуются, в зависимости от обстоятельств, либо как гомогенные, либо как гетерогенные. [c.22]

    Гомогенные катализаторы отличает большая, чем у гетерогенных, селективность или специфичность действия. (Все каталитические центры одинаковы и химически, и энергетически.) Наивысшая селективность присуща биологическим катализаторам. Среди них немало ферментов с абсолютной специфичностью. Так, например, фермент уреаза ускоряет гидролиз мочевины O(NH2)2, и только мочевины. Основной технологический недостаток гомогенных катализаторов — необходимость их вьщеления из конечной смеси продуктов и реагентов с неизбежными потерями катализатора. Поэтому ограниченный промышленный масштаб имеют лишь процессы гомогенного катализа кислотами и основаниями, стоимость которых невелика. [c.176]

    Поиск биологической гетерогенности. Генетики должны быть осведомлены о достижениях биомедицинских исследований тех заболеваний, которыми они интересуются. Весьма желательно включение в генетические исследования новейших биохимических и молекулярных методов. Равным образом тем, кто интересуется патофизиологией и биохимией конкретного заболевания, часто может помочь генетически ориентированное исследование данной патологии. [c.299]

    В реальных системах, особенно гетерогенно-каталитических и биологических, реагенты нередко распределены в пространстве неоднородно, что приводит к диффузии вещества. В результате может возникнуть диссипативная структура с пространственно неоднородным распределением концентраций различных химически реакционноспособных компонентов вследствие взаимодействия процесса диффузии, стремящейся привести состав системы к однородности, и локальных изменений концентраций за счет хи- [c.372]


    Поэтому использование понятия энтропии для существенно неравновесных и гетерогенных систем оправданно только по отношению к вьщеленным статистическим степеням свободы. Например, в биологических системах его можно применять только по отношению к конкретным метаболическим процессам. Пренебрежение этим обстоятельством создает причины серьезных ошибок при попытках дать чисто термодинамическую трактовку явления жизни. [c.397]

    Ионселективные электроды делятся на группы 1) стеклянные электроды 2) твердые электроды с гомогенной или гетерогенной мембраной 3) жидкостные электроды (на основе ионных ассоциатов, хелатов металлов или нейтральных лигандов) 4) газовые электроды 5) электроды для измерения активности (концентрации) биологических веществ. [c.116]

    Наиболее типичный процесс для коллоидных систем — коагуляция, т. е. слипание отдельных агрегатов под действием межмолекулярных (не химических) сил. Такие процессы, как физическая адсорбция, электрофорез и т. д., также являются физическими. При взаимодействии коагулятора (вещества, вызывающего коагуляцию) со стабилизатором (веществом, обеспечивающим агрегативную устойчивость системы), а также при получении коллоидных растворов происходят химические реакции. Таким образом, коллоидная химия, как и физическая химия, строится на основе двух наук — химии и физики — с преобладанием второй. В связи с этим коллоидную химию можно было бы переименовать в физическую химию гетерогенных высокодисперсных систем. Связь между физической и коллоидной химией вполне очевидна. При этом обе дисциплины связаны не только между собой, но и с химией неорганической, аналитической, органической, биологической, фармацевтической, а также со специальными дисциплинами. Все они пользуются физико-химическими закономерностями и физико-химическими методами для решения общих и конкретных задач. [c.5]

    Химическая кинетика. В задачи кинетики входят определение скорости реакции в гомогенной и гетерогенной среде, исследование зависимости скорости от концентрации реагирующих веществ, температуры, давления, а также влияния излучения и катализаторов. Особенно важную роль в жизнедеятельности организмов играют биологические катализаторы белковой природы (ферменты), присутствующие во всех без исключения живых клетках и обеспечивающие протекание почти всех биохимических реакций в любом организме. Конечной целью кинетических исследований является установление механизма изучаемой реакции. [c.6]

    В зависимости от фазового состояния реагентов и катализатора различают гомогенный и гетерогенный катализ. При гетерогенном катализе химическая реакция идет на границе раздела фаз, образуем 11х катализатором и реагирующими веществами. В гомогенном катализе катализаторы образуют единую фазу с реагирующими веществами. Наиболее распространенными гомогенными катализаторами являются кислоты и основания, ионы переходных металлов и их комплексы и биологические катализаторы, так называемые ферменты или энзимы. [c.142]

    Возрастающие потребности в продукции химико-фармацевтической и пищевой промышленности требует создания новых технологий синтеза биологически активных веществ. Гетерогенно-каталитическое окисление позволяет удовлетворить эти потребности наилучшим образом, благодаря простоте аппаратурного оформления и высокой экологичности по сравнению с биотехнологическим, химическим и электрохимическим. [c.67]

    Инфракрасная (ИК) спектроскопия используется в различных областях науки, и в каждой из них придается- этому термину различный смысл. Для химика-аналитика это удобный метод решения таких задач, как, например, определение пяти изомеров гексахлорциклогексана, качества парафина, смолы, полимера, эмульгатора в эмульсии для полировки, опознание страны, из которой вывезен контрабандный опиум. Физику ИК-спектроскопия представляется методом исследования энергетических уровней в полупроводниках или определения межатомных расстояний в молекулах. Она может быть также полезна и при измерении температуры пламени ракетного двигателя. Для химика-органика это метод идентификации органических соединений, позволяющий выявлять функциональные группы в молекулах и следить за ходом химических реакций. Для биолога ИК-спектроскопия - перспективный метод изучения транспорта биологически активных веществ в живой ткани, ключ к структуре многих естественных антибиотиков и путь познания строения клетки. Физикохимику метод позволяет приблизиться к пониманию механизма гетерогенного катализа и кинетики сложных реакций. Он служит дополнительным источником информации при расшифровке структуры кристаллов. В этих и многих других областях знания ИК-спектроскопия служит исследователям мощным средством изучения тайн вещества. Вероятно, справедливо будет сказать, что из всех инструментальных методов ИК-спектроскопия наиболее универсальна. [c.9]


    В зависимости от агрегатного состояния катализатора и реагирующих веществ различают катализ гомогенный и гетерогенный. Примером гомогенного катализа является реакция окисления СО (в газовой фазе в присутствии паров воды) кислородом, а также действие разнообразных ферментов в биологических процессах. Гетерогенно-каталитическими являются процессы синтеза аммиака (катализатор железо), окисления ЗОг до 80з (катализатор платина или оксид ванадия) и т.д. [c.225]

    Принципиальная схема гетерогенного реактора на твердом топливе показана на фиг. 16.1. Активная зона обычного энергетического реактора на твердом топливе содержит, например, уран-235, уран-238 или оба изотопа, проложенные надлежащим замедлителем. В активной зоне циркулирует теплоноситель, а вокруг нее находится отражатель, возвращающий нейтроны в активную зону. Отражатель окружен биологической защитой, улавливающей выделяющееся из активной зоны излучение (нейтроны, -у-лучи). В активную зону или отражатель вводят регулирующие стержни. Путем изменения их положения регулируется возникновение нейтронов в активной зоне. [c.548]

    Катализаторы могут быть гомогенными или терогенными. В случае гетерогенных катализаторов химическая реакция идет на границе раздела фаз, образуемых катализатором и реагирующими веществами. Рассмотрение гетерогенного катализа является предметом специального раздела физической химии, рассматривающего химические и физико-химические процессы на поверхности раздела фаз, и выходит за рамки настоящего курса. Гомогенные катализаторы образуют единую фазу с реагирующими веществами. Наиболее распространенными гомогенными катализаторами являются кислоты и основания, ионы переходных металлов и их комплексы, а также биологические катализаторы, так называемые ферменты, или энзимы. [c.320]

    Любую почву можно рассматривать как гетерогенную многофазную систему, состоящую из твердой (минеральный скелет , органический и биологический комноненты), жидкой (почвенный раствор) и газообразной (почвенный воздух) фаз. [c.46]

    Коллоидная химия — это физико-химия гетерогенных высокодисперсных систем и-высокомолекулярных систем. Коллоидные системы имеют чрезвычайно большое биологическое и народнохозяйственное значение. Гетерогенные высокодисперсные системы обладают агрегативной устойчивостью только в присутствии стабилизатора (ионного или молекулярного) растворы высокомолекулярных веществ являются термодинамически устойчивыми молекулярными гомогенными системами. По структуре частиц системы первого рода состоят из осколков трехмерных и двухмерных кристаллических и аморфных тел, образующих в инертной среде поверхности раздела фаз они получаются методами диспергации и конденсации-агрегации к ним относятся, например, гидрозоли металлов, металлоидов, гидроокисей и сульфидов металлов, дисперсии высокополимеров. [c.27]

    Явление распространения бегущих волн значительно раньше, чем в гетерогенных каталитических реакторах, обнаружено п полнее исследовано в таких областях, как горение и биология. Результаты, составившие базу для развития всей последующей теории процессов распространения бегущих волн , содержатся в ставших уже классическими работах Я. Б. Зельдовича [9] и А. П. Колмогорова, И. Г. Петровского, Н. С. Пискунова [10]. Б настоящее время теория волновых процессов в горении и биологии развивается пптенснвно. Довольно полный обзор, посвященный современному состоянию математической теории таких процессов, содержится в [11]. Но использовать результаты этой теории для аналогичных процессов в гетерогенных каталитических реактораг не представляется возможным, так как динамические свойства неподвижного слоя катализатора в значительной мере определяются процессами межфазного тепло- и массообме-па, большим различием теплоемкостей твердой и газовой фаз, фильтрацией реакционной смеси через слой катализатора. Перечисленные факторы в своей совокупности не находят аналога в описании биологических структур или в горении, [c.27]

    Живая система обязательно химически гетерогенна. Бессмысленно говорить о живых молекулах — отдельно взятые биологические молекулы не живут. [c.23]

    При переходе от молекулярных систем к надмолекулярным структурам живых клеток и организмов мы встречаемся со специфическими проблемами физики конденсированных сред. Биологические мембраны, сократительные системы, любые клеточные структуры имеют высоко специализированное гетерогенное строение. Во всех функциональных надмолекулярных структурах определяющую роль играют белки, взаимодействующие с другими органическими молекулами (например, с липидами в мембранах) и с различными ионами, начиная с малых ионов щелочных и щелочноземельных металлов. В гетерогенных надмолекулярных системах реализуется специальное динамическое поведение, ответственное в конечном счете за важнейшие явления жизнедеятельности. Это поведение определяется особым состоянием биологических надмолекулярных систем. Мембраны имеют жидкое или жидкокристаллическое строение, белки плавают в липидном море . Сократительные белковые системы, ответственные за превращение химической энергии (запасенной преимущественно в АТФ) в механическую работу, т. е. системы механохимические, построены из различных фибриллярных белков, взаимодействующих друг с другом. Естественно, что внутримолекулярная и молекулярная подвижность, т. е. конформацион-ные движения, играют главную роль в динамике надмолекулярных структур. В конечном счете электронно-конформационные или ионно-конформационные взаимодействия лежат в основе всей клеточной динамики. [c.611]

    В протонной ЯМР-спектроскопии многоэкспоненциальность может быть также связана с кросс-релаксацией или спиновой диффузией между протонами воды и протонами поверхности. Теория кросс-релаксации в гетерогенных системах построена в работе [591]. Анализ экспериментальных данных показывает, что этот механизм чрезвычайно важен для водных растворов полимеров и биологических объектов [576, 591]. Наиболее отчетливо важность этого механизма продемонстрирована с помощью методики двойного разонанса [592], а также путем селективного возбуждения сигналов ЯМР в узком спектральном диапазоне [593]. [c.233]

    Следует учесть, что гфиродная вода представляе собой многофазную гетерогенную систему открытого типа, обменивающуюся веществами и энергией с другими средами (водные объекты, атмосфера, донные отложения) и с се биологической составляющей. Кроме того, в природной воде присутствует множество взвешенных твердых частиц и микропу-зьфьков газов. Обычно их общее число составляет К) - 10 шт/л 29 . Помимо них толща воды пронизана микроорганизмами, о(>разующими биоту, которая находится в динамическом равновесии с внешней средой и представлена совокупностью гидробионтов Все эти факторы играют важную роль в формировании качества поверхностных вод и их способности к самоочищению. [c.125]

    Кроме гетерогенного варианта ИФА применяют и другой, основанный на различиях в каталитических свойствах ферментов в свободном виде и в связанном. Его реализуют в гомогенных условиях, т е. без отделения комгглексов АГ-АТ Отсутствие этой стадии существенно сокращает время проведения анализа (до нескольких минут). Данное обстоятельство стимулировало разработку автоматизированных систем для иммунохимического определения различных биологически активных веществ, в том числе и токсикантов. В таких устройствах гфименяют либо визуальное наблюдение за изменением окраски раствора, либо спектрофотометрическое детектирование. [c.300]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    Среди органических загрязнителей сточных вод достаточно рао-пространгнным является формальдегид, особенно опасный для мик-роорганис в биологических очистных сооружений, В основе предложенного 1. редрой общей химии МГУ им, М,В,Ломоносова метода очистки 1ЫХ вод от формальдегида - гетерогенно-каталитическая истема Р1 - - НСОН. Реакции протекают по схеме 2Н,0 + 0 1 [c.102]

    Показательным примером такой системы является гетерогенно-каталитическая система —Н2О2—СН2О, лежащая в основе одного из методов очистки сточных вод от формальдегида — распространенного загрязнителя сточных вод, особенно опасного для микроорганизмов биологических очистных сооружений. Метод позволяет проводить эффективную очистку формальдегидсодержащих сточных вод с высоким процентом конверсии и с достаточно большой селективностью по СО2, что подтверждается данными, приведенными в табл. 20.1. [c.621]

    Вопрос о различии и сходстве гетерогенных неорганических и гетерогенных биологических катализаторов имеет принципиальное значение, так как именно здесь наиболее типично выражена, с одной стороны, обычная валентная ,а с другой — особая энергетическая форма катализа. Энергетическая природа активации проявляется в зависимости абсолютной активности катализаторов, т. е. числа превращающихся молекул субстрата на одну активную группу в 1 с, от теплового эффекта реакции Рреак (рис. 19). Линейная зависимость между логарифмом абсолютной активности и тепловым эффектом реакции отвечает показательной функции между степенью активации и тепловым эффектом реакции, причем эти функции приобретают вид для ферментов  [c.117]

    Анализ родословных чрезвычайно полезен для установления типа наследования специфического состояния, однако не дает никакой информации об ассоциированном с данным заболеванием гене, о биологической основе нарушения или — в случае аутосомного заболевания — о хромосомной локализации гена. Более того, не всегда можно определить, является ли заболевание наследственным. Во-первых, не у всех лиц, несущих дефектный ген, про5шляются симптомы заболевания (неполная пе-нетрантность). Во-вторых, симптомы (фенотип) могут варьировать от слабых до ярко выраженных (варьирующая экспрессивность). В-третьих, один и тот же фенотип может обусловливаться дефектами в совершенно разньгх генах (генетическая гетерогенность). В-четвертых, в некоторых случаях альтернативные формы (аллели) одного гена могут приводить к разным фенотипам. В-пятых, из-за небольшого размера семей со случаями исследуемого заболевания приходится собирать данные о большом числе родословньгх, чтобы сделать вывод о природе этого заболевания. [c.442]

    Традиционные курсы по органической, неорганической, физической, анаггитиче-ской и биологической химии сохраняются на первоначальной стадии образования в течение первых 4 семестров (базовое образование), но д.ггя старгыих курсах читаются объединенные курсы, включающие указанные "химические" предметы вместе с металлоорганической химией, химией координационных соединений, коллоидную химию и гетерогенные и гетерофазные процессы. [c.78]

    Современные гетерогенные топлива (табл. 167) образуют большое я разнообразное семейство. Размеры зарядов изменяются от маленьких, применяемых в газогенераторах, до очень больших, используемых в стартовых двигателях межконтинентальных баллистических ракет. Малые гранулы можно получать путем формования под давлением, экструзии или разливки, а большие заряды получают литьем. Гранулы могут быть загружены в патроны или же уложены в ящики (литье на месте). В общем случае гетерогенное топливо представляет собой твердый окислитель и твердое горючее, помещенные в полимерное связующее. Твердые вещества составляют до 88 % массы такого топлива. В качестве связующих могут использоваться линейные полимеры (например, поливинилхлорид или ацетат целлюлозы) или сшитые каучуки (уретанм и полибутадиены, вулканизированные на месте). Могут присутствовать также другие добавки, изменяющие баллистические механические свойства, температуру пламени или позволяющие добиться некоторых специальных эффектов. Все гетерогенные топлива содержат стабилизаторы и антиоксиданты или другие вещества, ингибирующие биологическое разрущение. Подобно двухкомпонентным топливам, композиты поглощают воду до установления равновесия. Первый — обратимый — эффект, связанный с поглощением воды, состоит в ухудшении механических свойств материала. Последующие — вымывание, а затем и гидролиз, коррозия, разложение и окисление ингредиентов — приводят к необратимым изменениям. [c.495]

    Термодинамика и кинетика окислит.-восстановит. р-ций, в к-рых участвуют биологически активные соед, изучаются вольтамперометрич. методами с использованием капающего (обычно ртутного) или стационарного электрода. Эти методы позволяют определить число электронов, вовлеченных в р-цию при каждом значении потенциала, а также обнаружить неустойчивые промежут. соединения, в т.ч. короткоживущие радикалы, к-рые не удается зарегистрировать методом ЭПР. Электрохим. методы имеют широкую область применения и позволяют изучать тонкости механизма р-ций. Они пригодны для проведения уникальных синтезов и решения сложных аналит. задач, т. к. чувствительность импульсной полярографии позволяет, напр., обнаружить 10 М электрохимически активного в-ва. Возможность применения электрохим. методов для решения упомянутых проблем основана на сходстве электрохим. и биол. окислит.-восстановит. р-ций оба типа являются гетерогенными (первые осуществляются на пов-сти электрода, вторые-на границе фермент-р-р), идут в одном интервале pH и в р-рах той же ионной силы, протекают в неводных средах и в одинаковом интервале т-р, включают стадию ориентации субстрата. Электрохим. методы позволяют получать информацию об окислит.-восстановит. потенциалах, числе электронов, механизме р-ций с участием азотсодержащих гетероциклич. соед. (пурины, пиримидины, порфирины и т. п.). Емкостные измерения дают важные сведения об адсорбционных св-вах низкомол. и высокомол. биологически активных соед. (нуклеотиды, белки, нуклеиновые к-ты). [c.292]

    Трансгенные животные как продуценты ценных биологически активных белков и гормонов имеют ряд преимуществ перед микроорганизмами и клеточными системами. Важно, что новые белки, получаемые в линиях клеток трансгенных животных, могут бьггь модифицированы, их активность сравнима с активностью протеинов. Для молочного производства представляет большой рштерес получение целенаправленной трансгенной экспрессии в эпителиальные клетки молочной железы с целью выхода белков с молоком. Один из основных этапов получения трансгенных животных, продуцирующих гетерогенный белок с молоком, — идентификация промотора, направляющего экспрессию структурных генов в секреторный эпителий молочной железы. [c.131]

    Терашима с сотрудниками на основании исследований, проведенных в последнем десятилетии, приходит к заключению, что протолигнин в древесине нельзя считать полностью хаотическим полимером - результатом случайной сополимеризации смеси различных монолигнолов. Лигнин образуется в присутствии и с участием полисахаридов в биологически регулируемом процессе, тесно связанном с ходом формирования ультраструктуры лигнифицированной клеточной стенки в целом. Неизбежное следствие такого протекания процессов отложения слоев клеточной стенки и их одревеснения - гетерогенность лигнина в древесине. В хвойных деревьях различаются по составу лигнины срединной пластинки и вторичной стенки, а в лиственных деревьях существуют дополнительно различия между лигнинами волокон и сосудов. Следует подчеркнуть, что образованию лигнина предшествует отложение полисахаридов - целлюлозы в виде микрофибрилл, пектиновых веществ и гемицеллюлоз разного типа для каждой стадии отложения лигнина. [c.402]

    Можно не согласиться и с тем, что автор вычленяет хмноны в особую группу природных пигментов, отрывая их от исходных фенольных соединений (гидрохинонов), хотя он сам признает большую гетерогенность представителей этой группы, их малое участие в окраске наружных покровов или тканей и отсутствие общей биологической функции. [c.6]

    Однако биологические молекулы не могли бы функциониро вать и жизнь в известных нам формах не существовала бы, если бы помимо сильных взаимодействий внутри биологических молекул и между ними не действовали бы невалентные, нехимические, слабые силы. Клетки п их органоиды — гетерогенные системы, существование и функционирование которых определяются межмолекулярными взаимодействиями невалентного характера. Исполнители почти всех молекулярных функций в клетках — белки — взаимодействуют с липидами и углеводами, с нуклеиновыми кислотами и с малыми молекулами. Взаимодействия эти преимущественно слабые, так как сильные взаимодействия создавали бы слишком жесткие и устойчивые структуры, лишенные молекулярной подвижности, необходимой для выполнения <5пологическими молекулами их разнообразных задач, включающих тонкую регуляцию химических реакции, компартментацию, установление градиентов концентрации. Перечислим виды сла-<5ых взаимодействий в биологических системах и охарактеризуем их. [c.55]


Библиография для Биологическая гетерогенность: [c.198]   
Смотреть страницы где упоминается термин Биологическая гетерогенность: [c.107]    [c.3]    [c.255]    [c.200]    [c.569]    [c.46]    [c.241]   
Генетика человека Т.3 (1990) -- [ c.299 ]




ПОИСК







© 2025 chem21.info Реклама на сайте