Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агент разделяющий

    По одному из них дифенилолпропан суспендируют в воде и нейтрализуют раствором щелочного агента. Отфильтрованный и нейтрализованный продукт, содержащий около 40%. воды и немного фенола, растворяют в органическом растворителе при перемешивании и нагревании с обратным холодильником. Затем мешалку останавливают и, не снижая температуры, разделяют массу на два слоя водный, содержащий фенол и неорганическую соль, полученную при нейтрализации, и органический, содержащий дифенилолпропан и побочные продукты. Из органического слоя при охлаждении выделяются кристаллы дифенилолпропана, которые отделяют на центрифуге и промывают чистым растворителем. [c.112]


    В качестве вытесняющего агента, увеличивающего нефтеотдачу, применяют карбонизированную воду-водный раствор углекислого газа. Углекислый газ хорошо растворяется в нефти. При растворении СО2 в воде и в нефти уменьшается поверхностное натяжение на границе раздела фаз. За счет этого снижается остаточная нефтенасыщенность и увеличивается коэффициент вытеснения. Растворение СО2 в воде увеличивает ее вязкость, растворение СО2 в нефти снижает вязкость нефти и увеличивает фазовую проницаемость. Этим достигается контроль за подвижностью фаз и, тем самым, увеличение коэффициента охвата. [c.302]

    Различают два вида конденсации 1) поверхностную (или просто конденсацию), при которой конденсирующиеся пары и охлаждающий агент разделены стенкой и конденсация паров происходит на внутренней или внешней поверхности холодной стенки 2) конденсацию смешением, при которой конденсирующиеся пары непосредственно соприкасаются с охлаждающим агентом. [c.162]

    Смесь паров сжимается компрессором высокой ступени (точка 4), перегретые пары охлаждаются (точка 5) и переходят в жидкое состояние в конденсаторе (точка 6). Затем жидкий холодильный агент переохлаждается (точка 7) и дросселируется до давления и температуры <01 (точка 5). Проходя через промежуточный сосуд, жидкий холодильный агент разделяется на два потока в испаритель промежуточного давления и через регулирующий вентиль (точки 9—10) в испаритель низкого давления. Образовавшиеся из этих потоков пары засасываются затем соответственно компрессором низкой и высокой ступени. [c.45]

    Седьмая группа, йод образует пентафторид и гептафторид, оба они летучи первый кипит при 97°, а второй — при 4°. Другие галоиды образуют фториды, которые обычно применяются в качестве фторирующих агентов (раздел 15.3.1). [c.190]

    Перегонка при различных давлениях. Выше уже указывалось па изменение состава азеотропной смеси под влиянием изменения давления, под которым производится перегонка. В некоторых случаях этот принцип может быть использован для выделения разделяющего агента из гомогенной азеотропной смеси. Иа рис. 22 приведена идеализированная схема на трех последовательно соединенных колонн, иллюстрирующая этот метод. Смесь, содержащая по 50 частей компонентов А и В, разделяется путем непрерывной перегонки с добавлением 50 частей разделяющего агента Е. Чистый компонент В отбирается со дна колонны К-1, работающей при давлении Р . Азеотропная смесь из колонны К-1 содержит по 50 частей А и Е. Эта смесь перегоняется в колонне К-2 при давлении Р , где получается азеотропная смесь, содержащая 80% А и 20% Е. Эти величины, отнесенные к исходным продуктам, соответствуют 50 частям А и 12,5 частям Е. Со дна колонны К-2 отбираются 37,5 частей Е, которые поступают обратно в колонну К-1. Азеотропная смесь, выходящая из колонны К-2, поступает в колонну Я-<3, работающую при давлении Рд, где получаемая азеотропная смесь имеет тот же состав, что и азеотропная смесь из колонны К-1. По отношению к исходным продуктам эта смесь содержит 12,5 частей А и 12,5 частей Е. Она вводится обратно в виде сырья в колонну К-2. Са дна колонны К-3 отбираются 37,5 частей чистого компонента А. Берг с соавторами [5] описали подобный процесс с применением двух колонн, предназначенный для восстановления изобутанола из азеотропной смеси изобутанола с этилбензолом, образующейся при очистке стирола. [c.126]


    Вторым обязательным компонентом лакокрасочного материала является окрашивающий агент, т. е. вещество, придающее покрытию заданный цвет. Окрашивающие агенты разделяют на две группы — красители и пигменты. [c.20]

    Области расслоения. По характеру растворимости с маслами холодильные агенты разделяют на нерастворимые (растворимостью можно пренебречь), с ограниченной растворимостью и неограниченной растворимостью. [c.227]

    В задачу настоящего раздела не входит изложение теории образования азеотропов, классификации жидкостей, с точки зрения формирования молекулярных связей, методов предсказания отклонений растворов от идеальности или избирательных свойств добавляемых агентов, механизма изменения относительной летучести об этом можно прочесть в специальной литературе, посвященной данным вопросам. [c.328]

    В первой колонне исходное бинарное сырье L разделяется на остаток представляющий практически чистый компонент а, и азеотроп Е, отводимый в качестве дистиллята. К азеотропу Е прибавляется остаток S третьей колонны, представляющий тройную смесь компонентов а и и и разделительного агента Ъ, не образующего азеотропов с исходными компонентами. Смесь = = Е S поступает на разделение во вторую колонну, снизу которой отводится остаток R , представляющий практически чистый компонент w, а сверху — дистиллят Ь , являющийся тройной смесью компонентов а, w тл Ъ. Поток Zg направляется на ректификацию в третью колонну, где и разделяется на дистиллят D, близкий по составу к практически чистому компоненту а, и остаток iS , направляемый на смешение с дистиллятом первой колонны. Таким образом, на установке имеется два потока R и D практически чистого компонента а и один поток Л 2, представляющий практически чистый компонент iv. [c.333]

    Исходное бинарное сырье Ь разделяется в первой колонне на остаток В у, представляющий практически чистый компонент IV, и гомоазеотроп Е, отводимый в качестве верхнего продукта. Если к Е прибавить тройную смесь 5 компонентов а, и и разделительного агента Ь, частично растворимого с ю, а образовавшуюся смесь 1 направить во вторую колонну, то из ее низа будет отходить остаток Л 2, представляющий практически чистый компонент а, сверху же получим гетероазеотропную смесь М, которая после конденсации и охлаждения расслаивается на продуктовую фазу О, богатую компонентом ш, и фазу <5, которая идет на смешение с азеотропом Е для образования сырья второй колонны. [c.334]

    Некоторые соединения, /упоминавшиеся в предыдущих разделах настоящей главы, являются также эффективными противоизносными агентами. К ним в первую очередь следует отнести дитиофосфаты цинка, широко применяемые в моторных маслах. В частности присадки этого типа (диалкилдитиофосфаты) являются радикальным средством предохранения деталей привода клапанов V-образных бензиновых автомобильных двигателей от задира, питтинга и интенсивного износа [Зб]. [c.165]

    При проектировании и монтаже оборудования и трубопроводов для процессов нитрования большое внимание должно уделяться разработке мер, полностью исключающих возможность контакта нитрующего агента с органическими веществами и образования застойных зон в аппаратах и трубопроводах. Необходимо разделять воздушки сборников и аппаратов с нитруемыми и нитрующими веществами, а также оснащать емкости для нитрующих продуктов средствами противоаварийной защиты предохранительными разрывными мембранами и блокировочными устройствами, обеспечивающими прекращение заполнения емкостей и быстрое удаление находящихся в них продуктов. [c.363]

    Выбор разделяющего агента. Азеотропная перегонка может основываться на разделении азеотропных смесей, имеющихся в углеводородных фракциях, получаемых обычным путем, иля она может состоять в образовании азеотропных смесей, чтобы облегчить разделение таких систем, которые обычно трудно разделить. В течение второй мировой войны было разработано несколько вариантов азеотропной перегонки второго типа некоторые из них используются в промышленности и в настоящее время. [c.124]

    Разделение жидких фаз. Простейшим и обычно наиболее экономичным способом регенерации разделяюш.его агента является разделе ше азеотропной смеси конденсацией или охла- - - [c.125]

    У обычных бензиновых углеводородов, например, у изооктана и нормального гептана, реакция происходит при низкой температуре, предпламенное состояние можно разделить на две стадии, во время которых образуются перекиси, а затем создаются соединения, индуцирующие детонацию. Между тем, соединения, подобные метану или бензолу, не подвергаются низкотемпературному окислению этого типа. Различные суждения существуют по вопросу о том, влияет ли и в какой степени на низкотемпературное окисление тетраэтилсвинец. Имеется немало веских доказательств в пользу того, что активный агент — коллоидный туман РЬО последняя благодаря контакту между поверхностями разрушает цепи, которые в противном случае вызвали бы вторичное окисление альдегидов таким образом, ТЭС влияет только на вторую стадию окисления [125, 182]. Во всяком случае совершенно очевидно, что он замедляет начало конечной стадии самоокисления. [c.412]


    Высаливание разделяющего агента. В некоторых случаях азеотропную смесь можно разделить на две жидкие фазы, добавляя внешнее вещество [c.126]

    Смесь альдегидов нагревается до 50° С в подогревателе и поступает в колонну, где в качестве верхнего продукта выделяется основное количество растворенных углеводородов и некоторое количество альдегидов. Верхний продукт поступает сначала в конденсатор, затем в сепаратор, где отделяется около 40% увлеченных альдегидов. Газ, содержащий остальное количество увлеченных альдегидов, поступает в абсорбционно-отпарную колонну, где улавливаются альдегиды. Абсорбентом в колонне 2 служат кубовые остатки, выделяемые в колонне 3. Стабильные продукты из колонны 1, сепаратора 1 и колонны 2 поступают в колонну 3 для отделения кубовых остатков — продуктов уплотнения, содержащих альдегиды Сд, ацетали, сложные эфиры и высококипящие углеводороды. Отпаренный альдегидный продукт конденсируется, охлаждается и отводится в промежуточную емкость. Часть альдегидного продукта подается на орошение колонны 3. Нижний продукт частично подается на орошение колонны 2, а избыточное его количество может быть переработано путем гидрирования. Из промежуточной емкости альдегиды вместе с водой, являющейся разделяющим агентом, подаются на колонну 4, где разделяются масляные альдегиды. Для разделения альдегидов могут использоваться или тарельчатые, или насадочные колонны. Сверху колонны отбирается изомасляный альдегид, который конденсируется, охлаждается и подается на дальнейшее использование (например, на гидрирование с целью получения изобутанола). Нижний продукт, содержащий н-масляный альдегид [c.129]

    Если кислород (окисляющий агент) разбавлен азотом (при окислении воздухом), то стоимость разделения продуктов реакции увеличивается. Поэтому обычно применяют чистый кислород, смешанный с водяным паром при этом продукты реакции легко разделяются после конденсации паров воды. [c.134]

    В системах жидкость — твердые частицы фиксация начала псевдоожижения не представляет серьезных затруднений, и если такая система уже переведена в псевдоожиженное состояние, она обычно является однородной (подробнее эти системы будут рассмотрены в разделе III). При псевдоожижении газом наблюдается резкое различив в поведении различных зернистых материалов некоторые из них легко переходят в псевдоожиженное состояние, другие же совершенно не способны к псевдоожижению. Образованию хорошо псевдоожиженных систем благоприятствуют, в общем, следующие свойства твердых частиц и ожижающего агента  [c.42]

    Разумеется, такая поверхность существует в области ir > Tj только при aj >1. Следовательно, когда > Wq, то существует сферическая поверхность, концентричная с пузырем, на которой отсутствует радиальная компонента скорости ожижающего агента и которая поэтому является поверхностью раздела между ожижающим агентом внутри этой сферы (последняя рассматривается как облако , связанное с пузырем) и в остальном слое потоки ожижающих агентов в этих двух областях не смешиваются. На рис. III-5, а представлены типичные линии тока твердых частиц и ожижающего агента, показывающие, Что облако образуется тороидальным вихревым потоком циркулирующего газа, связанного с пузырем. Из уравнения (111,62) следует, что если а оо. Значит, йри быстром движе- [c.98]

    Для решения уравнений (V,40) и (V,41) необходимо найти зависимость между 1 з/р и ц. вдоль границы раздела ОН. В общем виде pfp = + фр [где 1)3 — функция тока движущихся твердых частиц (уравнение V,6), а определяет движение ожижающего агента относительно твердых частиц]. Тогда граница раздела является линией тока твердых частиц, и вдоль ОН очевидно i 3p = 0. На поверхности раздела давление постоянно Pf = = 0), поэтому вдоль он имеем iji p = и Ф = ф. [c.207]

    Остается еще вопрос о правомерности расчета коэффициента теплообмена между твердыми частицами и ожижающим агентом с помощью Кар. Я думаю, что такой пересчет допустим, хотя здесь возможны те же основные возражения, что и в случае пересчета Ка 1 в (см. предыдущий раздел). Так, если результаты опытов по теплообмену пересчитать на основе приведенных выше положений, то они будут вполне соответствовать выражению (IX,18) — с разбросом в пределах 20% (авторы цитируемой [c.393]

    В разделе В было показано, что для описания зависимости /г = / (и) в широком диапазоне скоростей ожижающего агента достаточно располагать одной точкой, предпочтительнее — с координатами С/ор1, Атах- Ниже приведены некоторые формулы, рекомендуемые для ориентировочного расчета этих величин. [c.447]

    Для раздельного анализа трех стадий массопереноса в псевдоожиженных системах массообмен между стенкой и слоем (раздел I), а также между твердыми частицами и ожижающим агентом (раздел II), следует рассматривать в отсутствие сегрегации фаз (т. е. газовых пузырей). Это можно осуществить кепериментально, так как для развития газовых пузырей необходима некоторая конечная высота слоя. В жидкостных псевдоожиженных системах дискретная фаза (пузыри) образуются на высоте , превышающей 0,5—1м при газовом псевдоожижении пузыри заметных размеров ( с1р) присутствуют уже на высоте 0,2 м. Таким образом, данные по масообмену могут быть получены как в отсутствие пузырей (однородное псевдоожижение), так и а тех случаях, когда дискретная фаза оказывает влияние на скорость массопереноса (неоднородное псевдоожижение). В разделах I и II мы будем рассматривать только однородные псевдоожиженные системы неоднородные будут основной темой последующих разделов. [c.377]

    Самое страшное и непостижимое в проблеме рака — это то, что нормальные клетки в ответ на тысячи разнообразных воздействий химическо-кого, физического или физиологического характера и часто даже без очевидных причин изменяются всегда одинаковым образом они вырождаются в раковые клетки. Их обмен веп еств, рост и размножение растормаживаются, выходят из-под контроля. Превратившись в опухолевые, эти клетки заглушают нормальные и в конце концов приводят к смерти организма. Мы еще не знаем точно, в чем заключается это растормаживание . Нам лишь ясно, что оно обусловлено разными причинами изменением генетической информации, т. е. мутацией (например, вследствие радиоактивного облучения), а также нарушением нормальной регуляции обмена веществ в цитоплазме и многим другим. Все это здесь мы обсуждать не можем. Зададимся другим вопросом независимо от того, как возникли раковые клетки, вызывают ли они со стороны организма реакцию, подобную той, которую вызывают чужеродные агенты Разделяет ли организм их на свои и не свои Считает ли он их опасными  [c.367]

    Редкоземельные металлы вместе с 5с, и Ас составляют 18% всех элементов периодической таблицы. Эффективного метода разделения этих элементов вплоть до разработки хроматографии практически не существовало. Первые успешные работы по разделению этой группы металлов были проведены во время второй мировой войны [44, 45], и эти работы являются одними из лучших примеров того, как можно, используя подходящий комплексообразующий агент, разделить эти металлы на ионообменнике. В дальнейшем были разработаны многочисленные методики колоночной хроматографии, включая ВЭЖХ [46, 47], тонкослойной хроматографии (рис. 14.28) [48, 49], электрофореза на бумаге (рис. 14.29) [50] и изотахофореза (рис. 14.30) [51]. [c.334]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    Так удается разделить положительный гомоазеотроп этанол — вода на практически чистые компоненты благодаря удачному выбору разделительного агента, образующего с компонентами сырья тройной гетероа зеотроп. Расслоение его в отстойнике позволяет без большой затраты энергии вернуть главную часть разделительного агента в первую колонну. [c.337]

    Для эмульсий характерна больщая удельная поверхность раздела фаз. Поэтому любое уменьшение межфазного поверхностного натяжения должно снижать стремление системы к коалесценции и увеличивать ее стабильность. И, наоборот, удаление из смеси эмульгирующих агентов сокращает продолжительность существования эмульсии. Роль эмульгирующего агента показана в табл. 4.1 [210]. [c.193]

    В условиях граничной смазки многие присадки и смазочные материалы обладают противоизносным действием только на воздухе (в присутствии кислорода), в то время как в вакууме они не лроявляют эффективности даже при умеренных режимах трения. Это, очевидно, связано с тем, что кислород сам выступает в роли достаточно эффективного противоизносного агента. Кроме того, в его присутствии инициируются процессы на границе раздела металл — смазочная среда, способствующие снижению износа. С учетом рассмотренных выще факторов, влияющих на противоизносные свойства, предложены схемы действия различных типов соединений. [c.262]

    Процесс состоял из первичного разделения в колонне для азеотропной перегонки, регенерации аммиака в специальной установке, удаления диацетилена при помощи специальной системы и окончательного отделения бутадиена в перегонном кубе. Очищенный бутадиен получался в колонне для азеотропной перегонки в виде остатков с примесью небольшого Количества гомологов ацетилена. Другие углеводороды отгонялись в виде йзео-тропных смесей с аммиаком. При охлаждении погон азеотропной перегонки разделялся на две жидкие фазы, после чего фаза с большим содержанием аммиака поступала в виде орошения обратно в Колонну. Углеводородная фаза повторно перегонялась для получения оставшегося в ней аммиака. Если в исходном продукте находились пропаны, то при использовании этого метода восстановления разделяющего агента возникали трудности из-за высокой упругости пара пропанов. Другой метод восстановления разделяющего агента заключается в промывке отогнанного продукта водой. [c.133]

    В описанном промышленном процессе [110] осуществляется прямое присоединение толуола к хлорсульфоновой кислоте при перемешивании. В процессе используется около 3,2 молей хлорсульфоновой кислоты на 1 моль толуола вместо 2 молей, требуемых по теории. Это согласуется с развитыми выше положениями о второй стадии, что дпя установления равновесия реакции необходимо применять избыток кислоты, чтобы довести реакцию до конца и обеспечить хороший выход. Надо также отметить, что этот процесс дает при —5°около 40 % желательного изомера и в общем соответствует зависимости выхода изомеров от температуры, изложенной в предыдущем разделе, а именно что при более низких температурах повышается выход о-изомера. Голлеман и Коленд [52] суммировали сравнительные выходы изомеров, образовавшихся при использовании двух сульфирующих агентов при 35°. Эти данные приведены в табл. 8. [c.532]

    Mi.r детально разберем некоторые процессы второго частною случая этого раздела технологии нефтепереработки — процессы каталитического облаго-раиа1вапия бензинов термического крекинга и риф )])мннга с применением типичных гетерогенных катализаторов в таких условиях контакта катализатора и паров бензина, при которых исключается участие третьего заведомо введенного агента, например водорода, что наблюдаете,я при каталитическом гидрировании бензина либо в процессе ароматизации или гидроформинга. [c.74]

    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    Для понимания механизма очень важным является тот факт, что очень активные алкилирующие агенты (например, бензилхлорид) реагируют с фенилацетонитрилом даже в отсутствие катализатора, хотя реакция идет и намного медленнее, чем в условиях МФК. При повышенных температурах (80 С) алкилиодиды также реагируют довольно быстро без катализаторов [298]. Эти наблюдения, как и результаты конкурентного алкилирования, указывают на важную роль поверхности раздела фаз при алкилировании [298]. Работы по эиантиоселективному алкилированию фенилацетонитрилов с хиральными катализаторами рассмотрены в разд. 3.1.5. Применение фенилацетонитрилов для нуклеофильного ароматического замещения описано в разд. 3.17. [c.181]

    Для типичного катализатора из окиси кремния или для песка диаметр пузыря должен превшпать 500 мм, чтобы из нисходящего потока увлекались частицы размером до 80 мни. С другой стороны, при псевдоожижении песка водой пузыри размером 6—7 им могут увлекать частицы диаметром до 580 в км. Таким образом, в первом (воздух) случае пузыри абсолютно неизбежны, тогда как во втором (вода) они будут незаметны. Одаако при псевдоожижении водой свинцовой дроби диаметром около 3 мм возможно образование пузырей до 180 им, прежде чем будет достигнута скорость увлечения частиц, и такие пузыри будут легко различимы. Заметим, что эти данные находятся в хорошем соответствии с качественными наблюдениями, описанными во введении к данному разделу главы. Во всяком случае, можно еще раз убедиться, что режимы движения ожижающего агента, масс твердого материала и отдельных частиц легко определяются на основе известных фундаментальных законов гидродинамики. [c.33]

    Были сделаны попытки найти теоретическую зависимость порозности от скорости ожижаюш его агента либо на основании приближенных математических моделей, либо по экспериментальным данным для потоков, обтекаюш их неподвижные частицы Полученные результаты представляют ограниченную ценность в аспекте сопоставления свойств неподвижного и псевдоожиженного слоев. Модифицированный метод расчета описан в разделе П1,Г. [c.63]

    Рассматриваемый вопрос полезно обсудить в количественном аспекте. С этой целью мы сравним высоты единицы переноса от дискретной к непрерывной фазе (BEHj) и от ожижающего агента к твердой частице (ВЕП) при высоких значениях UdN. Обмен между фазами рассмотрен в следующем разделе III (табл. IX-2 и IX-3), где показано [c.391]


Смотреть страницы где упоминается термин Агент разделяющий: [c.376]    [c.176]    [c.10]    [c.46]    [c.376]    [c.267]    [c.125]    [c.185]    [c.197]    [c.206]    [c.403]   
Многокомпонентная ректификация (1983) -- [ c.203 , c.204 , c.210 , c.236 ]

Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.185 ]




ПОИСК







© 2025 chem21.info Реклама на сайте