Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы карбамида с парафиновыми углеводородами

    Промежуточное положение между процессами хемосорбции и разделением с помощью чисто адсорбционных сил занимают методы, основанные на образовании некоторыми веществами непрочных соединений (комплексов, аддуктов), которые характеризуются строго определенной кристаллической структурой. Наиболее характерный пример таких методов — выделение парафиновых углеводородов нормального строения с числом атомов углерода выше 6—7, а также их некоторых производных путем образования аддуктов с карбамидом (мочевиной) O(NH2)2. [c.314]


    Каждый из полученных комплексов индивидуальных парафиновых углеводородов С16—С24 нормального строения характеризуется определенной, резко выраженной температурой разложения, значение которой увеличивается с повышением молекулярного веса углеводорода, образующего комплекс с карбамидом. Смеси парафинов неразветвленной и малоразветвленной структуры близких молекулярных весов образуют с карбамидом кристаллические комплексы, температура разложения которых отвечает среднему значению температур разложения комплексов индивидуальных углеводородов, входящих в состав исходной углеводородной смеси. [c.68]

    Процесс основан на способности карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения с числом углеродных атомов не менее шести. [c.323]

Рис. 79. Зависимость константы равновесия от температуры для комплексов карбамида с нормальными парафиновыми углеводородами Рис. 79. <a href="/info/666659">Зависимость константы равновесия</a> от температуры для <a href="/info/27287">комплексов карбамида</a> с <a href="/info/405103">нормальными парафиновыми</a> углеводородами
    На рис. 81 приведена область стабильности комплексов нормальных парафиновых углеводородов в водных растворах карбамида. Верхняя пунктирная линия представляет собой кривую насыщения, выражающую растворимость карбамида в воде. Комплекс в контакте с водным раствором карбамида стабилен тогда, когда концентрация карбамида превышает определенное значение концентрации разложения . Область стабильности находится между кривой насыщения и кривой разложения. Эти две кривые пересекаются при температуре разложения, для которой /( = 1. Выше этой температуры комплекса не существует. [c.224]

Рис. Х1У-2. Область стабильности комплексов нормальных парафиновых углеводородов с карбамидом (----кривая Рис. Х1У-2. <a href="/info/224209">Область стабильности</a> комплексов <a href="/info/405103">нормальных парафиновых углеводородов</a> с карбамидом (----кривая

    На рис. Х1У-2 очерчена область стабильности комплексов нормальных парафиновых углеводородов в водных растворах карбамида [446]. Пунктиром проведена кривая насыщения, показывающая растворимость карбамида в воде. Комплексы, контактирующие [c.309]

    В последние годы получила распространение депарафинизация масел карбамидом (мочевиной) без применения холода, т. е. нри 25—30° С. Этот метод основан на свойстве карбамида образовывать комплексы с парафиновыми углеводородами. Для депарафинизации могут применяться растворы карбамида в воде, спиртах и кетонах, а также сухой карбамид. Процесс депарафинизации в этом случае слагается из следующих операций обработки масла карбамидом, отделения образовавшихся комплексов от масляных углеводородов, разложения комплексов и регенерации карбамида и растворителей. [c.76]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    С увеличением числа атомов углерода в молекуле н-парафина повышается мольное соотношение карбамида и углеводорода в комплексе. Равновесие карбамида с парафиновыми углеводородами и другими соединениями, имеющими в молекуле длинные парафиновые цепи, изучалось в работах [4] и других [16, 17, 24— 26]. Равновесное состояние определяли по концентрации комплексообразующих углеводородов в углеводородной фазе или по содержанию карбамида в его водном растворе после завершения комплексообразования. Ниже приведены значения константы равновесия К для ряда н-парафинов при 25 °С <[5, 10]  [c.199]

    Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]

    Из раствора двух или более парафиновых углеводородов в инертном растворителе образуется комплекс, представляющий собой единый твердый раствор всех комплексообразующих углеводородов [5]. Равновесное состояние определяется суммарной концентрацией нормальных парафинов. В смеси углеводородов, образовавших комплекс, преимущественно содержатся компоненты с меньшими константами равновесия. Температура разложения комплекса смеси двух комплексообразующих углеводородов является примерно средней между температурами диссоциации комплексов каждого компонента в отдельности [16, 17]. В работах [25] показано, что верхний предел комплексообразования (ВПК) смесей двух н-парафинов имеет промежуточное значение между ВПК чистых компонентов. При обработке карбамидом раствора [c.202]

    Соотношение парафиновых и нафтеновых углеводородов во многих случаях представляет интерес, поскольку оно характеризует свойства топлива. Поэтому разработка удобных и достаточно точных методов для указанной цели весьма полезна. Такие методы могут быть основаны, например, на газо-жидкостной хроматографии, спектральном анализе. Можно также использовать химические методы расчленения насыщенной части топлива, с выделением нормальных парафиновых углеводородов (комплексы с карбамидом и тиокарбамидом), шестичленных нафтеновых углеводородов (каталитической дегидрогенизацией) и др. [2, 27, 121]. [c.147]


    Из этих данных видно, что с увеличением числа атомов углерода в молекуле углеводорода повышается и температура разложения комплекса. Уже у парафиновых углеводородов нормального строения, содержащих в молекуле 30— 32 атома углерода, температура разложения их комплексов с карбамидом приближается к температуре плавления самого карбамида (132,7° С). [c.70]

    Свойство карбамида образовывать комплекс с нормальными парафинами и влияние их молекулярной массы на температуру верхнего предела комплексообразования позволяют выделять из смеси нормальных парафинов индивидуальные парафиновые углеводороды.  [c.213]

    При выделении индивидуальных нормальных парафинов из нефтяного сырья исходят из верхнего температурного предела комплексообразования (ВПК) — максимальной температуры, при которой данный углеводород еще может образовать комплекс с карбамидом. Темнературы, соответствующей верхнему пределу комплексообразования, достигают постепенным охлаждением реакционной смеси, нагретой до температуры, при которой комплекс не образуется (выше температуры разрушения комплекса). Основным компонентом любой смеси (бинарной или многокомпонентной) считается нормальный парафиновый углеводород максимальной молекулярной массы или с максимальным числом атомов углерода в молекуле, который и выделяется из данной смеси (сырья). Любой другой компонент (нормальный парафиновый, изопарафиновый, нафтеновый, ароматический и т. д.) [c.219]

    При взаимодействии парафиновых углеводородов с карбамидом образуется их комплекс, представляющий собой твердое вещество. Этот твердый комплекс удаляется из очищаемого дизельного топлива путем отстоя или фильтрования. [c.263]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Чистый карбамид имеет тетрагональную структуру [9]. Его молекулы упакованы плотно, и свободные пространства, в которых могут разместиться молекулы другого вещества, отсутствуют (рис. 76). При образовании комплекса происходит перестройка кристаллической структуры карбамида из тетрагональной в гексагональную. При помощи рентгеноструктурного анализа установлена идентичность рентгенограмм комплексов двух парафиновых углеводородов нормального строения ( н-ундекана и н-гексадека-на), при этом положение линий спектров этих комплексов отличалось от таковых для чистого карбамида (табл. 26). Различие в параметрах элементарной ячейки кристаллов карбамида и комплекса подтверждает способность карбамида изменять в процессе комплексообразования кристаллическую решетку из тетрагональной в гексагональную. [c.196]

    Сергиенко и Лебедев [145] выделили из девонской нефти Ромаш-кинского месторождения фракции твердого парафина, отвечающие-по константам индивидуальным парафиновым углеводородам Сах — Сзо нормального строения. Предельные углеводороды нефти, вымпа-ющие выше 340° С, были выделены двухкратным хроматографированием на крупнопористом активированном силикагеле. После разделения предельных высокомолекулярных углеводородов на твердые и жидкие с помощью избирательных растворителей и охлаждения твердые углеводороды подвергались карбамидной обработке. Углеводороды, образовавшие кристаллические комплексы с карбамидом после регенерации их из комплекса подвергались хроматографическому разделению по Фуксу [146]. Характеристика состава и свойств-предельных углеводородов из девонской нефти Ромашкинского месторождения приведена в табл. 14. [c.87]

    В процессе карбамидной депарафинизации прямогонная дизельная фракция обрабатывается раствором карбамида в изопропиловом спирте. При охлаждении растворенный в изопропиловом спирте карбамид выпадает в виде кристаллов и образует комплекс с парафиновыми углеводородами, который легко отделяется от депарафинируемого дизельного топлива. Выделившийся комплекс промывается узкой лигроиновой фракцией для удаления изопарафинов, нафтенов и ароматических углеводородов. Отмытый комплекс при нагревании [c.136]

    Агрегатное состояние карбамида влияет и на температурный режим процесса. По варианту ИНХП АН АзССР используют насыщенный раствор карбамида в смеси воды и изопропанола. Особенностью реакции комплексообразования в таких условиях является быстрое уменьшение концентрации карбамида за счет его вступления в комплекс с нормальными парафиновыми углеводородами исходного сырья. Поэтому для поддержания более или менее постоянной концентрации карбамида в зоне реакции комплексообразование проводят в переменном температурном режиме. На входе в реакторный блок [c.88]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    Мягкие (низкоплавкие) парафины, состоящие из углеводородов Сю—Сао) получают при карбамидной депарафинизации дизельной фракции нефти. Процесс основан на способности мочевины (карбамида) образовывать комплексные соединения с нормальными парафиновыми углеводородами. Образующиеся комплексы отделяют фильтрацией или другим способом от основной массы жидкого нефтепродукта. Затем разлагают горячей водой. Выделившиеся нормальные парафиновые углеводороды (мягкий парафин) используют в различных синтезах. [c.142]

    Парафино-нафтеновые углеводороды, полученные при адсорбционном разделении на силикагеле (АСК), отличаются высоким числом симметрии по-р.ядка 150) и низким значением интерцеита рефракции"(г,- 1,0327—1,0388), ято, доказывает присутствие значительного количества би- и полициклических нафтеновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются низко температурой застыпапия (значительно более низкой, чем у других исследованных нефтей), ири этом иара-фино-нафтеновые углеводороды, выделенные из фракций валенской нефти, имеют, в отличие от углеводородов из других нефтей, более низкую температуру застывания, чем исходные фракции. Но самое основное отличие нарафино-нафте-новых углеводородов, полученных из фракций валенской нефти, заключается а следующем они не образуют комплекс с карбамидом. Это свидетельствует о том, что фракции валенской нефти практически не содержат парафиновых углеводородов нормального строения. [c.410]

    Серосодержащие органические соединения тормозят процесс комплексообразования карбамида с парафинами /в том случае, если их содержание выше лредельноро. Так, при содержании сероорганических соединений в дизельной фракции более 0,5% (масс.) выход жидких парафиновых углеводородов, образующих комплекс, уменьшается [32]. [c.204]

    Комплексообразование с тиокарбамидом. Способность тиокарб-амида образовывать комплексы с некоторыми веществами была открыта независимо друг от друга Фаттерли [38, 39] и Англа [40] в середине 40-х годов. Канальные соединения включения тио-карбамида подобны комплексам карбамида с нормальными парафиновыми углеводородами. Однако в то время как карбамид образует комплексы с углеводородами, содержащими углеродную цепь нормального строения, тиокарбамид, в кристаллической решетке которого образуются каналы большого диаметра (наличие большего атома серы), способен к комплексообразованию с изо-парафиновыми и циклическими углеводородами. Методы комплексообразования с карбамидом и тиокарбамидом дополняют друг друга при разделении смесей углеводородов и дают возможность достигать некоторой избирательности. [c.205]

    Нефти Советского Совза различаются между собой химическим составом, в частности содержанием парафиновых углеводородов. Известны нефти с содержанием парафина не более 0,2% (масс.), например ильская легкая, доссорская, анастасиевская, южно-алаыышинская и др. Имеотся нефти, содержащие парафина более 13% (масс.), например ставропольская, мангышлакская, а также нефти, содержащие 8-13% (масс.),- грозненская парафинис-тая, бориславская и др. Поэтому содержание н-алканов в дизельных фракциях, выделенных из этих нефтей, также разное. Данные о содержании углеводородов, образующих комплекс с карбамидом, в дизельных фракциях нефтей различных месторождений СССР приведены в табл. [c.81]

    Впервые комплексы карбамида получил немецкий исследователь Ф. Бен-ген в 1940 г. Было установлено, что алифатические соединения с достаточно длинной прямой цепью образуют с карбамидом сравнительно непрочные кри сталлические комплексы, в то время как разветвленные и циклические соединения таких комплексов не образуют. Наиболее четко данное свойство карбамида проявляется при действии на нормальные парафиновые углеводороды С,— g и выше, однако образование аддуктов наблюдается и в случае прямоцепочечных олефинов, а также кислот, эфиров и т. д. Позднее было обнаружено, что аналогичным свойством но в отношении соединений изостроения обладает тиомочевина S(NH2).2. Склонность к аддуктообразованию проявляют также селенкарбамид, теллуркарбамид, гидрохинон и многие другие соединения. Однако наибольшее развитие и широкое промышленное применение имеют лишь различные варианты использования карбамида для выделения н-парафинов из керосино-газойлевых фракций и масел, получившие название карбамидной депарафинизации. [c.314]

    Но самое основное отличие парафино-нафтеновых углеводородоп, полученных из фракций валенской нефти, заключается п том, что они ые образуют комплекса с карбамидом. Это свидетельствует об отсутствии парафиновых углеводородов нормального строения во фракциях валенской нефти. [c.618]

    Одновременно с термином карбамид употребляют термин мочевина . Точно так же наряду с термином тиомочевина встречается термин тиокарбамид . Иногда для упрош,ения углеводороды, входящие в состав комплекса или выделяемые при его разложении, называют общим термином нормальные парафины . Под этим термином следует понимать парафиновые углеводороды нормального строения только в тех случаях, когда известно, что в исходном сырье не могло быть никаких других углеводородов, способных образовать карбамидный комплекс. Во всех остальных случаях под термином нормальные парафины следует понимать вообще углеводороды, способные благодаря наличию в пх молекуле неразветвленной цепочки образовывать комплекс с карбамидом. В этих случаях можно отдать предпочтение таким терминам, как углеводородный компонент комплекса , комплексообразующий компонент , связываемые соединения , связываемое вещество , продукты, удаляемые карбамидом и т. д. В зарубежной литературе вместо тердшна карбамидный комплекс или просто комплекс употребляют термины аддукты мочевины или просто аддукты . Эти термины распространения у нас не получили, хотя они вполне Правильны и эквивалентны термину карбамидный комплекс . Крамер [7] относит комплексы карбамида к соединениям включения, в частности к решетчатым соединениям включения. В связи с этим комплексные соединения карбамида иногда называют соединения включения карбамида . В дальнейшем, как правило, применяется наиболее распространенный термин карбамидный комплекс . [c.10]

    Способность отдельных классов углеводородов образовывать кристаллические комплексы с некоторыми органическими соединениями известна давно. Например, комнлексообразование углеводородов нафталинового ряда с пикриновой кислотой широко используется как метод выделения и идентификации углеводородов этого класса. Однако способность парафиновых углеводородов к комплек-сообразованию была открыта сравнительно недавно. В 1940 г. было показано [64], что парафиновые углеводороды, содержащие в прямой цепочке не менее 6 атомов углерода, способны образовывать кристаллические комплексы с карбамидом. Кристаллические комплексы, образованные углеводородами и их производными, в прямой цепочке которых содержится всего 6—7 атомов углерода, крайне неустойчивы н распадаются на составные компоненты уже при комнатной темпе- [c.60]

    Условия возникновения кристаллических комплексов углеводородов с карбамидом и тиокарбамидом, природа сил, связывающих углеводороды с карбамидом и тиокарбамидом, кристаллическая структура и свойства комплексов, а также влияние различных фак-торбв на процесс комплексообразования изучались многими исследователями. В настоящее время метод выделения парафиновых углеводородов в виде кристаллических комплексов с пос.чедующей регенерацией углеводородов из комплексов в неизменном виде по практическому значению и многообразию областей применения можно сравнить лишь с хроматографическим методом. [c.61]

    За последнее время появились обзоры и монографии [77, 78], в которых с достаточной полнотой освещены теоретические основы метода комплексообразования парафинов с карбамидом. Поэтому здесь рассматриваются лишь некоторые из основных положений о природе кристаллических комплексов углеводородов с карбамидом и тиокарбамидом и методах их получения. Рентгеновские исследования кристаллических комплексов парафиновых углеводородов с карбамидом позволили в известной степени пролить свет на строение этих весьма интересных соединений. В присутствии парафиновых углеводородов нормального строения или других органических соединений, имеющих неразветвленную углеродную цепь из восьми и более атомов углерода, молекулы карбамида складываются в спираль за счет водородных связей между кислородом карбонильной гдалпы и аминогруппой соседних молекул. В результате из молекул карбамида образуется сплошная спираль, внутри которой находится [c.61]

    Термографическое изучение реакции комплексообразования индивидуальных парафиновых углеводородов нормального строения с карбамидом [87, 88] позволило определить температурные пределы разложения комплексов с карбам1вдом для следующего ряда к-парафинов  [c.69]

    Для более глубокой дифференциации высокомолекулярных углеводородов исследователи применили комплексную методику, позволяющую разделять сложные углеводородные смеси по типам структур молекул и получать более простые смеси, содержащие группы углеводородов, более близкие по строению и молекулярным весам. Сначала дистиллятные масляные фракции подвергали депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно исследуемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировали, а затем депарафинизировали. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась дальнейшей дифференциации при помощи двух методов адсорбционной хроматографии и комплексообразования с карбамидом. Хроматография на силикагеле позволяет разделить углеводороды на три основные структурные группы (парафиново-циклопарафиновая и две фракции ароматических углеводородов). Комплексообразование с карбамидом позволяет выделить из смеси предельных структур углеводороды с достаточно длинными парафиновыми цепочками, способные образовать с карбамидом кристаллические комплексы. Твердые парафины, выделившиеся из петролатума в первой стадии, т. е. при его депарафинизации избирательно действующим растворителем, и составляющие около 2/з всего петролатума, далее не исследовались. [c.198]

    Первоначально было всесторонне изучено комнлексообразо-вание нормальных нарафиновых углеводородов. Установлено, что в карбамидный комплекс могут вовлекаться и другие органические соединения, имеющие длинные неразветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моно-галоидные производные нормальных парафиновых углеводородов и др. Вступают в реакцию комплексообразования ароматические и нафтеновые соединения с длинными парафиновыми цепями. Установлено также, что кроме карбамида образовывать комплексы с углеводородами различных классов могут тиокарбамид, селен-карбамид и теллур-карбамид [6]. Однако практического применения эти соединения не получили. [c.8]

    Свойство карбамида образовывать комплексы с органическими соединениями, имеющими в молекуле длинную углеводородную неразветвлепную цепочку, используют в исследовательских работах, в лабораторной практике и в нро Мышленности. При этом наибольшее практическое применение образование карбамидного комплекса нашло в нефтеперерабатывающей промышленности, поскольку этот метод позволяет выделять из раз личных нефтяных фракций парафиновые углеводороды нормального строений и слаборазветвлепные при этом улучшается качество многих товарных нефтепродуктов. Кроме того, при помощи процесса карбамидной депарафинизации можно получать смесь нормальных парафиновых углеводородов (в виде жидкого или твердого парафина), служащую сырьем для производства синтетических жир- [c.8]

    Линии I — сырье II — растворитель III — взвесь комплекса в депарафинирован-ном продукте и растворителе IV — смесь растворителя и депарафинировавнси о продукта V — депарафинированный продукт VI — комплекс-сырец VII — растворитель ва. регенерацию VIII — растворитель на промывку IX -7 смесь растворителя и увлеченных (отмытых) углеводородов X — промытый и просушенный комплекс XI — вода XII — нормальные парафиновые углеводороды и карбамид XIII — нормальные парафиновые углеводороды XIV — карбамид на регенерацию (например, в виде водного раствора) XV — карбамид XVI — вода или другой агент после регенерации карбамида (на сброс [c.9]


Смотреть страницы где упоминается термин Комплексы карбамида с парафиновыми углеводородами: [c.29]    [c.102]    [c.210]    [c.197]    [c.202]    [c.207]    [c.208]    [c.212]    [c.262]   
Технология переработки нефти и газа Часть 3 (1967) -- [ c.220 , c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Карбамид

Парафиновые углеводороды

Углеводороды комплексы



© 2025 chem21.info Реклама на сайте