Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий окисление

    Устойчивые координационные числа ванадия и его аналогов, отвечающие соответствующим степеням окисления, приведены в табл. 47. [c.539]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Ангидрид малеиновой кислоты получают окислением бензола воздухом-I) паровой фазе над катализатором — пятиокисью ванадия, нанесенной на окись алюминия  [c.268]

    Дигидрофуран можно каталитическим окислением над пятиокисью ванадия перевести в ангидрид малеиновой кислоты  [c.252]

    ПОВЫСИТЬ чувствительность определения. Так, например, экстрагируя этилацетатом продукт катализируемого ванадием окисления анилина хлоратом калия, можно определить до 0,01 мкг ванадия в 100 мл раствора, т. е. еще при разбавлении в 10 раз [7]. При более широком привлечении кинетических методов к определению следов элементов такие случаи могут встречаться все чаще. [c.5]

    Окисление. Катализаторы окисления поочередно адсорбируют кислород и выделяют его в активной форме. Первичные окислы металлов служат акцепторами не только при окислении элементарным кислородом, но и в присутствии хромовой, марганцовой и хлорноватистой кислот, а также перекиси водорода. Примерами катализаторов различных процессов являются окись серебра (для получения окиси этилена из этилена) серебро или медь (для получения формальдегида из метанола) соединения щелочных металлов, марганца или алюминия (для окисления жидких углеводородов) окислы ванадия и молибдена (для получения фталевого ангидрида из нафталина) раствор нафтената марганца (для получения жирных кислот из высокомолекулярных углеводородов). Чаще всего окисление происходит при повышенных температурах. [c.330]

    Полупроводниковый катализ является весьма распространенным в промышленности. Достаточно указать на такие каталитические реакции, как окисление двуокиси серы на пятиокиси ванадия, окисление аммиака (катализатор — окислы переходных металлов железа и хрома), окисление нафталина до фталевого ангидрида (пятиокись ванадия), гидрирование продуктов крекинга нефти (ZnS, NiS), получение метанола из СО и Нг (ZnO, ZnO с СггОз), гидрирование крезолов (сульфиды молибдена, никеля, железа) и т. д  [c.229]

    Для иллюстрации некоторых причин нестехиометричности рассмотрим хорошо известный случай окисления иодида воздухом при иодометрических определениях. В отсутствие катализатора скорость окисления воздухом зависит от концентрации ионов водорода и иодида, реакция же между иодом и тиосульфатом на нее не влияет. Это типичная побочная реакция, поправка на которую может быть введена с помощью холостого опыта. Некоторые вещества, присутствующие в пробе, например следы окислов азота, могут действовать как катализаторы, которые либо вовсе не участвуют в химическом взаимодействии, либо претерпевают циклические изменения, так что в конечном счете никакого изменения их не происходит. Поправка на каталитическое окисление воздухом, получаемая в холостой пробе, обычно неэффективна, за исключением практически маловероятного случая, когда количество катализатора одинаково в испытуемой и холостой пробах. Третий тип окисления воздухом — индуцированная реакция, как, например, при иодометрическом определении ванадия. Окисление иодида ванадием (V) вызывает окисление иодида воздухом, механизм которого будет рассмотрен ниже. Количественные результаты в данном случае можно получить только при тщательной защите от кислорода воздуха. [c.495]


    Обычно 2 г образца нагревают в колбе Кьельдаля с 10—20 мл концентрированной серной кислоты до появления дыма, затем к кипящей смеси по каплям добавляют 50% -ный раствор пероксида водорода [5.1466, 5.1551]. В качестве катализатора можно (но не обязательно) добавить соли марганца или ванадия. Окисление обычно заканчивается через 5—20 мин, реже оно продолжается больше, например, окисление полипропилена и бутилового каучука. [c.240]

    В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности элементов сначала возрастает (благодаря увеличению числа -электронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и [c.647]

    Окисление во. духом о-ксилола ведут над нятиокисью ванадия при температуре 450—600° со временем превращения 0,01—0,1 сек. Выход составляет около 50—70% от теоретического. [c.263]

    Аналогичным образом можно сравнить значение для процессов окисления простых веществ серой, хлором и пр. и найти необходимые условия получения простых веществ восстановлением соответствующих хлоридов, сульфидов и пр. Ниже приведены реакции получения ванадия восстановлением его оксида и дихлорида с помощью водорода  [c.245]

    При сжигании остаточных топлив кроме снижения образующихся отложений большое значение имеет изменение их состава, поскольку в этих отложениях присутствуют вещества, вызывающие коррозию стали. В состав этих веществ входят, в частности, ванадий и натрий первый —в основном в виде растворимых в нефти металлоорганических соединений типа порфириновых комплексов, а второй — в виде галогенидов, сульфатов и др. При термическом разложении и окислении этих сое- [c.177]

    В технике оксид серы (VI) получают окислением SO2 в присутствии катализатора (платина или оксиды ванадия). [c.333]

    Влиянию примесей металлов переменной валентности на окисление и стабильность синтетических каучуков посвящено значительное количество исследований. В литературе имеется большое количество данных по каталитическому влиянию на эти процессы железа [29—37, 39], меди [29—34, 37, 38, 41], марганца [30—33, 34, 37], кобальта [14, с. 111, 33, 34], никеля [34, 46], ванадия [34, 42], церия [33, 34], свинца [33, 34], олова [33], титана [43—47]. [c.629]

    Соединения V (IV), Nb (IV), Та (IV). При обычных условиях степень окисления 4-4 для ванадия наиболее характерна. Соединения V(]I]) довольно легко окисляются до производных V(IV) молекулярным кислородом, а соединения V(V) восстанавливаются до производных V(IV). Наиболее устойчивое координационное число ванадия (IV) равно 6, а также устойчивы координационные числа [c.543]

    Бреттон, Уэн и Додж [11] получили небольшие количества малеино-вой кислоты и формальдегида, а также следы глиоксаля при окислении н-бутана над катализатором из пятиокиси ванадия на носителе при высоком отношении воздуха к углеводороду. Около 80% углеводорода окислялось при этом до окиси углерода и углекислого газа. [c.339]

    Действие окиси ванадия как катализатора основано на том, что в условиях реакции она может переходить из одной степени окисления в другую. Высший окисел окисляет углеводород, а сам при. этом восстанавливается затем он немедленно снова окисляется свободным кислородом воздуха. Необходимо давать избыток воздуха, чтобы равновесие было сдвинуто в сторону окисла более высокого валентного состояния, [c.10]

    В кислотно-основных реакциях растворитель, например вода, может проявлять кислотные и основные свойства, т. ё. отщеплять или присоединять протон точно так же вода в окислительно-восстановительных реакциях может терять электрон (быть восстановителем) или присоединять его (быть окислителем). Подобным же свойством обладают и такие ионы, которые могут существовать в нескольких степенях, окисления. Так, известны соединения ванадия в степенях окисления два — три—четыре — пять—В Э1ИХ соединениях V и находящиеся в промежуточных степенях окисления, способны как терять электроны (быть восстановителями), превращаясь в ионы с более высокой [c.343]

    По сравнению с парафинами ароматические углеводороды обладают большей антиокислительной стабильностью, и для их окисления необходимы более высокие температуры. Окисление ароматических углеводородов ведется в паровой фазе над твердым катали- чатором (обычно им служит окись ванадия на носителе). [c.589]

    При наличии в системе ГХЦ катализатор оставался активным длительное время. Активирующий эффект ГХЦ проявляется как при введении его в начале процесса, так и при добавлении к практически неактивному катализатору, который после введения ГХЦ вновь становится активным. Между алюминийорганическим соединением и активатором необходимо сохранять такое соотношение, чтобы скорость восстановления до преобладала над скоростью окисления в Реактивированный катализатор полностью теряет свою активность, если весь ванадий переходит в трехвалентное состояние, но после введения новой порции алюминийорганического соединения вновь становится активным в процессе сополимеризации. В присутствии активаторов образуются сополимеры с меньшей молекулярной массой, что, вероятно, связано с увеличением концентрации активных центров. [c.301]


    При окислении бензола кислородом воздуха над пятиокисью ванадия при 400—500° С с выходами порядка 50—60% образуется малеиновый ангидрид, а также небольшие количества фумаровой кислоты. Малеиновый ангидрид одновременно получается в виде побочного продукта нри производстве фталевого ангидрида. В отличие от ксилолов, этилбензол втягивается в химическую переработку не путем окисления, а путем дегидрирования (получение стирола). [c.589]

    Описаны способы получения двуокиси ванадия окислением окиси ванадия кислородом возду[ха 1], нагреВ аиием смеси окиси с пятиокисью ванадия [2], разложением щавелевокислого ваиадила [2] однако все эти способы весьма длительны. [c.13]

    Разработан метод определения марганца, хрома и ванадия при их совместном присутствии [98]. Суш ность метода состоит в последовательном титровании раствором соли Мора суммы марганца, хрома и ванадия, окисленных до Mn(VII), r(VI) и V(V) персульфатом аммония в присутствии ионов Ag(I), затем суммы r(VI) и V(V) после разрушения МпО добавлением в раствор Na l и титровании одного V(V) после окисления его КМПО4. Все три этапа титрования проводят при постоянном потенциале + 1,0 S (нас. к.э.) с платиновым анодом, враш аюш имся со скоростью 800—1000 об1мин. Метод применяют при анализе сталей [158, 236, 658-660]. [c.51]

    Барий-алюмо-ванадиевый катализатор (БАВ) по своей активности в реакции окисления H2S близок к бокситу [507] на нем при 200° С степень превращения HaS составляет около 92% (условия опытов те же, что и при работе с бокситом). Однако важным преимуществом катализатора БАВ является то, что на нем уже при 400° С выход SO3 составляет более 90% это позволяет сочетать очистку газов от HgS с получением серной кислоты. В промышленности предложено применять трехслойный катализатор один слой боксита и два — катализатора БАВ [507]. При 450° С, объемной скорости 1000 степень превращения HgS достигает 70%. Положительный эффект достигается и при одновременном присутствии соединений ванадия и боксита в катализаторе. По данным [538], на боксите, пропитанном 3—5%-ным раствором солей ванадия, окисление HgS идет при 150—400° С. В том же температурном интервале предлагается использовать VaOg (3—10%), нанесенную на силикагель, алюмосиликат, активные глины [539]. [c.271]

    Ванадий окислением посредством МпОГ (на холоду, чтобы не окислялся хром) H3VO4 титруют раствором FeSO> [c.112]

    Возможны также реакции гидроформилирования бутадиена, при которых путем насыщения двойных связей водородом нол учают изовалериановый альдегид. При окислении бутадиена воздухом над нятиокисью ванадия получают малеиповую кислоту с выходом до 85% от теоретического [3]. [c.259]

    Фталевый ангидрид получают при окислении воздухом о-ксилола или нафталина. В первом случаев качестве катализатора применяют пятиокись ванадия при температуре 482—621 °С и времени контактирования 0,1—0,15 сек. Новые катализаторы для окисления нафталина содержат 10% УзОз, от 20 до 30% Ка504, остальное—кремнезем. Обычная установка с неподвижным слоем работает при температуре 340—375 °С и избыточном давлении 0,5 ат время контактирования 4,2 сек, объемная скорость 0,07 катализатора. Установка с кипящим слоем ра- [c.333]

    В зависимости от агрегатного состояния катализ.1тора и реагирующих веществ различают катализ гомогенный и гетерогенный. Примером гомогенного катализа является реакция окисл( ния СО (в газовой фазе в присутствии паров воды) кислородом, а также действие разнообразных ферментов в биологических процессах. Гетерогеннокаталитическими являются процессы синтеза аммиака (катализатор железо), окисления 50 до 50з (катализатор платина или оксид ванадия) и т, д. [c.206]

    Ванадий в соединениях имеет степени окисления +2, -)-3, +4 и 4-5. Для ниобия и тантала, как и у других 4 - и 5 -элементов, наиболее устойчива высшая степень окисления, т. е. +5. Высшая степень окисления ванадия стабилизируется в фторо- и оксопроизвод-ных. [c.539]

    Степени окисления и пространственная кон ()игурация комплексов (структурных единиц) элементов подгруппы ванадия [c.539]

    Весьма инетересное применение метода ГПХ нашли авторы работы [32], которые оценили, как исключаются асфальтены из пор катализатора, применяемого при каталитическом гидрообессеривании остатков. Образец катализатора с известным распределением по размерам пор, погружают в нефтяной остаток с известным содержанием асфальтенов. Объем взятой навески остатка в 3 раза превышает общий объем пор взятой навески катализатора. Катализатор с остатком вьщерживают в автоклаве при постоянной температуре в течение 4 ч до установления равновесия, перемешивая каждые 1,5 ч. Для исключения возможности окисления воздухом свободное пространство автоклава заполняется азотом. После достижения равновесия жидкость, не проникшая в поры катализатора (наружная), сливают через сетку и анализируют методом ГПХ с получением распределения по размерам молекул и частиц и определением содержания металлов (ванадия, никеля). Жидкость, проникшая в поры катализатора (внутренняя), экстрагируется из катализатора последовательно бензолом и смесью метанола и бензола (1 1). После отгонки растворителя, оставшуюся жидкость анализируют так же, как и наружную часть остатка. [c.38]

    В обычных условиях V и особенно Nb и Та отличаются высокой химической стойкостью. Ванадий на холоду растворяется лишь в царской водке и концентрированной HF, а при нагревании — в HNO3 и концентрированной H2SO4. Ниобий и тантал растворяются лишь в плавиковой кислоте и смеси плавиковой и азотной кислот с образованием отвечающих их высшей степени окисления анионных фторокомплексов  [c.540]

    Ванадий, ниобий и тантал ваимодействуют также при сплавлении со щелочами в присутствии окислителей, т. е. в условиях, способствующих образованию отвечающих их высшей степени окисления анионных оксокомплексов  [c.540]

    Соединения V([ ), Nb(II), Ta(II). Из производных, в которых элементы пэдгруппы ванадия проявляют степень окисления +2, относительно более у тойчивы соединения ванадия. Координационное число ванадия (II) равно 6, ч го отвечает октаэдрическому строению его комплексов (структурных единиц) в соединениях. [c.542]

    Удовлетворение требований по зольности и содержанию ванадия, калия и натрия достигается обычно обессоливанием исходной нефти и водной промывкой топлив. Эффективным средством борьбы с ванадиевой коррозией является и введение присадок на основе солей меди, цинка, магния, кобальта и т.д. Практическое примеьгение получили присадки, содержащие магниевые соли син — тет тческих жирных кислот и окисленного петролатума. Они [c.127]

    Единственным нафтеновым углеводородом, окисление которого проводится в промышленном масштабе, является циклогексан. Он легко взаимодействует с кислородом воздуха при 150—250° С в присутствии металлического катализатора ионного типа (ацетата кобальта), с хорошей селективностью образуя циклогексанол и циклогексанон в качестве промежуточных продуктов и адипино-вую кислоту — в качестве конечного продукта процесса. Неполное окисление циклогексана и метилциклогексана над пятиокисью ванадия ири 450—500° С позволяет получать малеиновую и глу-таровую кислоту [310, 311]. [c.586]

    Минимальная температура, необходимая для инициирования окисления, больше зависит от катализатора, чем от природы окисляемого [4] углеводорода. При применении в качестве катализатора ванадата олова о-ксилол можно окислить даже при температуре 270°, тогда как при применении чистой плавленой пятиокиси ванадия минимальная темпсфатура окисления будет около 425°. Выделяющееся тепло реакции быстро нагревает слой катализатора до более высокой температуры. Обычно реакция контролируется путем регулировки температуры охлаждающей бани таким образом, чтобы максимальная температура, измеряемая в слое катализатора, поддерживалась постоянно в нужном интервале. Максимальные гемпературы катализатора, лежащие несколько ниже 525°, благоприятны для получения продуктов более низкой степени окисления, чем фталевый ангидрид, например альдегидов. При температурах, значительно превышающих 600°, происходит чрезмерное переокисление и реакцию становится трудно контролировать. [c.10]

    Окисление воздухом высших олефинов не нашло применения на практике из-за того, что эта реакция трудно регулируется. При температурах 350—500° С над пятиокисью ванадия из алшлена получают малеиновую кислоту с выходом 12—22% за проход. Несколько больший выход кислоты получают при окислении гексена, гептена и октена [283]. [c.582]

    Для нанесения окиси ванадия необходимо выбирать абсолютно инактивный носитель, иначе значительная часть сырья окисляется до воды и СО2. Подходящим носителем для окиси ванадия является пемза. Описан также снликагелевый носитель, обработанный сульфатом калия. Одной фирмой разработан процесс окисления нафталина или ортео-ксилола в псевдокинящем слое катализатора [348]. Преимуществами процесса в псевдокипящем (флюидном) слое являются меньший расход воздуха и более эффективный отвод тепла из реакционной зоны. [c.590]

    В большинстве случаев адипиновую кислоту получают в две стадии. Первая — окисление циклогексана в циклогексанон и цик-логексанол воздухом (или смесью кислорода и азота, обогашенной кислородом) в газо-жидкостной системе при 3—5 ат и 120—-130 °С в присутствии растворимых нафтенатов и стеаратов металлов с несколькими валентными состояниями (Со, Мп, Си, Ре, Сг). Реакцию можно проводить также в присутствии органических перекисей или альдегидов и кетонов в качестве промоторов. Вторая стадия — окисление смеси циклогексанол — циклогексанон — осуществляется в промышленности по непрерывной схеме 50%-ной азотной кислотой в присутствии твердых катализаторов (медь, ванадий) при 80 °С и небольшом давлении. И в этом случае можно проводить окисление воздухом, но в иных, чем на первой ступени, условиях. [c.159]

    Для второго этапа — окисления в адипиновую кислоту —используют чистую смесь циклогексанона и циклогексанола. Существует непрерывный метод выделения, нашедший применение в промышленности при 80 °С и времени контакта 5 мин смесь обрабатывают 50—60%-ной азотной кислотой катализатор состоит из солей меди и ванадия. Весовое соотношение HNOз (в пересчете на 100%-ную) и окисляемой смеси составляет 2,5—6. [c.161]

    Общая характеристика переходных элементов. Особенности переходных элементов определяются, прежде всего, электронным строеинем их атомов, во внешнем электронном слое которых содержатся, как правило, два 5-электрона (иногда—один 5-элек-трон ). Невысокие значения энергии ионизации этих атомов указывают на сравнительно слабую связь внешних электронов с ядром так, для ванадия, хрома, марганца, железа, кобальта энергии ионизации составляет соответственно 6,74 6,76 7,43 7,90 и 7,86 эВ. Именно поэтому переходные элементы в образуемых ими соединениях имеют положительную окисленность и выступают в качестве характерных металлов, проявляя тем самым сходство с металлами главных подгрупп. [c.646]


Смотреть страницы где упоминается термин Ванадий окисление: [c.42]    [c.993]    [c.225]    [c.543]    [c.312]    [c.371]    [c.587]    [c.648]   
Химический анализ (1966) -- [ c.378 , c.382 ]

Качественный химический анализ (1952) -- [ c.331 ]

Справочник по общей и неорганической химии (1997) -- [ c.68 ]




ПОИСК







© 2024 chem21.info Реклама на сайте