Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины пиролизом углеводородо

    Пиролиз углеводородов, таких, как этан, бутан, бензин, керосин и другие нефтяные фракции, превратился в один из самых современных и экономичных методов получения олефинов, которые приобрели такое большое значение в промышленности органической химии [59]. Процесс производства газообразных олефинов на крупно-тоннажных пиролизных установках обходится дешевле, чем их выделение из нефтезаводских газов. [c.15]


    При получении олефинов пиролизом углеводородов наряду с этиленом и пропиленом образуются в сравнительно небольших количествах (менее 2%) и высоконенасыщенные соединения, в основном ацетилен и его гомологи [4П. Наличие этих соеди-нений в пирогазе и в получаемых впоследствии его фракциях отрицательно сказывается на показателях процессов переработки олефинов снижается выход продуктов (процесс полимеризации), отравляются катализаторы (карбонилирование, гидратация и алкилирование), ухудшаются условия и безопасность эксплуатации установок из-за образования купренов. Исходя из этого, в настоящее время к чистоте олефинов предъявляются повышенные требования. [c.43]

    Эти заключения подтверждаются данными о получаемых в экспериментах составах продуктов крекинга и пиролиза углеводородов. В процессах крекинга, проводимых при температурах 550 °С и ниже, не наблюдают образования ацетиленовых или кумулированных диеновых углеводородов, но получают небольшие (из-за кинетических, не термодинамических ограничений) количества сопряженных диенов. При высокотемпературном пиролизе в продуктах содержатся значительные количества диенов-1,3 и появляются ощутимые количества ацетилена и аллена. Поэтому термодинамически вероятно образование и олефинов продуктов, обедненных водородом, через сопряженные диены. , [c.223]

    Г. ПОЛУЧЕНИЕ ГАЗООБРАЗНЫХ ОЛЕФИНОВ ПИРОЛИЗОМ ГАЗООБРАЗНЫХ ИЛИ ЖИДКИХ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.49]

    Применение радикально-цепной теории позволяет определить количества продуктов первичного распада н-нарафинов. Выше показано, что среди этих продуктов присутствуют значительные количества олефинов С и выше, которые далее распадаются до низкомолекулярных продуктов. Поэтому расчет состава продуктов пиролиза олефинов необходим при теоретическом определении результатов глубокого пиролиза углеводородов. Естественно использование в таком расчете сведений о радикальных реакциях. Отметим пока, что глубокий пиролиз олефинов дает выходы этилена и пропилена, близкие к выходам их при глубоком пиролизе парафинов с тем же, что и у олефинов, числом углеродных атомов. [c.240]

    Производство низших олефинов пиролизом углеводородов [c.351]

    Производство низших олефинов пиролизом различного углеводородного сырья характеризуется одновременным получением большой гаммы ценных непредельных углеводородов, диеновых, ароматических, производных ацетилена. Эти углеводороды содержатся в соответствующих фракциях в количествах, достаточных для их экономически обоснованного выделения в чистом виде с целью получения товарной продукции для органического синтеза. К таким углеводородам относятся ацетилен, аллен, метилацетилен, цикло- и дициклопентадиен, бензол, нафталин и др. Кроме того, низкая стоимость, высокая концентрация целевых продуктов, малое содержание сероорганических и практически отсутствие других гетероорганических соединений создают хорошие технологические и экономические предпосылки для переработки побочных продуктов пиролиза. Себестоимость вырабатываемых из пиролизного сырья продуктов (например, дициклопентадиена, бензола) на 15—25% ниже себестоимости. аналогичных продуктов, полученных традиционными процессами [c.27]


    Термический пиролиз углеводородов был первым промышленным процессом деструктивной переработки нефти. Сначала пиролиз служил для получения светильного газа. В период первой мировой войны во многих странах обратили внимание на пиролиз керосина, как на дополнительный источник производства толуола. Получение ароматических углеводородов, главным образом толуола, посредством пиролиза осуществлялось вплоть до 40-х годов и постепенно с развитием процессов риформинга утратило свое значение. В настоящее время пиролиз газообразного и жидкого углеводородного сырья является основным крупномасштабным способом производства низших олефинов и вновь получает распространение как серьезный источник ароматических углеводородов. [c.181]

    Сырьем для выделения водорода могут служить й некоторые газы нефтехимических производств, например водород образуется при дегидрировании углеводородов. Такими процессами являются пиролиз углеводородов в производстве олефинов, а также дегидрирование бутана и бутилена в производстве синтетического каучука. [c.37]

    Различные бензиновые фракции, получаемые в странах Западной Европы из ближневосточных нефтей, выкипают в интервале температур от 50 до 200° С и содержат до 75% парафиновых, до 16 — нафтеновых и лишь до 8% — ароматических углеводородов [851, представляя собой весьма благородное сырье для производства олефинов пиролизом. [c.13]

    Впервые пиролиз углеводородов в токе перегретого водяного пара был использован при производстве олефинов на опытной установке фирмы Келлог , технологическая схема которой представлена на рис. 43. [c.166]

    IV. ПРЯМОЕ ПОЛУЧЕНИЕ ГАЗООБРАЗНЫХ ОЛЕФИНОВ ПИРОЛИЗОМ ВЫСОКОМОЛЕКУЛЯРНЫХ УГЛЕВОДОРОДОВ (ГЛАВНЫМ ОБРАЗОМ НЕФТИ И ЕЕ ФРАКЦИЙ) БЕЗ ОДНОВРЕМЕННОГО ОБРАЗОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.92]

    Особую важность приобретает этот вопрос в печах пиролиза углеводородов, в змеевиках которых происходят реакции с образованием большого количества продуктов, в том числе низших олефинов, метана, а так же других алкенов меньшей молекулярной массы, чем исходный. Но основными целевыми продуктами реакции являются этилен и пропилен. [c.193]

    При пиролизе углеводородов (нефтяных фракций), кроме олефинов, образуются алкины (примерно 1/60... 1/90 по соотношению к олефинам). Чем выше температура, тем больше получается ацетилена, т.к. при 1200 С среда всех продуктов он является наиболее устойчивым. [c.116]

    От относительных скоростей всех этих реакций и зависит состав фактически образующихся продуктов превращения углеводородов более того, в ходе процесса пиролиза общее термодинамическое равновесие в реакционной системе сдвигается в сторону глубоких превращений — до ацетилена, метана, водорода, углерода, а также смолы и кокса . Поэтому для получения максимального выхода олефинов необходимо реакцию крекинга прерывать в момент, когда конечное равновесное состояние системы еще не достигнуто, а концентрация олефинов наибольшая. В этом случае удается свести к минимуму долю вторичных реакций, ведущих к смоло- и коксообразованию и в целом контролировать процесс, а также прогнозировать его оптимизацию лишь с точки зрения кинетических требований. Поэтому далее мы рассмотрим основные кинетические закономерности брутто-реакции пиролиза углеводородов и отдельных ее стадий. [c.34]

    Ароматические углеводороды приходится определять, когда используют светлые нефтепродукты в качестве сырья на установках получения газообразных олефинов пиролизом, а также на установках окисления бензинов и т. д. [c.56]

    Таким образом, бьшо установлено, что отдельные фракции олефинов могут служить эффективным инициатором процесса пиролиза углеводородов. [c.127]

    В течение последних 30 лет в сырьевой базе отечественной и мировой нефтехимии ведущая роль принадлежит низшим олефинам — этилену и пропилену. Основным источником их производства служит процесс термического пиролиза углеводородов с водяным паром. Именно на установках пиролиза получают сегодня первичные продукты, обеспечиваюш,ие сырьем производства пластических масс, синтетических смол, каучуков и волокон. В нашей стране накоплен значительный опыт в области эксплуатации отечественных и зарубежных установок, разработки и освоения новых технических решений по системам пиролиза различных углеводородов. [c.3]

    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]


    В соответствии с результатами термодинамических расчетов пиролиз углеводородов для производства низших олефинов целесообразно осуществлять при довольно высоких температурах, превышающих 600—700 °С и для получения этилена необходима более высокая температура,, чем для преимущественного производства пропилена. Верхний предел температуры процесса определяется возможностью проведения его без значительного образования ацетилена. Согласно данным термодинамических расчетов пиролиз следует проводить при низком давлении, желательно приближающемся к атмосферному, и при достаточном разбавлении сырья водяным паром. [c.15]

    При разработке кинетических моделей пиролиза углеводородов имеют место принципиальные ограничения и необходимые допущения. Так, в реакциях замещения чаще всего образуется несколько изомерных радикалов. Их количественное соотношение зависит от прочности С—Н-связи в исходном углеводороде и вероятности изомеризации. Это позволяет рассчитать состав первичных продуктов, полагая, что из углеводорода образовался только один радикал, который распадается по различным маршрутам. В реакциях присоединения радикалов к олефинам получаются те же радикалы, что и в реакциях замещения алканов, но уже не все изомеры, а только два — со свободной валентностью при атомах углерода, соединенных двойной связью. Необходимость включения реакций изомеризации этих радикалов может быть установлена только путем сравнения разных вариантов расчета со специально проведенными экспериментами. [c.40]

    Мировая и отечественная нефтехимия уже начала проявлять признаки адаптации к реально складывающимся условиям и прогнозам в обеспечении углеводородным сырьем. Расширению сырьевой базы способствуют продолжающиеся исследования в области пиролиза мазута и сырой нефти, проводимые отечественными и зарубежными исследователями. Значительные резервы экономии сырьевых и энергетических затрат содержит и традиционный термический пиролиз углеводородов с водяным паром — основной источник низших олефинов в мировой и отечественной нефтехимии в ближайшие 15—20 лет. [c.224]

    Выше был рассмотрен пиролиз газообразных углеводородов с целью получепия этилена и пропилена. Обычгю эти углеводороды используют как сырье для процессов нефтехимического синтеза для получепия этилового спирта, нопиэтилена и др. Иногда газообразные олефины пиролиза применяют и для алкилирования бензола, но также с целью последующего получения нефтехимических продуктов — стирола, фенола и ацетона. [c.348]

    П. содержится в прир. газе (0,1-11.0% по массе) в попутных газах нефтедобычи и нефтепереработки, напр, в газах каталитич, крекинга (16-20%), в газообразных продуктах гидрогенизации бурых, каменных углей и каменноугольной с.молы (до 80%)) образуется при синтезе углеводородов по. методу Фишера-Тропша. Из пром, газов П. выделяют ректификацией под давлением, адсорбцией на активир. угле или масляной адсорбцией выход П. достигает 98%. Осн. про.м. метод получения П, (наряду с низшими олефинами)-пиролиз углеводородов в трубчатых печах с добавкой водяного пара. [c.101]

    Д. ПОЛУЧЕНИЕ ОЛЕФИНОВ ПИРОЛИЗОМ НШДКИХ УГЛЕВОДОРОДОВ, [c.54]

    В последние годы появились отдельные нефтехимические предприятия, потребляюйцие в качестве сырья нефть. Непосредственный пиролиз нефти недостаточно освоен. Для повышения выхода ценных продуктов из нефти такие предприятия включают процесс гидрокрекинга 121]. В этих схемах не только расходуется водород, получаемый в процессе пиролиза и каталитического риформинга бензина, но и предусматривается специальное производство водорода. Например, схема производства олефинов, ароматических углеводородов и кокса из нефти показана на рис. 10 [22]. По одной из схем с использованием гидрокрекинга, каталитического крекинга, пиролиза и других процессов предусматривается получение из нефти более 70% различных индивидуальных углеводородов. [c.33]

    Процессы пиролиза современной промышленности хи-мичейкой переработки нефти и газ занимаюг доминирующее положение как по масштабам перерабатываемого сырья и объемам получаемых продуктов, так и по значимости для общего развития нефтехимической промышленнэсти. Пиролиз углеводородов нефти и газа в настоящее время является не только основным источником производства наиболее крупнотоннажных олефинов — этилена и пропилена, но и значительных количеств других химически активных углеводородов, представляющих исключительный интерес для промышленности нефтехимического синтеза. [c.3]

    Процесс пиролиза углеводородов в токе перегретого водяного пара является универсальным с точки зрения при менимости его для переработки различных видов сырья Кроме того, процесс обеспечивает наиболее благоприятные условия для протекания реакций, направленных на получе ние низших олефинов и дивинила с минимальным коксовы делением. [c.173]

    III. ПРОИЗВОДСТВО ГАЗООБРАЗНЫХ ОЛЕФИНОВ ПИРОЛИЗОМ НИЗКО- и ВЫСОКОМОЛЕКУЛЯРНЫХ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ л. ПВКДЕПИЕ [c.73]

    Низкомолекулярные, при обычных у( ловнях i кюобразные, олефин]. получают препмухцественно пиролизом углеводородов. Возможности термического дегидрирования углеводородов уисе обсуждались (см. выше). При высокой температуре этан гладко расщепляется па этилеп и водород, а высокомолекулярные уг геводородЕ>1 в первую очередь претерпевают крекинг дегидрирование для них является побочной реакцией. При крекировании высокомолекулярных углеводородов с целью получения бензинов неизбежно [c.73]

    V. ПРЯМОЕ ПОЛУЧЕНИЕ ГАЗООБРАЗНЫХ ОЛЕФИНОВ ПИРОЛИЗОМ АЛИФАТИЧЕСКИХ У1М1ЕВ0Д0Р0Д0В (ГЛАВНЫМ ОБРАЗОМ НЕФТИ И ЕЕ ФРАКЦИ11) С ОДНОВРЕМЕННЫМ ОБРАЗОВАНИЕМ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.97]

    Процесс изосив . Этот процес, запатентованный фирмой Линде , предназначается для расширения ассортимента продуктов, выпускаемых нефтеперерабатывающим заводом, за счет н-парафиновых углеводородов, находящих новые и потенциально емкие рынки сбыта. Промышленный процесс изосив используется для извлечения широкой гаммы н-алканов от С5 до С16. В области низкокипящих углеводородных фракций этот процесс можно использовать для удаления алканов Сз—Сд нормального строения из бензиновых фракций и использования их в качестве растворителей и сырья для избирательного пиролиза в производстве олефинов. Концентрат углеводородов изостроения, получаемый при этом процессе, можно использовать непосредственно как компонент бензина, но чаще подвергают предварительному риформиигу. В интервале фракций Сю—С16 выделяемые н-алканы находят широкий сбыт как сырье для биологически разлагающихся моющих средств и пластификаторов и в качестве химических полупродуктов для многочисленных других целей- [c.216]

    В Японии в 1967 г. запатентован способ непосредственного получения олефинов пиролизом газообразных (кроме метана) и жидких углеводородов в смеси с водородом при температуре 600— 1000 С [14], а в Великобритании в 1971 г. предложен усовершенствованный двухстадийный способ получения этилена [15], заключающийся в том, что пиролизу подвергается смесь углеводородов при условиях, обеспечиваюпщх высокий выход этана. Этан подвергается на второй стадии пиролизу до этилена. [c.191]

    Известно, что термический пиролиз углеводородов протекает по радикально-цепному механизму, и введение в состав сырья активных радикалов позволяет существенно повысить скорость основных реакций процесса. Нами было показано, что фракции олефинов позволяют существенно повысить выход основных продуктов процесса. Повышенная реакционная способность олефинов объясняется наличием в их молекулах ослабленных связей в Р - положении относительно двойной связи, и поэтому суммарные константы скорости термического распада алкенов существенно меньще, чем у алканов с тем же числом углеродных атомов. По различным данным, относительная константа скорости распада олефинов в 1,7...3,2 раза вьипе, чем у соответствующих алканов с тем же числом углеродных атомов. Вследствие этого молекулы олефинов относительно ле1-че подвергаются распаду с образованием активных радикалов. Повышение выхода газообразных продуктов пиролиза при введении в состав сырья фракций олефинов, возможно, связано с высокой реакционной способностью данньгх углеводородов. [c.127]

    Описана технология пиролиза углеводородов с целью получения низших олефинов. Кратко изложены основы термодинамики и кннетики процессов, современные представления о механизме превращений в интервале 650—900 °С. Приведены сведения о составе сырья и его свойствах, а также их влияние на состав продуктов пиролиза. Описаны конструкции трубчатых реакторов и закалочно-испарительных аппаратов. Освещены основные направления усовершенствования существующих и разработки новых процессов. [c.2]

    Аналогичные уравнения можно записать для всех исходных углеводородов и продуктов реакции, подвергающихся в значительной степени вторичным реакциям. Подобные модели чаще используют для описания пиролиза жидких углеводородов [80—82]. Например, в работе [80] предложены стехиометрнче-ские уравнения для состава продуктов пиролиза некоторых углеводородов при 700 С и низких степенях превращения. В этой же работе показано, что состав продуктов пиролиза индивидуальных углеводородов зависит от количественного соотношения их в смеси. То же относится и к скоростям распада веществ в смеси. Известно, что при пиролизе углеводородов наблюдается самоннгибирование, что проявляется в уменьшении констант скорости их распада с ростом степени превращения углеводородов [83]. Это связано с появлением в реакционной смеси олефинов. Интенсивность торможения определяется строением олефинов и их количеством, которые зависят от состава и количества исходных углеводородов. Таким образом, для каждой смеси необходимо в рамках полуэмпирических моделей экспериментально находить скорости распада. [c.31]

    На выбор мощности этиленовой установки влияют различные факторы. Это — достигнутая надежность работы однопо-точной системы оборудования, возможности стабильного обеспечения сырьем в значительных количествах в районе размещения, высокая капиталоемкость синхронного ввода потребляющих этилен производств, крупные убытки от аварий и длительной работы многотоннажных агрегатов с неполной нагрузкой. К перечню такого рода факторов следует добавить и ограниченные резервы повышения селективности в существующей сегодня технологии производства низших олефинов термическим жестким пиролизом углеводородов в трубчатых печах. На лучших современных установках жесткого пиролиза бензина выход этилена близок к предельно достижимому в трубча- [c.208]

    Сегодня в связи с преобладанием бензина в сырьевой базе пиролиза под целевой продукцией процесса понимается не только этилен и пропилен, а также — фракция углеводородов С4 и пирокоиденсат, из которого получают бензол. Сопоставительные расчеты эффективности требуют учета балансов производства и потребления всего ассортимента продукции, производимой пиролизом углеводородов. Это особенно важно, когда исследуются варианты использования углеводородного сырья, взаимозаменяемого не только в производстве низших олефинов, но и в производстве моторных топлив, например пряхмогопного бензина и сжиженных газов. [c.210]

    Особое место среди сложных реакций занимают цепные реакции, протекающие с )гч стием активных промежзггочных частиц (атомов, радикалов, ионов, ион-радикалов, возбужденных молекул и комплексов) в цикАически повторяющихся стадиях - циклических марпфутах, например в реакциях окисления органических соединений молекулярным кислородом, крекинге (пиролизе) углеводородов, алкилировании изопарафинов олефинами, диспропорционировании (метатезисе) олефинов и других процессах. [c.27]

    Можно показать, рассчитав равновесный состав реакционной смеси, что для условий крекинга и пиролиза (Т > 700 К) результаты термического процесса (состав реакционной смеси) определяются не термодинамическими, а кинетическими ограничениями. От относительных скоростей х ёрвичных и вторичных реакций образования молекулярных продуктов зависит состав фактически накапливающихся продуктов превращения углеводородов. Для получения максимального выхода олефинов необходимо реакцию крекинга (пиролиза) прерывать в момент, когда конечное равновесное состояние системы еще не достигнуто, а концентрация олефинов наибольшая. В этом случае удается свести к минимуму долю вторичных реакций, ведущих к смоло- и коксообразованию, и в целом контролировать и оптимизировать процесс, используя сведения о кинетических параметрах элементарных реакций [6]. Кинетические параметры некоторых реакций пиролиза углеводородов представлены в Приложении VI. [c.270]


Смотреть страницы где упоминается термин Олефины пиролизом углеводородо: [c.49]    [c.91]    [c.100]    [c.28]   
Подготовка сырья для нефтехимии (1966) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды в нефт реакций при пиролизе олефинов

Высшие олефины, механизм пиролиза углеводородов

Жидкие и газообразные углеводороды пиролиз в олефины

Кремневая кислота, влияние на пиролиз олефино с ароматическими углеводородами

Пиролиз газообразных углеводородов. Получение а-олефинов

Пиролиз как основной метод массового производства олефинов из жидких и газообразных углеводородов

Пиролиз олефинов

Получение газообразных олефинов пиролизом газообразных или жидких парафиновых углеводородов

Получение непредельных углеводородов при помощи пиролиза. Олефины, ацетилен и диолефины

Получение олефинов пиролизом жидких углеводородов, в частности нефти и ее фракций

Производство газообразных олефинов пиролизом низко- и высокомолекулярных алифатических углеводородов

Производство низших олефинов пиролизом углеводородов

Промышленные способы производства олефинов и ароматических углеводородов пиролизом алифатических углеводородов

Прямое получение газообразных олефинов пиролизом алифатических углеводородов (главным образом нефти и ее фракции) с одновременным образованием ароматических углеводородов

Прямое получение газообразных олефинов пиролизом высокомолекулярных углеводородов (главным образом нефти и ее фракций) без одновременного образовании ароматических углеводородов

Скорость бромирования олефинов при пиролизе. углеводородо

Этилен 79. Пропилен 84. Вутилены 86. Амилены 88. Высшие олефины 90. Пиролиз олефинов под давлением 91. Диолефины 93. Общие выводы о термических реакциях олефиновых углеводородов 94. Термическое разложение ацетилена



© 2025 chem21.info Реклама на сайте