Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бути л свойства

    Значительно больший конформационный объем грег-бутильного радикала по сравнению со многими первичными и вторичными радикалами позволил создать методы раздельного изучения некоторых физических и химических свойств заместителей в е- и а-положениях. Они основаны на том, что у используемых 1,4-дизамещенных цикло-гексанов одним из заместителей является весьма объемистый трет-бутил, а другим — изучаемая группировка, конформационный объем которой не должен быть слишком велик. В таких системах трет-бутил всегда занимает е-положение, а второй заместитель — е-поло-жение в транс-стереоизомере и а-положение в 1<ис-форме  [c.42]


    В последнем случае образуются соединения, близкие к описанным ранее для 2,6-ди-трет-бутил-4-метилфенола (ионола). Предложенное объяснение противоокислительных свойств алкилфенолов укладывается в общую схему радикально-цепного механизма действия ингибиторов окисления. [c.86]

    Благодаря небольшому содержанию двойных связей бутил-каучук стоек к действию кислорода. Соли металлов переменной валентности (Си, Мп, Ре) оказывают незначительное влияние на стойкость каучука [14]. При воздействии ближнего УФ-света или ионизирующих излучений он сильно деструктирует. Для стабилизации в него вводят до 0,5% антиоксиданта (неозона Д, НГ-2246, ионола). Бутилкаучук легче растворяется в углеводородах жирного ряда, чем в ароматических, нерастворим в спиртах, эфирах, кетонах, диоксане, этилацетате и растворителях, содержащих амино- и нитрогруппы. Ниже приведены некоторые физические свойства бутилкаучука [15]  [c.349]

    Все полученные выше результаты относятся к бензинам, в составе низкокипящих фракций которых практически не содержится бута-нов. В последние годы в ходе различных испытаний автомобильных бензинов было замечено, что при добавлении бутанов пусковые свойства бензинов улучшаются не. пропорционально изменению отдельных показателей их испаряемости. Иными словами, пусковые свойства бензина, содержащего бутан, всегда оказывались лучше, чем пусковые свойства бензина без бутана, имеющего такое же давление насыщенных паров и температуру перегонки 10%. Предложенные выше формулы в случае бензинов, содержащих бутаны, дают завышенную температуру воздуха, при которой возможен холодный пуск двигателя. [c.183]

    Следует отметить, что с понижением температуры относительная эффективность бутана заметно повышается. Так, при добавлении 7% бутана в бензин термического крекинга давление насыщенных паров при температуре —20° С повышается примерно в 2 раза. Эффективность газового бензина и изопентана при температуре —20° С значительно ниже. Этими результатами, очевидно, и объясняется высокая эффективность бутана при улучшении пусковых свойств бензинов. [c.187]

    Таким образом, условия активации цеолитного катализатора существенно влияют на природу протекающих на нем процессов образец, активированный в оптимальных условиях, более интенсивно и более длительное время ускоряет процесс алкилирования, чем тот же образец, обработанный в неоптимальных условиях. В последнем образце более четко выражена изомеризующая функция. Изомеризация бутена-1 в бутен-2 в смеси с -бутаном на цеолитном катализаторе алкилирования наблюдалась ранее [1]. Нам удалось ее обнаружить в присутствии алкилируемого компонента. Изомеризация в значительной степени определяется свойствами катализатора и, возможно, условиями проведения реакции. [c.342]


    Дисперсность эмульсии. Нами проводились исследования по изучению влияния основных свойств эмульсии серная кислота — углеводороды на реакцию алкилирования изопарафинов олефинами. Исследования показали, что от степени дисперсности эмульсии в значительной мере зависит полнота превращения олефинов. Так, в случае бутена-1 и бутена 2 при удельной поверхности эмульсии, близ кой к 7000 см см , не обеспечивается их полное превращение степень превращения в этих условиях соответственно составляет 92,1 и 93,6%. Для 100%-ного превращения бутена-1 и бутена-2 требуется развитие удельной поверхности эмульсии до 11 ООО— [c.95]

    Очевидно, поверхность катализатора должна обладать разными свойствами, чтобы смогла протекать и та и другая реакция. Образование цис-бутена-2, вероятно, более легко протекает на грани кубической решетки, где легко замыкается цикл. Для образования транс-бутена-2 активными центрами будут координационно ненасыщенные ионы А1, способные образовывать с я-электронами молекулы углеводорода я-комплекс. [c.156]

    В некоторых нефтехимических синтезах, в частности при получении бутилкаучука, изопрена, термостойких пластических масс,, используют только разветвленные олефины С4—Се. Примеси нормальных олефинов, как правило, ухудшают свойства готового продукта. Например, химическая инертность, высокая термостабильность и низкая электропроводность бутилкаучука достигаются-лишь при отсутствии в мономере (изобутене) примесей н-бутенов. Применяемая в промышленности абсорбция изобутена из фракции олефинов С4 (их содержится 50—60%) серной кислотой не обеспечивает должной чистоты мономера — в нем остается небольшое количество бутена-1, а также меркаптана. Применение адсорбционных методов с использованием цеолитов (главным образом a ) позволило решить эту проблему, в частности выделить-99,9%-ный изобутен. . [c.199]

    Существенное влияние на показатели процесса деасфальтизации гудронов с целью производства смазочных масел оказывает наличие в техническом пропане низко- и высокомолекулярных гомологов ряда метана (этана, бутана, пентана) и олефиновых углеводородов (пропилена, бутиленов). Обычно при деасфальтизации нефтяных остатков применяют пропан чистотой не менее 96%. При использовании пропана с повышенным содержанием этана, обладающего меньшими дисперсионными свойствами, роль дисперсионных сил пропана снижается. Это приводит к относительному увеличению межмолекулярного взаимодействия смол и углеводородов, в результате чего выход деасфальтизата снижается. Кроме того, присутствие этана в количествах, превышающих уста- [c.81]

    Пропан-бутановая фракция. Согласно спецификации, испытание пропан-бутано-вых жидкостей заключается в определении коррозионных свойств, цвета, фракционного состава и докторской пробы. [c.77]

    Парсом, Грахамом и др. [31] описан синтез трифенилстирилсвинца, а также других производных стирола (содержащих 8Ь, В1, Р) и полимеризация их в присутствии перекиси трет, бутила. Свойства полученных полимеров не приведены. Указано, что триэтилстирилсвинец нестабилен. [c.132]

    Катализатор, применяемый в мюльхеймском способе, может также с успехом применяться для полимеризации пропена и бутена-1. При этом получают два типа полимеров, обладающих совершенно неожиданными свойствами (изотактическая полимеризация [63]). Фирма Монтекатини получает из пропепа так называемый мопрен, устойчивый против действия растворителей, плавящийся при 160°, не чувствительный к действию воздуха, кислорода и атомного излучения. Волокно из него но величине сопротивления разрыву равноценно найлоновому волокну [64]. [c.224]

    В качестве примера можно привести перевод н-бутана в изобутан, представляющий интерес как с научной, так и с промышленной точки зрения. Промышленное значение изомериэации бутапа состоит в том, что изобутан, имеющий третичный атом водорода, под влиянием катализаторов в мягких условиях может вступать в реакцию с олефинами и давать смеси парафиновых углеводородов высокой степени разветвления. Последние имеют большие октановые числа и играют важную роль как компоненты моторных топлив, обладающих антидетонационными свойствами. [c.512]

    Первая система трудно поддается разделению в обычной колонне вследствие небольшой разницы в точках кипения воды (100 °С) и уксусной кислоты (118,1 °С). Цель добавления третьего компонента состоит в том, чтобы увеличить относительную летучесть компонентов системы, поэтому его воздействие на летучие свойства воды и уксусной кислоты должно быть различным. Кроме того, третий компонент должен либо вовсе не растворяться, либо обладать частичной растворимостью с НКК, но зато полностью-смешиваться с ВКК. Этим условиям отвечает, например, бутил-ацетат, весьма слабо растворимый в воде и образующий с ней гете-роазеотрон, точка кипения которого равна 92 °С. [c.335]

    Синтетические масла внутри каждого класса могут различаться мономерным составом и свойствами. Например, полиальфаолефины получают из бутена, 1-децена и др., в молекулы силиконовых жидкостей могут входить звенья диметилсилоксана и/или ме-тилфенилсилоксана. Особенно различаются свойства разных полигликолей и полиэфиров. Поэтому имеет смысл говорить только о самых общих свойствах отдельных видов синтетических масел. [c.17]


    Высшие олефины применяют в производстве поверхностноактивных веществ (синтетические моющие средства, реагенты для нефтедобычи, флотореагенты, ингибиторы коррозии) пластмасс с уиикальпыми свойствами высших алкилбензолов и ал-кплфенолов высших спиртов и кислот синтетических смазочных масел. Разветвленные а-олефины (4-метил-1-пентен, 3-ме-тил-1-пеитен, З-метил-1-бутеи) используют в производстве термостойких полиолефинов. [c.160]

    Для некоторых смесей наблюдалась существенная зависимость UH от введения в смесь присадок. Хорошо известно, например, что введение в смесь СО-ьОз незначительных количеств воды, водорода, метана или других водородсодержащих соединений вызывает резкое возрастание значения Ын- Значение Ua для смеси СО-ЬОг равно 1 м/с, а после добавки 0,23% воды оно возросло до 7,8 м/с. Введение столь незначительного Количества воды практически не изменяет каких-либо физических свойств смеси, поэтому очевидно, что такой эффект обусловлен изменением химического механизма процесса. Наблюдалось увеличение на 53% скорости горения бутано-воздушной смеси в присутствии 1,48% озона. Присадки, инициирующие самовоспламенение смеси (этилнитрат, этилпероксид и др.), а также антидетонаторы (тетраэтилсвинец, нентакарбонилжелезо, ди-этилолово, тетраметилолово) не оказывают существенного влияния на скорость распространения пламени. Этот экспериментальный факт убедительно свидетельствует о том, что механизм реакций, протекающих в предпламенной зоне, существенно отличается от механизма предпламенных процессов при самовоспламенении (взрывном горении) смеси. [c.119]

    Выше бы го подробно рассмотрено одно из наиболее важных свойств адсорбента — его избирательная адсорбционная емкость, а та1 жс влияние на нее температуры. Удельная поверхность адсорб( нта, таки е яиляющаяся весьма важным свойством, обычно определяется по мс тоду Брунауэра, Эмметта и Теллера 12], получившему название метода БЭТ. Избирательная адсорбционная емкость адсорбентов для толуола, растворенного в изооктане, изменяется пропорционально удельной поверхности, измеренной но адсорбции азота [40] или бутана [9]. [c.159]

    Инициирование можот также осуществляться за счет восстановительных свойств гидроперекиси. Так гидроперекись т оет-бутила может восстанавливать некоторые соли кобальта, образуя при этом свободный перекисный радикал, который мо кет подвергаться реакции, свойственной соединениям такого типа [69 . Поперемеиное восстановление [c.292]

    Целесообразно кратко охарактеризовать наиболее важные сорта синтетических каучуков, чтобы иметь необходимые общие сведения о них, которые потребуются для сопоставления их. Синтетические каучуки по своим свойствам вполне сравнимы с натуральными каучуками, а некоторые из них характеризуются весьма желательными и технически ценными свойствами, отсутствующими у природных каучуков. По химической структуре природный каучук можно рассматривать как полимёр изопрена, т. е. 2-метилбутадиена-1,3. Этот углеводород никогда не был обнаружен в каучуконосах, но он обычно используется в сравнительно незначительных количествах нри производстве синтетического каучука из изобутилена (97%). Небольшое количество изопрена придает бутил-каучуку способность к вулканизации серой. Бутилкаучука производится 65 ООО т в год и ввиду своей высокой герметичности к воздуху (почти в 10 раз выше, чем у природного каучука) ой используется почти исключительно для производства камер. [c.210]

    При последовательном замещении метильнымп группами водородов ароматического кольца антидетонационные свойства улучшаются. Наиболее сильно это явленне проявляется в тех случаях, когда из бензола образуются толуол, ксилол и мезитилен. Эффект введения метильных групп в нормальный иропил-бензол, бутил- или амилбензол невелик, однако добавление метильных групп к изопропил- или изоамилбензолу заметно снижает склонность к детонации. [c.418]

    Хорошо известны моющие средства на базе нефтяных сульфокислот. Их получают сульфированием алкилированных бензинов. Алкилирование достигается обработкой ароматического сырья мо-нохлорированной керосиновой или лигроиновой фракцией, или же олефиновым полимером (например, тримером бутена или тетрамером пропилена) в присутствии безводного хлористого алюминия для полимеризации необходим кислотный катализатор. Число, размер и структура боковых алкильных цепей существенно важны для предопределения свойств получаемого моющего средства. Сульфирование производится при обычных температурах. [c.572]

    Полиизобутилены с высоким люлекулярным весом являются эластомерами. Бутилкаучук является сополимером нзобутнлена с небольшим количеством изопрена (около 1,5—4,5%). Нормальные бутилены дегидрируют в бутадиен, который затем сополиме-рнзуется со стиролом (23,5%) или с акрнлонитрилом (25%). При этом получается соответственно бутадиен-стирольный или бута-диен нитрильнып каучук. При обратном соотношении (25% бутадиена и 75% стирола) получается продукт с другими свойствами, в частности высокой износоустойчивостью. При полимеризации изопрена с алкил-алюминиевыми катализаторами получается эластомер, подобный натуральному каучуку [276—278]. [c.582]

    Области применения термоэластопластов все время расширяются а-метилстирольные термоэластопласты (ДМСТ и ДСМСТ) могут использоваться в тех же областях, где применяются бута-диен-стирольные термоэластопласты. Кроме того, благодаря ряду специфических свойств этих термоэластопластов, таких, как более высокая температуростойкость, повышенная совместимость с маслами и наполнителями, лучшая совместимость с полярными полимерами, их можно использовать для изготовления изделий, эксплуатируемых при более высоких температурах. [c.291]

    Образцы гомополимера ЭХГ (каучук СКЭХГ) имели следующие свойства [40] плотность 1350 кг/м температура стеклования —28°С, вязкость по Муни 30—50. Внешний вид гомополимера — белая рыхлая масса. В качестве стабилизатора для этого каучука применялся сантовайт кристалле — бис(3-метил-5-т/ ег-бутил-4-гидроксифенол) сульфид. [c.581]

    Для полного представления о свойствах алюмосиликатных катализаторов следует учесть данные А. А. Михновской и А. В. Фроста [55], установивших, что алюмосиликатные катализаторы ускоряют и реакцию гидрирования. Уже говорилось о том, что образование бутана и гептана в экспериментах С. В. Лебедева нри деполимеризации полимернь[х форм изобутилена и амиленов обусловлено, по-видимому, непосредственным гидрированием соответствующих олефинов, причем это допущение сделано по аналогии с комплексным действием на олефины алюмосиликатов в области умеренных температур (150—250 °С) и таких реаге11тов, как НоЗО и А1С1д, в интервале относительно низких температур (0—20 °С). В условиях работы [51] такн<е получалось до 9 % бутана при каталитическом крекинге бутиленов. [c.50]

    Исследовано luiiiuirae степени промывки на каталитические свойства ] еолита. Показано, ччо отмывка натриевого цеолита типа X до pH 9 являемся оптимальной, iлаталитическая активность приведепных катализаторов прямо пропорциональна силовому полю ионообменного катиона в реакции дегидрата] ии н-бут ап ола-1. [c.315]

    Авторы этой книги исследовали каталитические свойства карбонилов металлов VI—VIII групп периодическо й системы в изомеризации бутена-1 и гептена-1 [44]. Изомеризацию проводили в инерт- [c.107]

    Растворы Rh ia активируют изомеризацию бутена-1, но при этом наблюдается длительный (30—60 мин) индукционный период, в то время как при использовании комплексов Rh(I) реакция начинается сразу. Кроме того, сравнение каталитической активности комплексов Rh(I) и Rh(ni) показывает, что константа скорости изомеризации в первом случае почти на порядок выше. Известно также, что комплексы НЬ(П1) требуется предварительно восстанавливать водородом можно еще отметить, что каталитические свойства Pd(ll) связывают с его переходом в состояние с мeпЬiUeй степенью окисления [27]. Это предположение косвенно подтверждается тем, что соединения, окисляющие палладий (бензохинон, хлорная медь, бихромат калия, перекись водорода, перекиси олефинов), деза ктивируют катализатор.- [c.114]

    В табл. 48 сопоставлены каталитические свойства некоторых нанесенных катализаторов при изомеризации бутена-1. Процесс вели при 450 °С и объемной скорости 200 ч . В исходном газе содержалось 86,3% бутена-1, 8,2% цис-бутена-2 и 5,5% транс-бутена-2. Видно, что во всех случаях сохраняется активность носителя в реакциях структурной изомеризации отношение бутены-2 бутен-1 близко к термодинамически равновесному, равному 2,5. Низка и селективность образования стереоизомеров как правило, отношение цис-1транс- мало отличается от равновесного (0,63). Вместе с тем катализаторы, содержащие железо, платину, родий и особенно палладий, эффективны и в скелетной изомеризации [38]. Относительно родиевых и палладиевых катализаторов следует, однако, отметить, что в отсутствие водорода они -быстро дезактивируются. [c.157]

    Изучена каталитическая активность кремнецинковых катализаторов [56]. Чистые окиси кремния и цинка не проявляют ни кислотных, ни основных свойств и каталитически не активны в изомеризации бутена-1. При исследовании смешанных цинксиликатных катализаторов различного состава, приготовленных соосаждением, оказалось, что максимальная кислотность отвечает составу ZnO Si02=3 7, а максимальная основность — составу ZnO Si02=7 3. ИК-Спектры адсорбированных на катализаторе оснований (пиридин, аммиак) показали, что кислотные центры являются льюисовскими. Именно они ответственны за изомеризацию бутена-1, так как адсорбция кислотного окисла (СОг), уменьшающая число основных центров, на каталитическую активность не влияла. Подтверждением этого является и то, что изомеризация протекала через внутримолекулярный перенос водорода это показали опыты со смесью недейтерированного и дейтерированного 1 с-бутена-2. [c.165]

    В качестве растворителей пользуются жидкостями, обладающими свойством избирательного растворения смол и асфальтов. Для выделения этих примесей применяются пропан или смеси других легких парафиновых углеводородов, например раствор бутана и метана. Эти жидкости вытесняют из сырого масла обе группы неже- [c.380]

    Производство гексахлорбутадиена и гексахлорпентадиена. На базе имеющегося в республике углеводородного сырья-бутана и пентана, в комплексе хлорорганических производств намечается осуществить процессы диенового синтеза производства гексахлорбутадиена и гексахлорпентадиена, являющихся ядохимикатами для борьбы с вредителями сельскохозяйственных культур. Гексахлорбутадиен—незаменимое и пока единственное действенное средство против филоксеры—вредителя виноградной лозы. Производство этого препарата для Закавказья имеет большое значение, так как виноградарство в этом районе является одной из ведущих отраслей сельского хозяйства. Гексахлорциклопентадиен наряду с инсектицидными свойствами может стать основным сырьем для производства ценных термостойких пластмасс. [c.376]

    Из полученных значений энтропии образования должна быть вычтена величина R In сг, отражающая влияние степени симметрии молекулы. При этом число симметрии а определяют, рассматривая молекулу данного соединения как жесткий ротатор без внутреннего вращения, так как в инкременты группы СНз, предложенные в этой работе, уже включен эффект внутренней симметрии этой группы (при а = 3). Поэтому число симметрии, например, 2-метил-бутана следует принять равным единице, а этана — двум. При расчете свойств углеводородов, обладающих оптической изомерией к значениям энтропии образования следует прибавить R In 2, отра жая этим соответствующее увеличение числа возможных ориента ций. Инкременты энтропии образования включают влияние стес ненного внутреннего вращения в молекулах. Точность результатов получаемых по этому методу расчета, обычно сравнительно высо кая, и ошибка не превышает 0,5 ккал/К для AЯf и 1,0 кал/(К-моль) для AS°f. Метод Соудерса, Мэтьюза и Харда был широко использован для углеводородов при составлении справочника [c.264]

    С помощью этого метода можно рассчитывать свойства не только углеводородов, но и других соединений. Однако наличие сильно полярных связей (вследствие более значительного влияния их на другие связи) может существенно снижать точность результатов расчета и тем самым ограничивать его применимость. ГринЗ указывает, что согласно этому методу можно было бы ожидать, что разность теплот образования (АЯ , гэз) между бутаном и изобутаном, пентаном и изопентаном, бутантиолом-1 и бута тиолом-2, пропантиолом-1 и пропантиолом-2, нормальным и изопропиловым спиртами будет одинакова. В действительности же это соблюдается только для первых четырех из указанных пар (углеводороды и тиолы), для которых разность равна 2,00 0,10 ккал/моль, но для пропиловых спиртов она почти в 2 раза больше (3,71) и для пары нормальных первичного и вторичного бутилового спиртов она равна [c.271]

    Фирмами Керр-Макги , Луммус , ФИН-БАСФ, ЮОП разработан ряд процессов деасфальтизации, в которых в качестве растворителя наряду с. пропаном используют бутаны, пентаны и их смеси. В зависимости от природы сырья и растворителя, кратности растворителя и других условий выход и свойства деасфальтпзатов могут меняться в широких пределах (табл. V. 17). Поскольку процесс проводят в жидкой фазе, максимальный выход деасфальтизата практически ограничивается возможностью существования асфальтита в жидком состоянии при температуре процесса, причем температура его размягчения возрастает с увеличением выхода деасфальтизата. [c.128]

    Основные требования, предъявляемые к хладагентам установок опреснения с аппаратами прямого контакта, следуюи1ие минимальная взаимная растворимость хладагента и воды хорошее расслаивание жидкого хладагента и воды инертность и химическая стабильность при температуре контакта доступность и низкая стоимость. Указанными свойствами обладают хладагенты-углево-дороды бутаны и пропан. [c.10]


Смотреть страницы где упоминается термин Бути л свойства: [c.162]    [c.2]    [c.497]    [c.637]    [c.117]    [c.316]    [c.143]    [c.113]    [c.392]    [c.23]    [c.483]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Бута нол физические свойства

Бутена окись, свойства

Бутены Бутилены физические свойства

Бутены физические свойства

Бутил хлористый из крекинг-газа свойства

Бутил эластично-пластические свойства фракций при постоянной скорости деформации

Бутил-сульфид из свойства

Каучук бутил свойства

Получение и свойства бутена

бутил идеи дибензойной кислоты свойства



© 2024 chem21.info Реклама на сайте