Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические соединения, стойкость

    Жидкий фтористый водород является прекрасным растворителем многих органических соединений, например ароматических соединений, спиртов, кислот, простых эфиров (последние в присутствии фтористого водорода ведут себя как слабые кислоты и могут присоединять один протон). Таким образом, фтористый водород способен выступать в качестве и реакционной среды и катализатора одновременно. Трифторид бора, взаимодействуя с фтористым водородом, образует фторборную кислоту, отличающуюся высокой кислотностью и по каталитической активности значительно превосходящую фтористый водород. Кроме того, низкие вязкость и поверхностное натяжение фтористого водорода способствуют хорошему перемешиванию реагентов при гетерофазном процессе. Недостатком системы НР ВРз является, однако, ее высокая коррозионная активность. В опытах использовали автоклав из монель-металла, обладающего достаточно высокой коррозионной стойкостью. [c.303]


    С термодинамической точки зрения большая прочность связи С — С в ароматических соединениях объясняется тем, что теплота их образования всегда выше рассчитанной по энергиям обычных алифатических двойных и одинарных связей. В результате большего выделения энергии при образовании ароматических соединений получаются связи с более коротким расстоянием между атомами С — С, с большей прочностью и большей термической стойкостью. В последние годы эта разница в энергиях получила название энергии резонанса [34] и объясняется распределением различных (Кекуле, Дьюар и др.) олефиновых структур, с помощью которых может быть изображено ароматическое ядро. Энергия резонанса является относительно большой величиной [32], доходящей почти до 40 калорий для бензола [13], 75 для нафталина, 105 для антрацена и т. д. Количество такой энергии можно грубо оценить по числу кольцевых связей в ароматической структуре и но характеру двойных связей [33], которые уменьшаются до половины в бензоле и до одной трети в графите. [c.93]

    Значительно менее удовлетворительное положение в отношении свободно-радикального и нуклеофильного замещения. В случаях свободнорадикального замещения доказано существование л- и ст-комплексов, они, но-видимому, участвуют в механизме замещения в ароматических соединениях. Однако отсутствуют пока определенные данные о существовании и стойкости этих промежуточных соединений и сравнительно мало можно сказать о деталях интимного механизма свободно-радикального замещения. В случаях нуклеофильного замещения положение еще менее удовлетворительно, поскольку дело касается замещения неактивированных ароматических соединений. В. настоящее время невозможно дать достаточно обоснованного объяснения замещениям этого типа. [c.481]

    Наряду с этим большое значение для того или иного практического применения имеют и свойства соединений. Ароматические нитро со единения характеризуются значительной физической и химической стойкостью при большой силе взрыва, что делает их весьма пригодными для применения в качестве взрывчатых веществ для снаряжения боеприпасов и для других целей. Кроме того, они служат и для изготовления промежуточных продуктов в фабрикации самых разнообразных красителей. Нитросоединения жирного ряда характеризуются пониженной химической и физической стойкостью (она значительно ниже, чем у ароматических соединений) вместе с тем они не находят применения для изготовления красителей. [c.110]


    Химический состав масла ( hemi al onstitution of oil). Качество масла, в значительной степени, зависит от его группового химического состава, т.е. от соотношения парафинов, ароматических соединений и нафтенов. При оценке качества масла и присвоении категории качества, химический состав масла не определяется, так как многие свойства масла существенно улучшаются введением соответствующих присадок. Иногда, в описаниях масла производители указывают основной класс соединений, так как они характеризуют некоторые общие эксплуатационные свойства. Например, парафиновые масла отличаются высоким индексом вязкости, хорошей стойкостью к окислению, а нафтеновые масла - высокой липкостью, хорошими смазывающими свойствами и т.д. [c.41]

    Из полимеров с С—С-связями наибольшую стойкость имеют карбоциклические ароматические соединения. Стойкость алифатических С—С-связей увеличивается при замене водорода у углеродных атомов атомами фтора. [c.31]

    Сравнительная стойкость комплексов ароматических соединений [c.398]

    Желаемые каталитические свойства преимущественно связаны с селективностью и стойкостью к отравлению серой. Первоначально активность не должна иметь первостепенного значения. При первом рассмотрении главная проблема оптимизации селективности в непрерывных процессах связана с необходимостью регулирования распределения продуктов. Как показывают данные, представленные в табл. 19-1, для синтеза углеводородов характерна тенденция к получению широкого группового состава продуктов с отчетливо выраженным пиком для метана. Углеводороды с числом атомов углерода более двух имеют узкий максимум от С4 до Сз или пологий максимум, простирающийся от Сз до С16. Полученные углеводороды, в основном нормальные парафины или а-олефины, мало пригодны в качестве моторного топлива вследствие их низкого октанового числа. Термодинамически возможно получение таких высокооктановых углеводородов как изопарафины или ароматические соединения, но не существует специальной движущей силы для их синтеза. Селективность катализатора зависит от кинетики процесса и является регулирующим фактором при получении специфичных химикатов. [c.268]

    О стойкости звеньев из ароматических циклов можно судить по температуре разложения простейших ароматических соединений (в °С)  [c.83]

    До недавнего времени были распространены представления о стойкости бензола и его гомологов к фотохимическому возбуждению. Трудность обнаружения продуктов облучения ароматических соединений отчасти объясняется превращением промежуточных продуктов, если их не перехватывать , в стойкие [c.409]

    Аналогичные системы нашли практическое применение в других нефтехимических процессах, таких как изомеризация 5], гидрокрекинг [6] и гидрогенизация [7]. Исследования биметаллических катализаторов в нефтехимии привели к усовершенствованию катализаторов синтеза винилацетата (палладий — золото) [8] и получению более селективных катализаторов неполного окисления олефинов (например, серебро — золото, медь — золото) [9, 10]. Однако исследования пока еще не охватили нанесенные сплавы (например, платина — кобальт), которые обладают увеличенной термостабильностью и стойкостью к спеканию. Селективность по конечному продукту — критериальный параметр, который в настоящее время может быть оптимизирован для многих процессов путем использования полиметаллических систем. Например, в процессах дегидроциклизации [12] и гидрирования ароматических соединений [13] можно затормозить реакции крекинга (гидрогенолиза) и максимально увеличить выход желаемых продуктов при сохранении очень высокой гидрогенизационной активности. [c.19]

    Октановое число зависит от состава топлива — его yвe ичи-вают изопарафины и ароматические соединения. Одним из средств повышения детонационной стойкости бензинов, т. е. получения высокооктановых топлив, является изомеризация и ароматизация содержащихся в них углеводородов. [c.459]

    Ферроцен обладает значительной термической и химической стойкостью. Для этого вещества характерен ряд реакций электрофильного замещения, подобных реакциям, протекающим с бензолом, нафталином и другими ароматическими соединениями. [c.255]

    Стойкость ароматических соединений связывается с особенностями строения бензола. [c.566]

    Типичные органические производные перехо.дных элементов характеризуются очень низкой термической стойкостью. Ароматические соединения более стойки, чем алифатические. [c.255]

    Стойкость ароматических соединений связывается с особенностями строения бензола. В бензоле имеется шесть сопряженных электронов, которые составляют ароматический секстет , являющийся особой чертой всех веществ, обладающих типично ароматическими свойствами. [c.557]

    Полистирол. Для получения прозрачных тонов при крашении полистирола общего назначения наиболее пригодны продукты, растворимые в жирах и ароматических соединениях. По химическому строению это азо- и антрахиноновые красители, различающиеся по стойкости. Они полностью растворяются в полистироле и дают чистые, прозрачные тона окраски. [c.179]


    Химические свойства. Для ароматических углеводородов наиболее характерны реакции замещения водорода в ароматическом кольце. В реакции присоединения (по двойным связям) ароматические углеводороды вступают с большим трудом при жестких условиях. Отличительной особенностью ароматических соединений также является их значительная стойкость по отношению к окислителям. [c.209]

    Появление детонации приводит к повышению расхода топлива, снижению мощности двигателя, к преждевременному его износу. Склонность бензинов к детонации характеризуется октановым числом. Принято считать, что изооктан, который мало склонен к детонации, имеет октановое число 100, а н-гептан, чрезвычайно склонный к детонации,— 0. Октановое число будет равно содержанию изооктана в стандартной смеси, состоящей из изооктана и -гептана, которая детонирует при той же степени сжатия, что и испытуемый бензин. Октановое число зависит от состава топлива его увеличивают изопарафины и ароматические соединения. Средствами повышения детонационной стойкости бензинов, т. е. получения высокооктановых топлив, являются изомеризация и ароматизация содержащихся в них углеводородов, составление смесей из так называемого базового бензина — бензина прямой гонки или крекинга с высокооктановыми компонентами — изооктаном, изопентаном, этилбензолом, изопропилбензолом и др., а также добавка к бензинам антидетонаторов, из которых получил распространение тетраэтилсвинец РЬ(С2Н5)4, входящий в состав так называемой этиловой жидкости. [c.56]

    Октановое число зависит от состава топлива его увеличивают изопарафины и ароматические соединения. Одним из средств повышения детонационной стойкости бензинов, т. е. получения высокооктановых топлив, является изомеризация и ароматизация содержащихся в них углеводородов. Высокооктановые топлива могут быть получены также составлением смесей из так называемого базового бензина — бензина прямой гонки или крекинга с высокооктановыми компонентами — изооктаном, изопентаном, этилбензолом, изопропилбензолом и др. [c.473]

    Количественное исследование показывает, что стойкость этих комплексов значительно возрастает при переходе от бензола к его метилзамещенным. Более того, комплексы, образованные данным ароматическим соединением с НВг А12Вгд, более устойчивы, чем комплексы с НВг АШГд. В самом деле, бензол, углеводород, считающийся наиболее слабым Основанием в этой группе, как замечено, образуют комплекс только с НВг А12Вг,. [c.399]

    Из предложенного механизма реакции (XLVI) очевидно, что выражение скорости реакции замещения должно содержать коэффициент, соответствующий стойкости индивидуального я-комплекса. При обсуждении сравнительных скоростей замещения в различные положения молекулы этот коэффициент будет исключен и наблюдаемые ориентации можно непосредственно связать с относительными скоростями замещения в различные положения. Кроме того, из имеющихся данных видно, что этот коэффициент относительно невелик и мало зависит от структуры ароматического соединения. Следовательно, в случае сильно полярных заместителей, которые сильно влияют на стойкость тг-комплекса, этот коэффициент для <т-комплекса становится столь незначительным, что им можно пренебречь  [c.418]

    Интересно отметить, что фракция нефти, из которой выделяли ароматические углеводороды, содержала 0,3% серы. Хотя о содержании серы в исследованной ароматической части ничего не сообщается, но, несомненно, большая часть ее, если не вся, сконцентрировалась в этой последней фракции. Специальные исследования терми-ческбй стойкости сераорганических соединений, содержащихся в сырой нефти, показали [53], что большая часть их разлагается уже при температурах 150—350° С и лишь немногие (тиофен, 2,5-диметил-тиофен, тионафтен, тиантрен) выдерживают без разложения температуру 450—500° С. Таким образом, как углеводороды, так и сернистые соединения сырой нефти являются источником образования высококонденсированных ароматических соединений в процессе перегонки ее с целью выделения высококипящих дистиллятных фракций. [c.195]

    Ненасыщенные алифатические углеводороды — олефины — выделяют при облучении значительно меньше водорода, чем насыщенные. Выход водорода достигает приблизительно 1 молекулы на 100 эВ, выход других газообразных продуктов также незначителен. С другой стороны, выход продуктов с высоким молекулярным весом, образовавшихся в результате соединения двух или более исходных молекул, может быть достаточно высоким, если двойная связь находится в доступном положении. Например, число молекул 1-гексе-на или циклогексена, вступающих в реакцию соединения, достигает приблизительно 10 на 100 эВ. Число реагирующих молекул снижается, если двойная связь находитсл внутри длинной молекулы. Благодаря стойкости к действию излучения особого внимания заслуживают ароматические соединения — бензол, толуол, нафталин и др., характеризующиеся резонансно-стабилизированным арсмати-ческим кольцом. Поглощенная ими энергия перераспределяется таким образом, что разрушение. молекул предотвращается. [c.160]

    Метилтретбутиловый эфир — бесцветная жидкость с резким запахом, температура кипения 55°С. Введение МТБЭ снижает неравномерность распределения детонационной стойкости бензина по фракциям. МТБЭ обладает высокой детонационной стойкостью, октановые числа смешения его изменяются от 115 до 135 по исследовательскому методу или от 98 до ПО — по моторному (табл. 6.14). Токсикологические испытания показали, что МТБЭ не оказывает отрицательного действия на организм человека. Добавление МТБЭ в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах (см. ниже). Некоторым недостатком МТБЭ является более низкая, чем у углеводородов, теплота сгорания (35 200 кДж/кг) и способность растворяться в воде, хотя и в небольшой концентрации (до 4,8 г в 100 г воды при 20°С). При испытаниях отмечено, что применение МТБЭ ведет лишь к незначительному увеличению расхода бензина. [c.228]

    Термическая, стойкость кремнийорганических полимеров зависит от природы органических радикалов. Менее чувствительны к окислению фенильные радикалы в силу их большей устойчивости по сравнению с другими радикалами (С2Н5, СНз и т. п.). Кроме того, выделяющиеся в результате отщепления ароматические соединения (фенолы) ингибируют процесс дальнейшего окисления. [c.83]

    Каменноугольные смолы и пеки получают термической переработкой твердых топлив. Выход каменноугольной смолы при коксовании составляет около 2,5—3,5% от массы каменного угля. Из каменноугольной смолы фракционной разгонкой получают различные масла, в том числе антраценовые. Остатком от перегонки смолы (около 60% от ее массы) является каменноугольный пек. Это довольно твердое вещество черного цвета плотностью 1,2—1,3 г/см , в котором содержится от 8 до 30% свободного углерода и значительное количество многоядерных ароматических соединений. Различие в химическом составе каменноугольного пека и нефтяного битума определяет основные различия в свойствах получаемых из них покрытий. Каменноугольный пек практически не абсорбирует воду его водопоглощение за 6 лет не превышает 0,57в, в то время как водопоглощение нефтяных битумов составляет 0,2% за 24 ч. Поэтому покрытия на основе каменноугольного пека характеризуются стабильностью значений УОЭС. Еще одной их отличительной чертой является гнило-стойкость. [c.31]

    Гетероциклические соединения, содержащие азот и серу, окрашивают резины в темный цвет и уменьшают стойкость масел к экисленню при тепловом и световом воздействии. Парафиновые масла высокой степени очистки стабильны к окислению, но, обладая плохой совместимостью с каучуками, ухудшают физико-ме-ханические и технологические свойства смесей. Нафтеновые масла придают каучукам светлую окраску, имеют самую низк5 ю стоимость, но обладают малой стойкостью к действию света и тепла. Ароматические масла хорошо совмещаются с различными каучу-ками, облегчают распределение сажи, обладают высокой стойкостью к окислению, не изменяют физико-механических и технологических свойств смесей, являются хорошими пластификаторами. По свойствам невулканизованные смеси с нафтено-ароматически-ми маслами не уступают смесям с ароматическими маслами. Введение ароматических соединений в нафтеновые масла значительно улучшает их свойства. [c.169]

    Аминогруппа, соотв. ее производные, например алкиламино-, диалкиламино-, ариламиногруппы, так же как оксигруппа, оказывают, как выше уже неоднократно было упомянуто, очень существенное влияние на повышение реакционности ароматического ядра, заключающего эти заместители. Включение новых замещающих атомов или групп протекает у амино- (соотв. окси-) соединений с значительно большей легкостью, чем у соединений, свободных от этих групп. Стойкость по отношению например к окисляющим воздействиям, характерная для бензола, в значительной мере ослабляется уже в анилине и феноле и еще более у двузамещенных амино- (соотв. окси-) группами. Можно сказать поэтому, что амино-я оксигруппы являются заместителями, характерно усиливающими реакционность ароматических соединений. [c.235]

    Необходимо также испытать стойкость исследуемого вещества при нагревании. Для этого нагревают 20—30 мг вещества на платиновой фольге или на крышке платинового тигля или же на никелевом шпателе на очень небольшом пламени бунзенов-ской горелки, причем не следует допускать непосредственного соприкосновения пламени с веществом необходимо отмечать все наблюда1 щиеся при этом изменения вещества плавление, возгонку, изменение цвета, выделение запаха или разложение. Если вещество горюче, — может оказаться полезным зафиксировать внешний вид пламени, так как ароматические соединения и вообще вещества, сравнительно богатые углеродом, горят коптящим пламенем. Под конец операции энергично нагревают вещество до полного его разложения. Если после этого остается нелетучий продукт, следует установить его природу качественным анализом. Если остаток представляет собой углекислую соль, окись или металл, можно полагать, что исследуемый продукт является солью карбоновой кислоты или фенола или же вообще вещества кислого характера. Если остаток представляет собой сульфид, сульфит или сульфат, продукт является солью органической кислоты, содержащей серу, или же бисульфитным соединением альдегида или кетона. [c.518]

    Изучение роста дендритов иредставляет большой практический интерес, поскольку дендриты обнаруживаются в изоляции кабелей, длительно находившихся в эксплуатации. Важное значение имеют сравнительные испытания, позволяющие оценить относительную стойкость различных полимеров и их композиций к образованию дендритов. Оказалось, например, что при увеличении степени кристалличности рост дендритов замедляется (см. рис. 84). Наиболее существенное увеличение дендритостойкости может быть достигнуто при введении некоторых низкомолекулярных добавок [4, с. 88 133], таких, как галогенсодержат щие или ароматические соединения, а также и минеральных наполнителей (рис. 96). [c.151]

    Соединения с незамещенным ароматическим кольцом, вследствие максимального содержания в них ароматических структур, обладают и максимальной радиационной стойкостью. Однако такие соединения обычно мало пригодны в качестве базовых компонентов смазочных масел вследствие их высокой температуры плавления, узкого температурного интервала жидкого состояния, неудовлетворительных смазывающих свойств, низкого индекса вязкости и т. д. Эти недостатки можно устранить или в известной степени уменьшить введением в исходное ароматическое соединение алкильных заместителей. Введение алкильных групп с короткими цепями ( j — С4) несколько улучшает смазочные свойства при этом сохраняется радиационная стойкость, близкая к стойкости исходного углеводорода. При введении в ароматическое кольцо более длинных алкильных цепей (Сщ — С20) вязкость и индекс вязкости повышаются, но радиационная стойкость значительно снижается. Эти обстоятельства следует учитывать при разработке радиационностойких базовых масел и выборе длины алкильной цепи при ароматическом кольце. [c.60]

    Для приготовления консистентных смазок этого типа необходимы радиационностойкие масляные основы и загустители. Улучшенные масла замедляют твердение смазки на заключительных этапах радиолиза, а усовершенствованные загустители уменьшают размягчение в начальный период радиолиза, В обоих компонентах консистентных смазок можно-использовать ароматические соединения, обладающие повышенной стойкостью к радиолизу. Примером может служить смазка на основе алкнл-дифенильного масла, загущенного К-октадецилтерефталаминатом натрия, которую выпускают в промышленном масштабе под обозначением NRRG 159 (фирма Стандард ойл оф Калифорния ). [c.95]

    К настоящему времени стало достаточно ясно, что новые молекулы не обладают химической стойкостью бензола и других членов семейства шестичленных ароматических соединений. Действительно, доказательства несомненного существования гептафульвена и фульвалена были получены только вследствие того, что высокая степень разбавления оказывается достаточной для предохранения молекул от полимеризации. [c.64]

    Следует отметить, что требования, предъявляемые в настоящее время различными отраслями народного хозяйства к каучу-кам и резинам, настолько многообразны (по прочности, эластичности, химической стойкости, газонепроницаемости и др.), что им не может одновременно удовлетворять какой-либо один вид каучука. С другой стороны, набор классов органических соединений, пригодных в качестве мономеров для синтеза каучуков, в последние годы чрезвычайно расширился. Помимо уже перечисленных классов, он включает органические полисульфиды, сложные эфиры двухосновных карбоновых кислот и гликолей, диизоцианаты ароматических соединений с конденсированными ядрами, винилпиридины и др. Отсюда и огромное разнообразие выпускаемых в настоящее время каучуков и сочетаний их технических свойств. [c.430]

    Замещение в ароматическом радикале приводит к совершенно другим результатам. В отличие от реакционной способности хлор-алкилсиланов хлорфенилсиланы относятся к наиболее стойким химическим соединениям. Стойкость повышается с увеличением числа атомов галогена в ароматическом ядре. В этом случае замещение галогенами не только не снижает устойчивость связи 51—С, но, напротив, эту связь стабилизирует. [c.203]

    Иначе ведут себя шестичленные гетероциклические соединения. Пиридин переводится в р-нитропиридин с исключительным трудом и с очень плохими выходами. Эта малая склонность к нитрованию распространяется и на хинолин, в котором нитруется только бензольная половина. Пиразол снова гладко нитруется как обычное ароматическое соединение. Как известно, пиразоловое кольцо обладает такм же высокой стойкостью к химическим воздействиям, как и пиридиновое кольцо. Повидимому, реакционная способность системы объясняется наличием групп МН. Изоксазолы, замещенные в положениях 3,5, тоже гладко переходят в нитроцроизводные. [c.310]

    При выборе между этими двумя способами имеет значение целый ряд различных факторов. Во-первых, следует учитывать стабильность исходного органического вещества к термическому и окислительному крекингу и дегидриро1ванию, а также стойкость целевого продукта к дальнейшему окислению или расщеплению. По этим причинам высшие парафины можно окислять только в жидкой фазе. Жидкофазный процесс предпочтителен для получения гидроперекисей и большинства карбоновых кислот, недостаточно стойких в условиях газофазного окисления. Наоборот, для синтеза альдегидов больше подходит реакция в газовой фазе, так как в условиях жидкофазного процесса они слишком склонны к окислению в карбоновые кислоты. Во-вторых, некоторые реакции при низких температурах жидкофазного окисления вообще не идут или протекают крайне медленно (окисление ароматических соединений с деструкцией ядра, окислительный аммонолиз), что предопределяет выбор газофазного процесса. В-третьих, нередко бывает, что окисление одного и того же. вещества в жидкой и газовой фазе идет в разных направлениях и поставленная цель может быть выполнена только при одном из этих способов (например, низшие парафины в газовой фазе окисляются в альдегиды и спирты, а в жидкой — в кетоны и карбоновые кислоты). Наконец, применение специфических инициаторов и катализаторов, часто способных функционировать лишь в определенных условиях, тоже обусловливает выбор между жидкофазным и газофазным процессами. Некоторое значение, правда менее существенное, имеют такие факторы, как агрегатное состояние и летучесть исходного органического вещества, возможность отвода реакционного тепла и т. д. [c.515]

    В процессе дегидрирования под давлением водорода всегда образуется известное количество олефинов, понижающих стабильность бензинов, так как олефикы способны к окислению и понижают детонационную стойкость горючего. Их можно удалить обработкой химическими реагентами, например серной кислотой, но для этой цели лучше применять каталитическое гидрирование в конце процесса дегидрирования под давлением водорода. В реакторы тоже загружен катализатор—М0О3. Процесс ведется при 300—350° при этом происходит лишь частичное гидрирование, не затрагивающее ароматические соединения. Газы дегидрирования, образования которых нельзя избежать, большей частью состоят из олефинов и, наряду с насыщенными углеводородами, могут быть с успехом использованы в качестве источника сырья для получения этилена, пропилена и бутилена. [c.120]

    К пирографиту близок по физическим и электрохимическим свойствам стеклоуглерод, получаемый термическим разложением углеродистых материалов при нагревании в восстановительной или инертной среде. Сырьем в данном случае могут служить синтетические смолы, фурфурол и фуриловый спирт, многоядерные ароматические соединения. Стеклоуглерод—труднографитируемый материал, в котором процесс упорядочения атомов углерода в гексагональный графит начинается лишь при температуре обработки выше 2700° С. Он отличается монолитностью, очень малой, преимущественно закрытой, пористостью, что обуславливает его практически полную газонепроницаемость. Хорошо проводит ток, хотя электропроводность его ниже, чем у графита. Исключительная химическая стойкость в агрессивных средах, газонепроницаемость и достаточно высокая электропроводность обусловили применение стеклоуглерода при электролизе. Исследование [73] показало, что если стеклоуглерод получают при 900°С (СУ-9), то он отличается недостаточной карбонизацией и содержит до 4% (об.) кислорода. СУ-30, получаемый при 3000° С, обнаруживает частичную графитизацию. [c.40]


Смотреть страницы где упоминается термин Ароматические соединения, стойкость: [c.14]    [c.15]    [c.403]    [c.300]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте