Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкие фазы полимеризация

    Гидрирование ацетиленовых и диеновых углеводородов в пропан-пропиленовой и бутан-бутиленовой фракции пиролиза. Во избежание термической полимеризации гидрирование сжиженных газов пиролиза необходимо осуществлять при возможно более низкой температуре (не более 50 °С), причем повышение ее должно происходить только путем адиабатического разогрева (за счет теплового эффекта реакции). Чтобы не допустить чрезмерного разогрева, в ряде случаев следует использовать два последовательных реактора колонного типа либо применить трубчатые реакторы с внешним теплоносителем или возвратом части про-гидрированного и охлажденного продукта на вход реактора. Поскольку фракции пиролиза Сз и С4 получаются в жидком виде, целесообразно проводить гидрирование также в жидкой фазе. Ввиду высокой реакционной способности гидрируемых примесей большого соотношения водород/сырье не требуется, поэтому, как правило, циркуляция водородсодержащего газа не применяется. В реакторы подается стехиометрическое количество водорода с 10—30% избытком. К катализаторам предъявляются требования высокой селективности (гидрироваться должны только высоконенасыщенные углеводороды) и инертности по отношению к реакции полимеризации. Наиболее эффективны палладиевые катализаторы, нанесенные на окись алюминия или носители на основе окиси алюминия. [c.21]


    В настоящее время нет еще достаточно разработанной теории процесса полимеризации применительно к сланцевому газу. В качестве рабочей гипотезы принимается, что полимерные вещества образуют циклопентадиен и диеновые углеводороды жирного ряда в результате реакций окислительной полимеризации в жидкой фазе. [c.192]

    Процессы в присутствии щелочных катализаторов. Изомеризация бутена-1 в бутены-2 в присутствии окисных кислотных катализаторов протекает при повышенных температурах и недостаточно селективно, так как сопровождается крекингом, полимеризацией и др. Использование щелочных катализаторов дает возможность проводить этот процесс более селективно и при более низких температурах, например при О—100°С и 0,1—7 МПа в жидкой фазе [4—7]. Щелочные катализаторы готовят, нанося соединения Na ил> К на -у-АиОз в количестве 2—30% (масс.). Например, технически бутен-1 (98,6%-ный) изомеризуют в присутствии щелочных ката лизаторов (Na или К на АЬОз) при 25—60 °С, 2,04 МПа и объем ной скорости 1 —17 ч . Состав продуктов приведен в табл. 57, и которой также ясны наиболее эффективные условия процесса. [c.180]

    Давление играет большую роль в углублении процесса полимеризации олефинов. Однако в условиях промышленного процесса полимеризации фракций Сд—Св, осуществляемого при 170—220° С, содержание целевого димера в равновесной смеси составляет от 50 до 99% (соответственно для h- bHio-I и н-С Н,-1). Это количество достаточно велико, и примеиеиие давлений до 40—50 ат вызвано соображениями чисто технологического порядка —стремлением к сокращению реакционного объема и повышению скорости полимеризации олефина в смеси, а не термодинамической необходимостью . Положительная роль давления, очевидно, объясняется также увеличением доли жидкой фазы в реакторе конденсат полимеров смывает смолы с поверхности катализатора и предотвращает отложение вновь образующихся смол. [c.325]

    Механизм образования нагаров. Большая часть бензина полностью испаряется во впускном трубопроводе двигателя. В парообразном состоянии углеводороды бензина не подвергаются химическим превращениям в предпламенный период и сгорают, не образуя большого количества нагара. Некоторая часть бензина не успевает испариться во впускном трубопроводе и в виде отдельных капелек, иногда в виде тумана попадает в камеры сгорания. Находясь в жидкой фазе, высококипящие углеводороды под действием температуры в предпламенных стадиях могут подвергаться химическим изменениям. Такие изменения, связанные с окислением углеводородов п последующей их конденсацией, полимеризацией и уплотнением продуктов окисления, приводят к появлению высокомолекулярных продуктов, образующих впоследствии нагар. Склонность бензина к нагарообразованию определяется химической стабильностью его высококипящих фракций. Если эти фракции стабильны, то их количество незначительно влияет на нагарообразование, если же нестабильны, то содержание их в полной мере определяет нагарообразующие свойства бензинов. [c.278]


    Реакция полимеризации происходит в жидкой фазе при —30 °С и ниже в зависимости от необходимой степени полимеризации. Сырьевая смесь поступает двумя потоками в реактор 5 через распылительные устройства, катализатор (2%-ный раствор хлорида алюминия в этилхлориде) подается в реактор через три распылительных устройства. Степень полимеризации составляет 80—90 %. Выделяющаяся при реакции теплота снимается путем многократного пропускания реагирующей смеси над охлаждающими поверхностями реактора 5. Полимер, растворенный в изобутане, поступает из реактора. в диафрагмовый смеситель 6, куда подается этиловый спирт для дезактивации затем полимер смешивают с маслом-разбавителем в емкости 7. Полиизобутилен, растворенный в масле, поступает на дегазацию, которая осуществляется в двух колоннах одна из них (8) работает при небольшом избыточном давлении, а вторая (/2) —в вакууме. В колонне 8 отделяются непрореагировавшие изобутилен и изобутан, а также этилхлорид и этиловый спирт. Раствор полиизобутилена в масле из нижней части колонны 8 направляется в колонну /2 и после дополнительной перегонки направляется в емкость /5 товарного продукта. [c.242]

    В технике такая полимеризация неразветвленных полимеров или их растворов редко применяется вследствие трудностей, связанных с контролем за выделяющимся теплом, а также потому, что получающиеся продукты нелегко поддаются дальнейшей обработке. Однако некоторые соединения полимеризуются в жидкой фазе без растворителей. Так, например, при производстве листового полиметилметакрилата мономер полимеризуется непосредственно в форме желаемых листов между стеклянными пластинами, разделенными гибкими прокладками (позволяющими ие-тилметакрилату сжиматься в процессе полимеризации) [127]. [c.119]

    Цеолиты эффективно очищают от серы не только углеводородные газы, но и жидкие фракции — на газобензиновых заводах, газофракционирующих установках и т. д. Примером широкого применения цеолитов для очистки от серы углеводородов в жидкой фазе может служить очистка пропана. Особенно высокие требования по содержанию серы предъявляются к углеводородам, подвергаемым каталитической переработке, полимеризации и т. п. Применение цеолитов позволяет вдвое снизить содержание сернистых соединений в циклогексане, используемом в качестве растворителя при полимеризации. Не меньшее значение имеет обессеривание и для углеводородов, входящих в состав бензинов. [c.112]

    Под действием больших энергий ионизирующих излучений, активирующих молекулы смазочного материала, в них происходит разрыв химических связей. При взаимодействии образовавшихся свободных радикалов между собой или с другими активированными молекулами получаются новые соединения, строение и свойства которых отличаются от исходных. Обычно протекают реакции полимеризации и окисления, при которых образуются летучие продукты малого молекулярного веса. Минеральные и синтетические масла после облучения темнеют, становятся более вязкими, а при поглощении больших доз излучений даже желатинируются или твердеют. То же происходит в консистентных смазках с масляной основой. На начальной стадии облучения структурный каркас мыльных смазок разрушается, и смазки размягчаются. В дальнейшем при желатинировании жидкой фазы смазки затвердевают, становятся хрупкими. Глубина изменений зависит от дозы поглощенных излучений и химического состава смазки. Значительные изменения свойств большинства смазок начинают проявляться при поглощенной дозе излучений 1-10 рад. Однако разработаны смазки, в 5—7 раз более стойкие [12]. [c.666]

    Неоднократно устанавливалось влияние высоких давлений на скорость реакций в конденсированных системах. Это влияние наблюдалось в случае реакций в жидкой фазе, например полимеризации этилена, стирола и т. д. Для некоторых реакций в жидкостях можно предвидеть влияние давления на константу скорости реакции, основываясь на теории переходного состояния  [c.235]

    Считают, что причинами образования полимерных веществ из непредельных углеводородов газового бензина является наличие жидкой фазы — выносимого из цилиндра в нагнетательные коммуникации компрессорного масла, обеспечивающего адсорбцию бензина. Реакциям полимеризации непредельных углеводородов способствуют кислород, содержащийся в газе (0,5—0,9%), и высокая температура компримирования в I ступени до 145"С во II —до 190°С и в III —до 160°С (температура в цилиндрах в конце сжатия). [c.195]

    Реакция полимеризации, имеющая огромное значение при. обработке олефинов в жидкой фазе (о протекании этой реакции в паровой фазе известно очень мало) [c.246]

    Состав продуктов реакции контролируется не только термодинамическим равновесием, но часто и кинетическими факторами. Алкилирование ароматических углеводородов — сложный процесс, состоящий из ряда взаимосвязанных между собой реакций, таких, как алкилирование, изомеризация, диспропорциони-рование, переалкилирование, полимеризация и т. д. Расчеты равновесия процесса с учетом побочных реакций являются сложной задачей, которая в определенной степени была решена рядом исследователей [9, 10]. Тем не менее термодинамические расчеты по упрощенной схеме процесса алкилирования, в которой, не учитывается ряд стадий и побочных реакций, целесообразно использовать для определения основных параметров процесса, необходимых для его оптимизации. Термодинамический расчет алкилирования бензола этиленом и пропиленом в газовой и жидкой фазах детально рассмотрен в работе [10] и при необходимости может быть использован читателями. Сведения для термодинамических расчетов алкилирования бензола, толуола, ксилолов и других алкилароматических углеводородов можно заимствовать из работы [11]. [c.15]


    Побочные реакции включают полимеризацию и изомеризацию олефинов с образованием высших кислот, а также гидратацию олефинов в спирты и образование эфиров, причем обеим этим реакциям благоприятствуют низкая температура и избыток олефина. Так, например, при П5° С и 100 атм (980- Ю Па) в жидкой фазе на катализаторе ВРз-НаО [6] протекает реакция [c.191]

    На полимеризацию, как уже указывалось, благоприятно влияет повышение давления. Это обусловлено не только термодинамическими факторами, но и значительным ускорением процесса и возможностью работы без регенерации катализатора. При низком давлении на катализаторе постепенно сорбируются высшие продукты полимеризации и осмоления при повышении давления часть продуктов полимеризации конденсируется, увлекая с собой в жидкую фазу (вымывая) соединения, дезактивирующие катализатор. Обычно работают при 3—6 МПа, что обеспечивает длительный срок службы катализатора без регенерации. [c.57]

    Уменьшение давления (концентрации этилена в жидкой фазе) приводит к снижению скорости процесса олигомеризации и, в определенных пределах, средней степени полимеризации. Обычно процесс высокотемпературной олигомеризации осуществляют при 190—200 °С под давлением 15—28 ЛШа. Степень превращения этилена также влияет на качество продукта. При заданных прочих условиях она определяет концентрацию высших олефинов в жидкой фазе и количество разветвленных продуктов. Для предотвращения образования разветвленных олефинов степень превращения этилена ограничивают 60—75%. [c.323]

    Для иллюстрации методик, применяемых пр>и решении обратной кинетической задачи, следуя работе [177], рассмотрим механизм гетерогеннокаталитического окисления метилакролеина в жидкой фазе в присутствии ингибитора полимеризации. Ставилась задача нахождения решения системы обыкновенных дифференциальных уравнений химической кинетики, соответствующих механизму, наилучшим образом описывающему экспериментальные данные. [c.166]

    При работе двигателя большая часть бензина полностью испаряется во впускном трубопроводе. Испарившиеся углеводороды быстро претерпевают предпламенные превращения и сгорают, не образуя большого количества нагара. Оставшийся бензин, не успевший испариться во впускном трубопроводе, попадает в камеры сгорания в виде капелек и иногда в виде тумана. Высококипящие углеводороды и неуглеводородные примеси, находящиеся в жидкой фазе, под действием высокой температуры в предпламенных стадиях могут подвергаться глубоким химическим превращениям (расщеплению и окислению, конденсации, полимеризации и уплотнению). В результате этих превращений образуются высокомолекулярные продукты, составляющие нагар. [c.44]

    Реакция (г) катализируется серной кислотой, которая вводится в количестве 1,0-1,5% от массы изобутилена. Для предотвращения полимеризации изобутилена в системе всегда поддерживается избыток формальдегида, который подают в виде 37%-ного водного раствора (формалина). Конденсация проводится при температуре 85—95°С и давлении около 2 МПа. Это обеспечивает жидкое состояние реагентов, образующих гетерогенную двухфазную систему. Поэтому интенсивность процесса конденсации существенно зависит от поверхности контакта углеводородной и жидкой фаз. [c.333]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Давление. Установлено, что скорость подачи сырья, необходимая для получения данной глубины превращения, прямо пропорциональна давлению в реакторе. Эта зависимость подтверждена при полимеризации пропилена под давлением от 1,75 до 12,6 МПа. Во всем этом интервале проведение процесса возможно. При более высоких давлениях образуется жидкая фаза, которая, вытесняя тяжелые полимеры с поверхности катализатора, препятствует его дезактивации и способствует образованию более низкокипящих полимеров. При очень низких давлениях на его поверхности скапливаются полимеры, и катализатор быстро дезактивируется. [c.312]

    Несколько лучше изучена кинетика гомогенной полимеризации Б жидкой фазе диолефинов. [c.142]

    Тамман и соавторы (155) изучали кинетику полимеризации изопрена и диметилбутадиена в жидкой фазе при низких температурах. [c.142]

    Авторы пришли к выводу, что при этих условиях реакция полимеризации диолефинов подчиняется 1-му кинетическому порядку. Давле пив оказывает чрезвычайно большое влияние на скорость полимеризации диолефинов в жидкой фазе, что видно из табл. 121. [c.143]

    Уменьшение содержания непредельных при высоких давлениях сопровождается образованием продуктов полимеризации и нафтенов. Froli h однако придерживается того мнения, что благоприятное влияние давления на реакции полимеризации при повышении давления постепенно уравновешивается увеличением перехода олефинов высокого и среднего молекулярного веса (которые по-лимеризуются быстрее всего) в жидкую фазу, где скорости полимеризации значительно замедляются вследствие разбавления крекируемым веществом. В результате такогО перехода парообразных олефинов в жидкую фазу полимеризация и ко ксообразование лри определенных условиях возрастают с увеличением давления сперва быстро, затем — постепенно и медленнее, и наконец, перейдя через максимум, при еще более высоких давлениях коксообразование начинает падать. [c.120]

    Полимеризация упомянутыми выше методалш представляет собой реакцию в жидкой фазе. Полимеризация в паровой фазе проводится путем пропускания тока газа, содержащего этилен, пад частицами неподвижного или движущегося слоя катализатора [60]. Полимер извлекается из катализатора при помощи горячего лшдкого парафинового или нафтепового углеводородного растворителя. Концентрация катализатора составляет [c.310]

    Полимеризация упомянутыми выше методами представляет собой ])еакцию в жидкой фазе. Полимеризация в паровой фазе проводится путем пропускания тока газа, содержащего этилен, над частицами неподвижного илп движущегося слоя катализатора [60]. Полимер извлекается из ката-.лпзатора при помощи горячего жидкого парафинового или нафтенового углеводородного растворителя. Концентрация катализатора составляет 0.1—5 кг на 100 кг этилена температура полимеризации лежит в пределах 65—121°, а давление — в пределах 3,5—35 ат. Экстракция проводится прп температурах 149—177°. [c.310]

    Этилциклопентадиен был синтезирован с выходом 70% этилирова-нием натрийциклопентадиена этилсульфатом в жидком аммиаке. При гидрировании над катализатором никель на кизельгуре был получен этилциклопентан с выходом лишь 30% в жидкой фазе и 58% в паровой фазе из-за сильной полимеризации во время этого процесса [21, 55]  [c.457]

    Полимеризация чистого изобутилена над фтористым бором в паровой фазе не происходит совсем [9, 10, 11]. Одпако добавление воды или третичного бутилового спирта вызывает мгновенную реакцию при этом фтористый бор расходуется в количествах, примерно эквивалентных количеству нолей промотирующого агента. В то же время присутствие промотирующего агента в жидкой фазе, но-видимому, необязательно. [c.227]

    Поскольку давление насыщенного пара мономера значительно выше, чем аналогичная величина для полимера, то всегда константа равновесия Кы жидкофазной реакции больше константы равновесия Кы газофазной реакции. Например, для димеризации бутена-1 отношение Ра°1рап° составляет 20— 40, а отношение Кы 1Кы имеет порядок 10 . Это означает, что по термодинамическим соображениям полимеризацию предпочтительнее проводить в жидкой фазе. Даже если в газовой фазе равновесная степень превращения мономера невелика, то при той же температуре в жидкой фазе реакцию удастся провести с высокими конверсиями. [c.257]

    При производстве низкомолекулярпого полиизобутилена полимеризацию проводят в жидкой фазе при 21—29 °С в присутствии хлористого алюминия (катализатор) и хлористого водорода (активатор). [c.13]

    Полимеризация винилхлорида в массе протекает в среде жидкого мономера, в котором предварительно растворяется инициатор. В качестве инициатора применяют органические перекиси, азо-бис-изонитрилы и другие соединения, растворимые в мономере. Основным недостатком этого метода является трудность отвода тепла реакции. Вследствие нерастворимости полимера в мономере твердая фаза начинает образовываться уже в самом начале процесса. С увеличением степени превращения винилхлорида постепенно исчезает жидкая фаза, образуются крупные агрегаты полимера, которые затем слипаются в монолитные блоки. При этом на стенках реактора образуется твердый налет, затрудняющий отвод тепла через стенки, что приводит к местным перегревам и получению неоднородного полимера. Вследствие этого в обычном реакторе-автоклаве полимеризацию осу1цествляют при интенсивном перемешивании лишь до невысокой [c.27]

    Вовлечение в сырье полимеризации этан-этиленовой фракции связано также с понижением (за счет этана и этилена) парциального давления продуктов полимеризации, что приводит к снижению содержания жидкой фазы на катализаторе и ускоренной его дезак тивации. Поэтому наличие углеводородов Са в сырье нежелательно. [c.197]

    Твердые катализаторы применяют в жидкой среде гораздо реже, чем в газовой. Однако в органической технологии имеется ряд крупномасщтабньгх процессов гидрирования тяжелых углеводородов и жиров в жидкой фазе на металлических или сульфидных катализаторах, а также процессы дегидрирования, окисления, полимеризации и т. п. [1, 2, 16, 39, 74]. Рассмотренная выще классификация и закономерности процессов в газовой фазе на твердых катализаторах в основном относятся и к жидкофазным процессам с учетом их специфики, описанной в ряде работ [1, 16, 39, 56, 66, [c.52]

    Изрпропилсерная кислота. Изопропилсерная кислота имеет значение как промежуточный продукт при изготовлении изопропилового спирта и диизопропилового эфира из пропилена. Этот олефин реагирует с серной кислотой значительно легче, чем этилен [176, 178], и может абсорбироваться более слабой кислотой. Чтобы получить высокий выход изопропилсерной кислоты, необходимо употреблять менее концентрированную кислоту, так как при концентрированной кислоте преобладаю Г побочные реакции [233]. Абсорбция улучшается в присутствии инертного растворителя для пропилена при условии обеспечения тесного контакта раствора с кислотой [234]. Введение инертного растворителя уменьшает полимеризацию, происходящую при непосредственном растворении пропилена в серной кислоте. Наиболее удовлетворительные результаты получаются при использовании 87%-ной кислоты. Можно также избежать полимеризации, если вести абсорбцию 65—80%-ной кислотой при температуре 10—30° и давлении выше 3,5 ат [235]. В одном из патентов [236] рекомендуется проводить реакцию в жидкой фазе и при низкой температуре, поддерживая последнюю испарением части пропилена. В другом патенте [237] предлагается растворять пропилен в концентрированной серной кислоте при температуре —15°, обеспечивая соприкосновение смеси газов с кислотой в течение некоторого времени. Серная кислота, разбавленная примерно равным объемом ледяной уксусной кислоты, растворяет пропи- [c.45]

    Бутилены серной кпслотой абсорбируются легче, чем пропилен и этилен, и поэтому можно приготовить смесь бутилсерных кислот [242], практически свободную от низших гомологов, применяя серную кислоту соответствующей концентрации. Изобу-тилен можно абсорбировать 65%-ной кислотой [243], а прочие бутилены—85° о-ной кислотой при 30° или с концентрацией 88% и выше прп температурах 3° и ниже [244]. Запатентована [245] абсорбция бутиленов в жидкой фазе иод давлением при температуре 30—35°. При растворении в 78°о-ной кислоте жидкий бути-лен-2 образует ничтожное количество полимеров, тогда как абсорбция более концентрированной кислотой соировождается значительной полимеризацией [233]. Бутилсерная кислота, полученная из бутилена-1 пли бутилена-2, в результате омыления дает вторичный бутиловый спирт [246]. [c.46]

    Сапиро и соавторы (124) изучали термическую полимеризацию альфа-метилстирола в жидкой фазе под высоким давлением (4000— 5000 ат). Они считают, что ири различных температурах полимеризация альфа-метилстирола носит различный характер. При 100° С иод высоким давлением (5000 ат) альфа-метилстирол полимеризуется, вероятно, с помощью цепного мехаиизма до высокомолекулярного полимера. При 150° С имеет место, повидимому, не цепная реакция, которая ограничивается образованием тетрамера как наиболее высокомолекулярного полимера. [c.126]


Смотреть страницы где упоминается термин Жидкие фазы полимеризация: [c.169]    [c.202]    [c.202]    [c.266]    [c.125]    [c.19]    [c.172]    [c.85]    [c.84]    [c.196]    [c.81]    [c.173]    [c.623]   
Газо-жидкостная хроматография (1966) -- [ c.147 ]

Газо-жидкостная хроматография (1966) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2025 chem21.info Реклама на сайте