Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение метод, по разрушению комплексов

    Соким значением pH, необходимым для образования прочного комплекса, и, в конечном счете, — медленным протеканием реакции между иодатом и иодидом. Хьюм и Кольтгоф добавляя цитрат, направляли реакцию между и иодидом в обратную сторону и благодаря этому смогли определять сильные окислители в присутствии Си . Цитратный комплекс меди (II) разрушается добавлением избытка минеральной кислоты, после чего определение меди возможно в той же пробе. Другой метод разрушения нитратного комплекса, к тому же не приводя-ший к необходимости титрования при очень низком pH, — это добавление цианида, который, помимо всего прочего, предотвращает осаждение 0 иодида меди (I). [c.455]


    Если при снятии термомеханической кривой не происходит термодеструкция полимера, то при медленном охлаждении можно воспроизвести термомеханическую кривую образец переходит сначала в высокоэластическое, а затем в стеклообразное состояние (стеклуется). Очень важно то, что при температуре ниже температуры стеклования полимер, как правило, сохраняет некоторый комплекс свойств, присущий только полимерам. Мы говорим, что полимер застекловался, но он не стал хрупким, как обычное силикатное (оконное) стекло. Лист органического стекла (полиметилметакрилат, плексиглас) можно бросить на пол, и он не разобьется вдребезги. И все-таки стеклообразный полимер можно охладить до такой температуры, когда он будет легко разбиваться при ударе. Такая температура носит название температуры хрупкости Тхр-На термомеханической кривой она не проявляется в виде какой-либо характерной точки. Методы определения температуры хрупкости всегда так или иначе связаны с разрушением образца. [c.102]

    Было показано, однако, что иод каким-то образом взаимодействует с молекулами органической фазы так, что константа распределения в некоторой степени зависит от природы этой фазы. Можно предположить, что такой тип взаимодействия растворенного вещества с растворителем, иногда приводящий к образованию вполне определенных соединений (сольватов), широко распространен. В частности, такое явление наблюдается для большинства ионных соединений в водной среде, где полярные молекулы воды легко координируются всеми ионами, за исключением очень крупных. Координирование молекул воды сопровождается экзотермическим эффектом сольватации (гидратации) [уравнение (8.27)]. Энергия гидратации, однако, не выделяется в том случае, если образец экстрагируют в неполярный органический растворитель с низкой диэлектрической проницаемостью. Следовательно, ионные соединения обычно нельзя экстрагировать из водного раствора, если не подобрать какой-либо метод разрушения ионных зарядов. Этого можно достигнуть соединением ионов металла с подходящими хелатообразующими лигандами, которые имеют по одной электронодонорной и кислотной группе. В образующихся комплексах потеря энергии сольватации (гидратации) компенсируется энергией связей металл — лиганд. Ниже приведены типичные лиганды этого типа, которые были использованы в процессах жидкостной экстракции  [c.355]

    Осаждение сульфата бария используется в методах качественного обнаружения особенно многообразно применение этой реакции в методах количественного определения сульфатов. Издавна BaS04 используют в качестве осаждаемой и весовой формы при гравиметрическом определении сульфатов. На выделении осадка BaSOi из раствора основаны методы кондуктометрического и высокочастотного титрования, потенциометрического титрования с ионоселективными электродами, различные методы комплексонометрического определения SOi с многочисленными органическими металлоиндикаторами и методы фотометрического титрования сульфат-ионов. Многообразны варианты нефе-лометрического определения сульфатов, а также методы фотометрического определения, основанные на разрушении комплексов металлов о освобождением окрашенного неорганического или органическою лиганда в присутствии сульфат-ионов. [c.29]


    Соотношение в таком комплексе металла к хеланту принимается 1 1, замедление реакции нри значении pH 6,0 объясняется [313— 315] насыщением координационной емкости иона железа в результате его гидролиза, что приводит к разрушению смешанного комплекса. Можно также предположить, что разрушение комплекса при pH 6,0 связано с возможностью использования железом максимальной дентатности комплексона в результате диссоциации последнего атома водорода. Методом сдвига потенциалов полуволн восстановления определена константа устойчивости комплекса Ig — 8,0 [312]. На основании каталитической реакции окисления стильбексона разработан кинетический метод определения железа, отличающийся высокой чувствительностью (0,001 мкг Fe + в 1 мл) и избирательностью [310, 313—317]. [c.224]

    Метод разрушения ионитного комплекса. Сущ,ность метода состоит в разрушении ионитного комплекса более сильным, чем лигандные группы полимера, донором электронов или более сильным, чем ионы закомплексованного металла, акцептором электронов и определении равновесных концентраций всех участвуюш,их в реакции компонентов. На основании полученных данных рассчитывают константу равновесия н соответственно состав и устойчивость ионитного комплекса. [c.137]

    По разрушению комплексов тория с производными триокси-флуорона предложен метод флуорометрического определения серы [122]. Метод рекомендован для определения сульфата в двуокиси германия. Чувствительность метода —0,1 мкг сульфат-ионов в 1 г пробы. [c.217]

    Цветные реакции. Сульфат-ионы не имеют окрашенных комплексов. Едва ли не все описанные цветные реакции и колориметрические методы определения сульфатов основаны на образовании осадка сульфата бария при разрушении окрашенной бариевой соли с органическим или неорганическим реагентом и освобождении окрашенного реагента. Выделение осадка BaS04, медленное в разбавленных растворах, влияет на чувствительность реакций этого типа. Для понижения растворимости осадка сульфата бария реакции проводят в водно-органических средах [35]. [c.32]

    Универсальных способов определения состава, структуры и концентраций ассоциатов и комплексов нет. Для выяснения структуры какой-либо жидкой фазы обычно требуются нестандартные исследования. Если среднее время жизни молекул ассоциатов и комплексов велико, то для их изучения применяются методы аналитической химии, описанные, например, в монографии [6]. Когда речь идет об ассоциатах или комплексах растворенного вещества в разбавленных растворах, то задача в известной мере облегчается. Как уже было отмечено, уменьшение концентрации растворенного вещества часто сопровождается разрушением сложных структур. Сохраняются, в основном, лишь более простые молекулы ассоциатов и комплексов. В этих усло- [c.107]

    Для определения золота в золотом цианистом электролите можно использовать [551] только иодометрический метод, не требующий полного разрушения цианидного комплекса. [c.121]

    В 60-х гг. XX в., благодаря методам мягкого разрушения интактных митохондрий, бьши выделены четыре дыхательных комплекса (I, П, П1, IV), каждый из которых способен катализировать определенную часть полной последовательности реакций дыхательной цепи  [c.199]

    Изучение процессов, происходящих в жидкой среде при растворении в ней различных веществ, дает много важных сведений для различных областей химии. Прежде всего оно необходимо для создания теории строения растворов, но не менее необходимы такие исследования и для аналитической химии. Как известно, в основе многих методов определения элементов, разработанных химиками-аналитиками, лежат процессы комплексообразования и сольватации, так как индивидуальные особенности различных элементов проявляются особенно резко при образовании ими комплексов в растворе. По этой причине изучение закономерностей комплексообразования и сольватации, исследование не только состава, но и строения комплексов и сольватов является очень важной задачей для исследователя, работающего в области аналитической химии. Однако решение этой задачи методами классической химии весьма затруднительно, а иногда и просто невозможно, поскольку выделение комплексов из растворов в твердую фазу очень часто сопровождается их перестройкой или разрушением. [c.107]

    В-третьих, в цитированных выше работах фракционированию подвергали сырье (парафины или церезин), уже выделенное тем или иным способом из соответствующих нефтяных фракций. Иначе говоря, авторами указанных способов имелось в виду, что процесс последовательного образования или разрушения комплекса для получения определенного числа узких фракций к-парафипов, согласно указанным выше методам, должен быть [c.204]


    При определении валовых форы микроэлементов по К.В. Веригиной образец почвы обрабатывают смесью плавиковой и серной кислот (после прокаливания в муфеле для удаления органических веществ). Остаток после разложения почвы переводят в солянокислый раствор и извлекают из него в виде комплексных дитизонатов медь (при pH 2), смесь цинка и кобальта (при pH 8,2). Разрушив дитизонат, определяют медь фотометрически в виде комплекса с диэтилдитиокарбаминатом. Поскольку дитизонат цинка легко разлагается разбавленной хлороводородной кислотой, его отделяют от кобальта и определяют фотометрически с дитизоном. Содержание кобальта определяют также фотометрически в виде оранжево-красного комплекса с нитрозо-К-сояью (после разрушшия дитизоната). Таким образом, метод К.В. Веригиной позволяет определять фотометрически три микроэлемента из одной порции раствора. Однако, извлекая медь дитизоном, приходится строго выдерживать pH 2, так как при pH 3 уже возможно частичное соизвлечение цинка, а при pH 6 — даже кобальта. Помимо э гого длительные операции извлечения цинка и кобальта в виде дитизонатов, последующее разрушение дитизоната цинка для отделения от кобальта, повторная экстракция дитизоном, разрушение дитизоната кобальта смесью неорганических кислот — все это сильно усложняет анализ, делает его громоздким. В этом случае также целесообразнее отделять кобальт от цинка методом ионообменной хроматографии. [c.356]

    Определение проводят как прямыми методами с использованием окрашенных соединений с неорганическими и органическими реагентами, так и косвенно, по каталитическому действию сульфидов в некоторых реакциях или по окраске лиганда, освобождающегося за счет разрушения комплекса в присутствии сульфидов. Наиболее распространено фотометрирование окрашенных золей сульфидов металлов, измерение интенсивности окраски метиленового голубого и флуориметрическое титрование растворов сульфидов тетрартутьацетатфлуоресцеином. [c.118]

    Предложен косвенный снектрофотометрический метод определения фосфора [925]. Метод основан на измерении при 230 нм светопоглощения молибдата, который образуется нри разложении ФМК после его экстрагирования смесью (5 1) диэтилового эфира и изобутанола и реэкстрагирования аммиачным буферным раствором. Изучено светопоглощение ГПК и других компонентов реакции. Предложен также метод косвенного определения суб-микрограммовых количеств фосфора [432]. Метод основан на связывании в желтый ФМК и определении молибдена но его каталитическому действию на окисление KJ перекисью водорода после экстракции ФМК бутилацетатом, удаления избытка молибдата и разрушения комплекса раствором NaOH. Отношение Р Мо в комплексе равно 1 12. [c.54]

    Регенерация карбамида начинается с анагшза его водного раствора после разрушения комплекса и удаления вьщелившегося слоя нефтепродукта. Полнота удаления нефтепродукта достигается отстаиванием и последующей декантацией. Определение достаточной степени отделения нефтепродукта проводится нефелометрическим методом, основанным на измерении интенсивности света, рассеянного или поглощенного частицами мутной среды. За эталон принимается раствор исходного карбамида такой же крепости. Если раствор отработанного карбамида соответствует данным эталона, то он поступает на вьшарку. [c.209]

    Ход определения. Определение общего содержания железа. Как и при определении фенантролинатньш методом, в тех случаях, когда анализируемая вода содержит относительно большие количества органических веществ, связывающих железо в комплексные соединения, проводят предварительную обработку для разрушения комплексов (см. метод 6.7.1). [c.110]

    Фотометрические методы. Взаимодействие сульфатов с солями (хроматом, молибдатом) и комплексными соединениями (хло-ранилатом, родизонатом и др.) бария лежит в основе давно используемых фотометрических методов определения S04 . Образование осадка BaS04 вызывает разрушение соли или комплекса бария и появление в растворе эквивалентного сульфатам количества свободного лиганда, окраску которого фотометрируют. Изменение окраски раствора при прямом титровании сульфатов солями бария в присутствии металлоиндикаторов на ион Ва + (нитхромазо, торона, ортанилового К и др.) используется для фотометрического установления точки эквивалентности. [c.130]

    В работе [388] использованы комплексы транс азобензола с три-хлоридом сурьмы и ло/)Я-метоксиазобензола трифторидом бора-Под влиянием воды 8ЬС1з и ВРд гидролизуются, и это ириводит к разрушению комплексов и обесцвечиванию растворов. Измерения проводят при 410 и 460 нм. Метод пригоден для определения влажности многих органических растворителей. [c.168]

    Реакцию между Си" и иодидом можно предотвратить или направить в обратную сторону добавлением определенных комплексантов. Капур и Верма [46] для подавления реакции меди применяли пирофосфат и определяли иодат и в присутствии Си". Однако применение пирофосфата ограничено сравнительно высоким значением pH, необходимым для образования прочного комплекса, и в конечном счете, медленным протеканием реакции между иодатом и иодидом. Хьюм и Кольтгоф [47], добавляя цитрат, направляли реакцию между Си" и иодидом в обратную сторону и благодаря этому смогли определять сильные окислители в присутствии Си". Нитратный комплекс меди (И) разрушается при введении избытка минеральной кислоты, после чего можно определять медь в той же пробе. Другой метод разрушения цитратного комплекса, к тому же не приводящий к необходимости титрования при очень низком pH, заключается в добавлении цианида, который помимо всего прочего, предотвращает осаждение иодида меди(1) [48]. [c.394]

    Разработано много других методов определения фтора, основанных на разрушении различных комплексов металлов. Кроме описанных выше для определения фтора применяют реакции разрушения комплексов циркония с хромфиолетовым [130], тория с шиффовыми основаниями [131], 4-(о-арсонофенилазо)-Ы-(1-на-фтил)-этилендиамином [132], хромазуролом S [133], 2-(1,8-диокси- [c.303]

    Косвенные методы определения хлоридов основаны на взаимодействии хлороформного раствора Hg l2Py с дитизоном [37], на разрушении комплексов ртути с азопроизводными [38],.на определении серебра дитизоном после осаждения хлорида серебра [39], на реакции разрущения AgIOз [или твердого Нд(Юз)2] хлоридом [c.316]

    Для спектрофотометрического определения палладия в интервале концентраций 0,5—2,5 мкг/мл используют соли олова(И). Вызывает удивление, что до настоящего времени этот давно известный реагент, открывающий палладий, платину, родий и золото, мало применялся для количественного определения. Княжева [659] применяла хлорид олова (II) для определения палладия и платины в материалах, содержащих серебро. Метод заключается в одновременной экстракции эфиром продуктов реакции хлорида олова(II) с палладием и платиной, разрушении соединения палладия гипофосфитом натрия и визуальном колориметрическом определении платины. В эталонные растворы платины добавляют такое количество палладия, чтобы они были окрашены так же, как и анализируемый раствор платины и палладия. Розовую окраску комплекса палладия стабилизируют хлоридом меди(II). Образующийся хлорид серебра не мешает определению. Метод имеет ограниченное примеиение в частности, его можно использовать при анализе серебряных корольков. Колориметрирование нельзя проводить при искусственном свете. Кроме того, методу присущи трудности, обычные при определении элементов по разности. [c.222]

    Методы колориметрического определения никеля описаны в соответствующей литературе [11, 27, 46, 50, 74, 75, 86]. Наиболее часто определение никеля проводят колориметрированием винно-красного комплексного соединения никеля с диметилглиоксимом. Мешающие элементы (Ре, Сг, Си и др.) связывают в комплексы лимоннокислым аммонием в слабоаммиачной среде, вследствие чего они, за исключением меди, не экстрагируются хлороформом. При последовательной экстракции меди, никеля и железа из аммиачноцитратного буферного раствора [82] операция разрушения комплекса меди с диметилглиоксимом не применяется. Метод последовательной экстракции меди, никеля, железа рекомендуется [c.137]

    Аналогичный метод с применением я-хлорминдальиой кислоты и сульфата церия был ранее разработан Верма и Пол [ПО]. Объемное определение циркония с трилоном Б основано на том, что к испытуемому раствору прибавляют в качестве индикатора какое-либо органическое соединение (арсеназо, эриохромцианин и др.), образующее с Zr интенсивно окрашенное комплексное соединение, но менее прочное, чем с трилоном Б. Поэтому, после того, как весь цирконий свяжется с трилоном, произойдет изменение окраски, вследствие разрушения комплекса с индикатором. [c.311]

    В кругу проблем нефтепромысловой химии одно из первых мест принадлежит буровым растворам Это обусловлено их значением как среды, в которой происходит разрушение горных пород, и тем, что они несут ряд ответлтвенных технологических функций, в большой мере определяющих успех бурения. Современные буровые растворы представляют собой сложные многокомпонентные системы, приготовление и регулирование свойств которых все более выделяется в самостоятельную отрасль буровой техники, имеющую свои специфические проблемы и особенности. Придание буровым растворам заданных свойств и показателей и поддержание их на определенном уровне в период углубления скважины является весьма сложной технической задачей, которая разрешается средствами и методами химической обработки, под которой следует понимать весь комплекс физико-химических воздействий на раствор. [c.3]

    Косвенный фотометрический метод определения ЗО основан на разрушении в кислой среде комплекса Ва + с хлорфосфоназо III. Оптическую плотность реагента после введения в сульфатсодержащую пробу комплекса бария с хлорфосфоназо III измеряют при 645 нм. Определение 1—5 мкг 30 с ошибкой 3,7% возможно в присутствии фосфат- и арсенат-ионов. Метод применим для определения серы в продуктах переработки топлива [1483]. [c.131]

    Разработан метод [1181] определения Hg(II) в присутствии других катионов, основанный на обратном титровании избытка комплексона III раствором Pb(N0a)2, последующем избирательном разрушении комплексоната ртути тиомочевиной и титровании выделившегося комплексона III раствором РЬ(МОз)2- В качестве индикатора используют 0,1 %-ный раствор ксилеполового оранжевого и титруют до перехода желтой окраски в красно-фиолетовую. Можно использовать метилтимоловый синий в качестве индикатора. Мешают Мп +, Са +, Мо +. Влияние Са + и Аи + можно устранить контролем pH и температуры (pH 5,5 —15° С). Комплекс магния с ЭДТА использован в методе замещения для фотометрического титрования ртути [492]. В качестве индикатора использован эриохромчерный Т. При определении 16—32 мкг Hg стандартное отклонение равно 0,44 мкг. [c.95]

    В последнее время хлорную кислоту успешно применяли при неводном титровании, особенно при определении органических оснований. Ее используют также для разрушения протеинов при биохимических анализах, причем она превосходит трихлорук-сусную кислоту. Применение комплексов хлорной кислоты с церием (IV) в оксидиметрии дало возможность или облегчило определение ряда гидроксилированных органических соединений, что при старых методах было трудно или сложно. [c.119]

    В монографии излагаются научные основы исследования, определения и нормирования характеристик ресурса, живучести, риска и безопасности сосудов и трубопроводов преимущественно для нефтегазохимического комплекса. Результаты научных исследований создают исходную научную базу для перехода на новые методы проектирования, строительства и эксплуатации с использованием не только традиционных критериев прочности, жесткости и устойчивости, но и новых критериев предельных деформаций, трещиностойкости, коррозионной стойкости, термопрочности, рассредоточенных и магистральных разрушений. [c.2]

    При проведении фотометрического титрования в отсутствие индикатора необходимо, чтобы титруемые растворы (или продукты реакции) имели собственную характерную полосу поглощения. В этом случае наблюдения ведут за изменением оптической плотности растворов и строят графики в координатах оптическая плотность — количество миллилитров израсходованного раствора. По перегибу кривой находят объем титрованного раствора, необходимый для достижения точки эквивалентности (рис, 37, а). Как видно из рис. 37, а, точка перегиба пересечения двух прямых соответствует точке эквивалентности. Перпендикуляр, опущенный из этой точки на ось абсцисс, указывает на количество миллилитров титрованного раствора, соответствующее точке эквивалентности. В тех случаях, когда в основе фотометрического титрования лежит реакция разрушения окрашенного соединения, кривая титрования имеет противоположное направление. Примером такого титрования может быть определение фторидов, сульфатов и других ионов. В связи с тем, что эти ионы не образуют окрашенных соединений, для их фотометрического определения применяют методы, которые основаны на реакциях разрушения окрашенных соединений. Так, для определения фторидов применяют методы, основанные на реакциях разрушения роданидного комплекса железа, цирконий- или торийализаринового лака, и т. п. Для определения таких ионов окрашенное соединение должно быть всегда менее прочным по сравнению с соединениями, которые [c.90]

    Выделяющиеся молекулы аммиака адсорбируются цеолитом, что сопровождается появлением полос при 1415, 1460, 3340 и 3400 см , характерных для NHJ-hohob. В результате обработки при 350° С эти полосы из спектров удаляются и появляется сильная полоса при 3640 см . Методом водородного титрования было установлено, что 6—9% платины расположены в полостях цеолита, а остальная платина находится на внешней поверхности. Если прогревание гидратированного образца проводят в кислороде, платиновый комплекс сохраняет устойчивость вплоть до 200° С. Аммиак, выделяющийся при 250° С в результате разрушения тетрааммиаката платины, в этом случае цеолитом не адсорбируется. Возможно, что в присутствии кислорода разложение комплекса вызывается окислением NHg. Восстановление такого цеолита дает катализатор с высокодисперсНой платиной (80— 100%). Однако если перед восстановлением водородом окисленные образцы обработать водой, то часть платины может, выделиться в виде агрегатов, включающих несколько атомов платины. Определение концентрации гидроксильных групп на поверхности дисперсной платины методом обмена Н—D показало, что самые большие кристаллиты платины содержат шесть атомов платины. Считается, что процесс восстановления тетрааммиаката платины водородом можно выразить следующим уравнением  [c.320]


Смотреть страницы где упоминается термин Определение метод, по разрушению комплексов: [c.72]    [c.53]    [c.116]    [c.116]    [c.234]    [c.316]    [c.32]    [c.41]    [c.435]    [c.12]    [c.152]    [c.203]    [c.108]    [c.205]    [c.315]    [c.308]   
Фотометрический анализ (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы, определение

Метод разрушения



© 2025 chem21.info Реклама на сайте