Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий электролизом на ртутном катод

    Навеску стали (или чугуна) растворяют в кислотах, после чего раствор подвергают электролизу со ртутным катодом в слабокислой среде. В результате железо, хром, марганец и другие металлы осаждаются на ртутном катоде, образуя амальгамы, а титан, алюминий и ванадий в виде соответствующих ионов остаются 8 растворе. [c.446]

    При электролизе чистых растворов поваренной соли выход амальгамы по току может приближаться к 100%. Однако при наличии в растворе примесей солей тяжелых металлов доля тока, расходуемая на выделение водорода, существенно возрастает. Особенно сильное влияние на выделение водорода оказывают соли германия, ванадия, хрома и платины. Действие этих солей объясняется тем, что они восстанавливаются на ртутном катоде до свободного металла и, будучи нерастворимыми в ртути, плавают на новерхности в виде так называемого амальгамного масла . Так как перечисленные металлы обладают низким перенапряжением водорода, последний начинает выделяться на этих участках. [c.160]


    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]

    К недостаткам метода электролиза на ртутном катоде из разбавленных сернокислых растворов следует отнести то, что этот процесс не приводит к удалению таких часто сопутствующих урану элементов, как алюминий, титан и ванадий продолжительность электролиза велика, когда надо удалить большое количество примесей. [c.339]

    Отделение хрома от ванадия электролизом с ртутным катодом. Во влажную камеру на держателе помещают сосуды для растворов и капилляр (см. рис. 19, в). В левом манипуляторе зажимают держатель электродов, в правом — поршневое устройство с пипеткой. Вводят в капилляр-электролизер электроды. Электролиз проводят при напряжении 3,8—3,4 в, силе тока (3,8-ь 3,4)-Ю" а, время электролиза 15—20 мин., поверхность ртутного катода 2 -20" см, электролит — 1 М НзЗО - [c.124]

    К электродам, используемым при электролизе водных растворов хлоридов щелочных металлов с ртутным катодом, предъявляют дополнительные требования в материале электродов должны отсутствовать примеси, способствующие разложению амальгамы щелочных металлов. Электроды, предназначенные для ртутного электролиза, должны содержать золы не более 0,2% и ванадия пе более 2 10" % (20 частей на миллион). Графитовые плиты для ртутного электролиза применяются без пропитки, поэтому допускается износ до 130 г/1000 А-ч, удельное сопротивление — от 8 до 13-10 О.м-м. [c.83]


    В настоящее время электрохимические методы применяются для разделения соединений большинства химических элементов и оказались очень удобными вследствие того, что они не требуют введения в анализируемый раствор посторонних веществ. Используя различные способы электрохимического осаждения с применением платиновых или других электродов и ртутного катода, а также внутреннего электролиза (см. гл. VI, 5), можно разделять катионы алюминия, титана, циркония, ванадия, урана от катионов хрома, железа, кобальта, никеля, цинка, меди, серебра, кадмия, германия, молибдена, олова, висмута и других элементов. Можно также отделять примеси от основных компонентов при анализе цветных металлов, их сплавов и руд. [c.357]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения металлов является метод электроосаждения на ртутном катоде [14]. Поскольку перенапряжение водорода на ртути очень велико (более 1 в), то любой металл, потенциал осаждения которого меньше этой величины, может быть выделен на ртутном катоде, а металл, требующий более отрицательного потенциала, останется в растворе. Так, на ртутном катоде не будут осаждаться алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам и уран. Щелочные и щелочноземельные металлы можно осадить только из основного раствора. Этот метод с большим успехом применяют для удаления железа и по- [c.189]

    При электролизе сернокислых растворов солей на ртутном катоде выделяются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром , молибден, свинец, висмут, селен, теллур, ртуть, золото, платина,, иридий, родий, палладий. Остаются полностью в растворе алюминий, бериллий, бор, тантал, ниобий, вольфрам, редкоземельные элементы, титан, ванадий, цирконий и др. Рутений, мышьяк и сурьма количественно не выделяются. [c.138]

    При относительно небольшой плотности тока (0,01 а/смР-) оно достигает весьма значительной величины (1,2 в). Это обстоятельство может быть использовано для разделения металлов. При электролизе подкисленных растворов с применением ртутного катода все металлы, ионы которых разряжаются на ртути при потенциалах еще более отрицательных, чем ионы водорода, останутся в растворе. Не осаждаются в этих условиях щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам, уран. Таким образом удается отделить эти металлы от железа, хрома, цинка, кадмия и других металлов, которые разряжаются на ртути и образуют с ней амальгаму. Этот метод широко применяется при анализе алюминиевых сплавов для отделения железа. При анализе сталей железо таким же образом отделяется от алюминия, титана, ванадия и некоторых других компонентов сталей. Все эти металлы остаются в сернокислом растворе взятой навески стали, а железо уходит в амальгаму. Такое предварительное групповое разделение весьма облегчает весь ход анализа и может применяться для самых различных сплавов. [c.294]

    Подобным же путем можно отделить железо и хром от урана, бериллия, циркония и тория молибден от ванадия кадмий от магния медь от алюминия и т. д. При электролизе нейтральных растворов их солей на ртутном катоде могут быть выделены щелочные и щелочноземельные металлы. При этом образуются амальгамы, которые легко разлагаются водой с образованием гидроокисей этих металлов. Выделение этих наиболее электроотрицательных металлов было бы невозможно, если бы перенапряжение выделения водорода на ртути не было бы столь велико. Легкость, с которой эти металлы образуют амальгаму, используется при электроаналитических определениях для отделения их от других катионов. [c.280]

    При электролизе подкисленных сернокислых растворов солей до потенциала выделения водорода—1,1 в на ртутном катоде будут выделяться хром, железо, цинк, кадмий и другие металлы не будут выделяться щелочные и щелочноземельные металлы, алюминий, магний, ванадий, титан и др. Таким образом, становится возможным отделить ряд металлов друг от друга. [c.314]

    Метод электролитического отделения одних металлов от других нашел широкое применение в техническом анализе, особенно в анализе железа и железных сплавов. Проводя электролиз сернокислого раствора стали на ртутном катоде, можно отделить л елезо от таких компонентов стали, как алюминий, титан, ванадий и некоторые другие, быстрому и точному определению которых мешает железо. Указанные компоненты остаются в растворе, а железо переходит в амальгаму ртутного катода. Это разделение значительно облегчает дальнейший ход анализа. [c.314]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]


    При электролизе на ртутном катоде можно выделить из разбавленного сернокислого раствора большие количества мышьяка, сурьмы, висмута, кадмия, хрома, кобальта, меди, галлия, германия, индия, железа, свинца, ртути, молибдена, никеля, рения, селена, серебра, теллура, олова, цинка, золота и платиновых металлов, исключая рутений. Марганец выделяется частично. В растворе остаются алюминий, бериллий, магний, фосфор, титан, ванадий, цирконий, щелочно-земельные и редкоземельные металлы. [c.40]

    Весьма удовлетворительным методом отделения ванадия от различных элементов является электролиз разбавленного сернокислого раствора с ртутным катодом (стр. 165). При этом железо, хром, кобальт, никель, медь и молибден осаждаются на ртути и отделяются таким образом от ванадия, урана, алюминия и фосфора. Мышьяк частично улетучивается, а частично остается вместе с ванадием в растворе. [c.512]

    Заслуживает внимания также метод, основанный на электролизе с ртутным катодом в разбавленном сернокислом растворе, который используется для отделения больших количеств хрома от ванадия, урана и ряда других элементов. [c.591]

    В результате подробного исследования методов определения малых количеств бора (0,0005—0,02%) в углероде и низколегированных сталях [16 ] рекомендован ионообменный метод, который признан лучшим, чем методы, основанные на осаждении, электролизе или отгонке метилового эфира борной кислоты. В частности, ванадий не удаляется при электролизе с ртутным катодом, но эффективно поглощается катионитом в Н-форме. Борная кислота определяется в вытекающем растворе с помощью диантримида. Описаны также аналогичные методы определения малых количеств бора в окиси урана [46 ] и сплавах на основе алюминия [209]. В сочетании с ионообменным методом могут применяться и другие цветные реагенты, хотя и менее эффективные, чем диантримид куркумин [211 ] (для определения бора в уране и графите), хинализарин [215] и карминовая кислота [26] (для определения бора в титановых сплавах). [c.258]

    Пятивалентный ванадий можно легко восстановить электролитически в (КИСЛЫХ растворах до четырехвалентного состояния, особенно легко при работе с ртутным катодом. Восстановление до низших степеней валентности может быть достигнуто также при помощи металлов с отрицательными значениями нормальных потенциалов. Воостановление же до металла пока еще никому не удавалось—ни цементацией, ни электролизом водных растворов. Этому препятствует, по-видимому, конкуренция со стороны водорода, которая проявляется в данном случае еще резче, чем в случае (рения (см. главу I), так как потенциал восстановления ванадия до металла гораздо отрицательнее, чем соответствующий потенциал рения. [c.115]

    Определение ванадия и титана в сверх-легированных сталях электролизом с ртутным катодом. [c.206]

    Ванадий(V) можно отделять от других элементов электролизом на ртутном катоде. При этом ванадий (V) остается в растворе. [c.247]

    Разделение электролизом с ртутным катодом. Это метод отделения алюминия от очень многих элементов. Обычно отбирают такую порцию раствора, чтобы в ней было от 10 до 100 мкг алюминия. Электролиз проводят в среде 8 и. серной кислоты при силе тока 3—5 а. Применяют прибор, описанный на стр. 240. Так отделяют 1 г меди или железа в течение 1 ч, 1 г олова, сурьмы, свинца или цинка в течение 2—3 ч. В растворе остаются алюминий, бериллий, ванадий, редкоземельные элементы, щелочные и щелочноземельные элементы и т. п., а также в небольшом количестве марганец. [c.698]

    Электролиз с ртутным катодом. Ванадий остается в растворе. [c.724]

    В электродах, используемых при электролизе с ртутным катодом, должны отсутствовать примеси, способствующие разложению амальгамы щелочных металлов, содержание золы не должно превышать 0,2%, ванадия —не более 0,0002%. Для ртутного электролиза применяются непропитанные графитовые плиты, поэтому допускается их износ до 130 г на 1000 а-ч, удельное сопротивление — в пределах 8—13 ом-мм /м. [c.115]

    Очистка рассола от амальгамных ядов. Пригодность соли или рассола для электролиза в ваннах с ртутным катодом определяется прежде всего по содержанию примесей соединений металлов, являющихся амальгамными ядами. Если образцы соли или рассола дают повышенную амальгамную пробу , в ряде случаев отказываются от использования этих месторождений. Вредные примеси могут перейти в рассол не только из соли, поэтому следует учитывать также возможность загрязнения рассола соединениями хрома, никеля, марганца, молибдена и других металлов при его контакте с оборудованием, коммуникациями. Кроме того, из некоторых сортов графитовых анодов в рассол могут переходить ванадий, вольфрам, хром, из токоподводов — медь, олово. Известны случаи, когда примеси тяжелых металлов попадали в рассол с известковым молоком, применяемым при содово-известковой очистке рассола. [c.236]

    На анодах при работе электролизера выделяются хлор и кислород или диоксид углерода в зависимости от вида используемых анодов. Кроме того, с анодным газом смешивается водород, образующийся на ртутном катоде. При норма 1ьных условиях электролиза хлоргаз содержит 0,5% (об.) водорода. Однако при нарушениях процесса электролиза, например при нарушении циркуляции ртути либо попадании в раствор или ртутный катод железа и примесей (так называемых амальгамных ядов —хрома, ванадия и некоторых других) возможно усиленное выделение водорода. Это, помимо снижения выхода по току щелочного металла на катоде, приводит к снижению качества хлоргаза и за счет подщелачивания раствора резко повышает содержание растворенного хлора в анолите, что может нарушить в дальнейшем стадию очистки раствора. При заметном повышении содержания водорода в хлоргазе отдельных ванн эти ванны должны быть отключены и устранены причины (повреждение гуммировочного слоя, снижение скорости циркуляции ртути и др.), приведшие к повышению содержания водорода в хлоргазе. [c.91]

    В электродах, используемых в электролизе с ртутным катодом, дополнительно должны отсутствовать примеси, способствующие разложению амальгамы щелочных металлов. Электроды, предназначенные для ртутного электролиза, должны содержать не более 0,2% золы и не более 20 частей на миллион ванадия. Графитовые плиты для ртутного электролиза применяются без пропитки, поэтому допускается их износ до 130 г/(1000 А-ч). Удельное сопротивление должно быть в пределах от 8 до 13 Om-mmVm. [c.64]

    Электролиз на ртутном катоде применяют для удаления из раствора мешающих ионов, чтобы затем в нем определять малые количества других ионов. Например, при анализе сталей после выделения мешающих элементов на ртутном катоде в растворе определяют алюминий, ванадий, германий, лацтан при-анализе цинковых сплавов в растворе определяют алюминий и, магний. [c.138]

    Если в электролизе при постоянном наложенном напряжении или при постоянной силе тока использовать ртутный катод, то можно выполнить несколько успешных определений. Такой же прием можно использовать в качестве метода разделения, предшествующего какому-либо другому виду физического или химического измерения. В связи с необычайно высоким активационным, сверхпотенциалом для выделения газообразного водорода на ртути (см. табл. 12-1) восстановление иона водорода в 1 F хлористоводородной или хлорной кислоте не начинается до тех пор, пока потенциал ртутного катода не достигнет приблизительно —1,0 В относительно НВЭ. Поэтому в 1 кислом растворе все ионы металлов, за исключением алюминия(П1), урана(III), титана(III), ванадия (II), молибдена(III), вольфрама(III), трехзарядных катионов лантаноидов и актиноидов и ионов щелочноземельных и щелочных металлов, восстанавливаются до элементного состояния и растворяются в ртути. Марганец(П), который даже при —1,0 В заметно не восстанавливается, при соответствующих условиях может отлагаться в виде металла на ртути. [c.417]

    Одним из заслуживающих внимания методов разделения элементов является электролиз с ртутным катодом в слабосернокислых растворах. В этих условиях алюминий, титан, цирконий, фосфор, ванадий, уран и другие элементы к оличественно отделяются от хрома, железа, кобальта, никеля, меди, цинка, гал гия, германия, молибдена, родия, палладия, серебра, кадмия, индия, олова, рения, иридия, платины, золота, ртути, таллия и висмута, осаждающихся на ртутном катоде . Электролиз может [c.166]

    Из других методов отделения ряда элементов от марганца следует отметить осаждение купферондм (стр. 143), в результате которого железо, титан, цирконий и ванадий могут быть количественно отделены от марганца электролиз с ртутным катодом в разбавленном сернокислом растворе (стр. 165), при котором осаждаются железо, хром, никель и молибден, а марганец оста ется в растворе извлечение железа и молибдена из солянокислых растворов из хлоридов эфиром (стр. 161) и осаждение железа, алюминия и хрома карбонатом бария.  [c.497]

    Большинство методов отделения ванадия можно классифицировать в зависимости от того, служат ли они для переведения ванадия в осадЬк или в фильтрат. Так, например, ванадий обычно переходит в осадок вместе с другими элементами ири осаждении аммиаком он осаг дается вместе с фосфоромолибдатом аммония, при выпаривании с азотной кислотой,. а также при осаждении нитратом ртути (I), ацетатом свинца и купфероном. В раствор ванадий переходит при сплавлении с перекисью натрия или карбонатом натрия с селитрой и последующем выщелачивании плава - водой, при осаждении едким натром или сероводородом из кислого раствора. Кроме того, для отделения ванадия от других элементов используются электролиз с ртутным катодом, экстракция эфиром из разбавлен- ного (1 1) солянокислого растврра (при которой отделяются железо и молибден) и отгонка ванадия в струе сухого газообразного хлористого водорода. [c.509]

    Гексацианоферратный метод i. Для определения малых количеств урана в бедных рудах Ю. А. Чернихов и Е. И. Гульдина разработали колориметрический метод основанный на реакции урана с гексацианоферратом (II). Отделение урана от железа и других металлов, дающих с гексацианоферратом (II) окрашенные растворы или нерастворимые соединения, осуществляется электролизом с ртутным катодом. Из раствора после электролиза [реакция на железо с KgFe( N)6 должна быть отрицательной] осаждают уран свободным от карбонатов раствором аммиака в присутствии небольшого количества перекиси водорода. Отфильтрованный осадок промывают горячим 3 %-ным раствором сульфата аммония, содержащим несколько капель раствора аммиака, и затем растворяют в 10 мл горячей 2%-ной (по объему) серной кислоты. Раствор разбавляют в мерной колбе до 100 мл водой, а в случае содержания ванадия уран переосаждают в виде фосфата. Для этого раствор нейтрализуют аммиаком до появления слабой мути, которую растворяют в нескольких каплях 1 н. раствора серной кислоты, разбавляют до 40 мл и прибавляют [c.533]

    Окись двухвалентного ванадия УО получается восстановлением пятиокиси водородом при 1700° С. УО — черный порошок образующий при растворении в кислотах катион У +. Этот окисел является настолько сильным восстановителем, что способен даже постепенно выделять из воды газообразный водород. Сульфат двухвалентного ванадия У504 7НгО при соответствующих предосторожностях против окисления может быть выделен в виде красно-фиолетовых кристаллов из растворов, полученных восстановлением ванадатов при помощи амальгамы цинка или натрия или электролизом с ртутным катодом. Растворы солей двухвалентного ванадия окрашены в фиолетовый цвет. [c.106]

    Что асается электрохимических методов, то они применяются для определения РЗЭ и тория пока не очень ш(ироко. Выше были описаны полярографические методы, практическое применение которых пока еще ограничено, и методы электролиза с ртутным катодом или цементации амальгамами, которые, помимо технологического, имеют и аналитическое значение. Разработано несколько амперометрических методов например церий (III) титруют феррицианидом на платиновом электроде по току восстановления феррицианида [905], церий (IV) титруют раствором четырехвалентного ванадия [906] цли щавелевой кислотой (метод разработай А. А. Устимовым при участии автора настоящей книги) для иттрия рекомендован метод ампероме-рического титрования купферроном [907], для тория — трилоном при pH = 2 2,5 [908]. [c.341]

    При электролизе возможны побочные процессы катодное восстановление молекулярного хлора, растворенного в электролите СЬ -Ь + 2е -> 2С1 совместное с натрием выделение водорода на ртутном катоде это происходит особенно при ра боте с очень концентрированными по щелочному металлу амальгамами, при повышенных температурах (уменьще-ние перенапряжения водорода) и при наличии примесей в электролите, например, ионов a иMg++, образующих амальгамы, легко разлагающиеся непосредственно в электролизере с выделением водорода, ионов хрома, ванадия, молибдена, катализирующих выделение водорода и частиц графита, осыпающихся с анодов. Содержание водорода в хлор-газе ртутных ванн обычно составляет около 1%, но иногда достигает 2—4%, что опасно вследствие [c.91]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения. металлов является электроосаждение на ртутном катоде . Перенапряжение водорода на ртути очень велико (1,2 в), поэтому любой металл, потенциал выделения которого меньше указанного значения, может осалс-даться на поверхности ртути металлы же, требующие отрицательных потенциалов, более чем —1,2 в, будут оставаться в растворе. Не осаждаются щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, а также вольфрам и уран. Метод с успехом применяют для удаления железа и подобных ему металлов из растворов алюминиевых сплавов, после чего основной элемент определяют весовым или другим способом. Он также широко используется при очистке урановых растворов . [c.110]

    По окончании разложения раствор разбавляют горячей водой до 50 мл и отфильтровывают от нерастворимой части. Остаток промывают горячей слабой серной кислотой. Из полученного раствора осаждают аммиаком, свободным от углекислоты, в присутствии 4—5 мл 3%-ной перекиси водорода сумму полуторных окислов. Осадок промывают горячим 3 0-ным раствором сернокислого аммония, содержащим несколько капель аммиака, растворяют в горячей серной кислоте (1 99 по объему), беря минимальное количество кислоты. Фильтр промывают тою же кислотой. Объем раствора вместе с промывными водами не должен превышать 50 мл. Раствор перекосят в прибор для электролиза с ртутным катодом. Электролиз ведется до полного удаления из раствора железа. при силе тока 4—5 ампер и вольтаже 6—8 вольт. Испытание на железо производится капельным методом 0,2%-ным раствором КдРе(СЫ)ц. После полного отделения железа раствор сливают, не прерывая тока, и прибор несколько раз смывают водой. В полученном растворе, объем которого обычно составляет 100 мл, снова осаждают алюминий и уран аммиаком в присутствии перекиси водорода. Уран при этом выпадает главным образом в виде ванадата урана. Полученный осадок промывают 3-4 раза горячим 3%-ным раствором сернокислого аммония, содержащим несколько капель аммиака. Промытый осадок растворяют в серной кислоте. (Применение других кислот недотустимо, так как они могут содержать железо. Применяемая серная кислота должна быть проверена на содержание железа). Из полученного сернокислого раствора уран осаждается в виде фосфата для отделения от ванадия (для руд, не содержащих ванадия, осаждение в виде фосфата выпускается, и осадок ураната аммония растворяется в серной кислоте, 0,2%-ной по объему, и колориметрируется). [c.487]

    Для электролиза в ваннах с ртутным катодом применяется рассол, содержащий 305—310 г/л Na l. Его приготовляют путем донасыщения твердой солью анолита из ртутных ванн. Что бы очистку можно было вести в среде, не оказывающей кор розионного действия на аппаратуру, и наиболее полно осадить примеси, анолит подкисляют соляной кислотой и удаляют из него при разрежении основное количество растворенного хлора (обесхлоривание). Остальной хлор удаляется из анолита при последующей продувке его сжатым воздухом и обработке сульфидом натрия. При этом рассол освобождается и от растворенной в нем ртути и примесей тяжелых металлов, которые оказывают вредное влияние на процесс электролиза с ртутным катодом (наиболее вредно присутствие в рассоле хрома, молибдена, ванадия, германия). Обесхлоренный анолит (концентрация Na l 260—275 г/л), имеющий температуру 60—70°С, до- [c.335]

    Электролиз с ртутным катодом. Для разделения элементов электролиз также осуществляют со ртутным катодом (рис. 83) в слабосернокислых растворах. При этом алюминий, титан, цирконий, ванадий, фосфор и др. отделяются от никеля, кобальта, цинка, меди, серебра, кадмия, платины, золота, ртути, хрома, железа, галлия, германия, молибдена, родия, палладия, индия, олова, рения, иридия, таллия и висмута, осаждающихся на ртутном катоде (см. гл. IX). [c.424]


Смотреть страницы где упоминается термин Ванадий электролизом на ртутном катод: [c.111]    [c.339]    [c.216]    [c.247]    [c.501]   
Практическое руководство по неорганическому анализу (1966) -- [ c.509 , c.511 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.466 , c.468 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

Ртутный электролиз

ртутный



© 2024 chem21.info Реклама на сайте