Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние заместителей реакции замещения

    Направляющее влияние заместителей (правила замещения в бензольном ядре). В незамещенном бензоле реакционная способность всех шести атомов углерода в реакциях замещения одинакова заместители могут становиться взамен водорода к любому углеродному атому. Если же в бензольном ядре уже имеется заместитель, то под его влиянием состояние ядра изменяется и положение, в которое вступает любой новый заместитель, зависит от природы первого заместителя. Из этого следует, что каждый заместитель в бензольном ядре проявляет определенное направляющее (ориентирующее) влияние и способствует введению новых заместителей лишь в определенные по отношению к себе положения. [c.334]


    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]

    При этом группы, ориентирующие в метя-положение, вообще более замедляют реакции замещения, чем заместители 1 рода. При введении в бензольное кольцо с двумя замещающими группами третьего заместителя можно, основываясь на различии в силе действия первых двух групп, заранее предсказать, какая из них окажет более сильное влияние на ориентацию вступающего заместителя. [c.518]

    Бензол — ароматическая система. Электронное строение молекулы бензола. Понятие ароматичности . Гомология и изомерия ароматических углеводородов. Номенклатура. Способы получения бензола и его гомологов. Химические свойства. Реакции электрофильного замещения. Механизм реакции, я- и о-Комплексы. Два типа ориентантов (I и П рода). Механизм ориентирующего влияния заместителей. [c.171]

    Учитывая влияние заместителей на течение реакций электрофильного замещения, а также особенности молекулы нафталина, укажите, какие соединения образуются при введении одного нового заместителя в результате реакций а ) сульфирования 1-оксинафталина  [c.91]

    В о-бромфеноле два заместителя 1 рода —ОН и Вг. Однако группа ОН является сильным электронодонором, облегчающим электрофильные реакции замещения в бензольном ядре, в отличие от брома и других галогенов, которые затрудняют эти реакции. Поэтому ориентирующее влияние оказывает именно группа ОН и вновь входящий заместитель вступает в орто- и мра-положения по отношению к ней. [c.187]


    Влияние заместителей в бензольном кольце на реакции электрофильного замещения в ароматическом ряду [c.226]

    Влияние заместителей намного меньше, чем в реакциях электрофильного или нуклеофильного замещения, поэтому факторы парциальной скорости невелики (см. т. 2, разд. 11.8). Факторы парциальной скорости для некоторых групп приведены в табл. 14.2 [57]. [c.68]

    Химические свойства. Как уже было указано, бензол, несмотря на то, что по составу он является ненасыщенным соединением, проявляет склонность преимущественно к реакциям замещения, и бензольное ядро очень устойчиво. В этом заключаются свойства бензола, которые называют ароматическими свойствами (стр. 325). Последние характерны и для других ароматических соединений однако различные заместители в бензольном ядре влияют на его устойчивость и реакционную способность в свою очередь, бензольное ядро оказывает влияние на реакционную способность соединенных с ним заместителей. Рассмотрим следующие группы реакций ароматических углеводородов а) реакции замещения б) реакции присоединения и в) действие окислителей.. [c.331]

    Можно ли найти аналогию между влиянием гетероатомов на реакции замещения в гетероциклах и влиянием заместителей первого и второго рода на реакции замещения в бензольном ядре  [c.152]

    Приведите пример реакции электрофильного замещения, для которой влияние заместителей лучше описывается константами а+, чем а-Гаммета. [c.50]

    Почему влияние заместителей при реакциях ароматического нуклеофиль-, ного замещения обычно лучше описывается константами а , чем а-Гаммета, [c.155]

    Как видно, строение и свойства вытесняемого заместителя очень сильно влияют на скорость нуклеофильного замещения, изменяя ее на 5—6 порядков. Этот эффект является суммарным. Он складывается из влияния заместителя на скорость образования о-комплекса и на скорость его разрушения с образованием конечного продукта. Как уже сообщалось, скорость образования о-комплекса зависит от электрофильности реакционного центра субстрата, на которую влияет индуктивный эффект заместителя. Скорость отрыва вытесняемого заместителя зависит прежде всего от его нуклеофильности, но также и от условий в которых проводится реакция, которые могут содействовать или препятствовать стабилизации образующегося аниона. [c.160]

    Для нее характерны все особенности (направляющее влияние заместителей и т. д.) типичных реакций электрофильного замещения. Тем не менее реакции этого типа не совсем обычны и мало используются в препаративных целях. [c.153]

    Имеются и такие двузамещенкые бензола, в которых один из заместителей направляет новые группы в иные положения, чем второй заместитель. Эти соединения характеризуются наличием двух заместителей одного рода, находящихся в орто- или пара-положении друг к другу, или двух ззхместителей различных родов, расположенных в мета-положении. В таких случаях ориентирующие влияния конкурируют между собой, и в результате получается иногда много различных изомеров, причем преобладают те, образование которых обусловливается ориентацией более сильного заместителя. Для наиболее типичных заместителей степень их влияния в реакциях замещения определяется пололсением в рядах Голлемана (см. стр. 43). [c.45]

    Ориентирующее влияние заместителей. Реакции электрофильного замещения протекают не только с бензоло.м и его гомологами, но и с различными иными производными бензола, причем в зависимости от характера производного, т. е. от наличия в нем тех или иных атомов или групп, эти реакций протекают с различной степенью легкости и с введением новых заместителей в различные положения ароматического ядра по отношению к уже имеющимся заместителям. [c.114]

    Таким образом, во всех рассмотренных случаях в качестве реагента выступает либо катион, либо сильнополяризованный комплекс, несущий значительный положительный заряд. В связи с этим можно ожидать, что реакция замещения должна быть электрофильным процессом. Электрофильный характер реакции подтверждается также ее высокой чувствительностью к влиянию заместителей — реакция сильно ускоряется, если в молекуле субстрата имеются электронодонорные заместители. [c.363]

    Влияние полярности заместителя. Большинство надежных данных по направляющему влиянию получено при изучении реакции нитрования [табл. 3]. Поэтому нет ничего удивительного, что главное внимание было сосредоточено на изучении влияния заместителей в кольце на ход дальнейшего зал1ещения и сравнительно мало внимания уделялось изучению влияния заместителей в определении направления замещения. Было замечено, однако, что при алкилировании по Фриделю-Крафтсу толуола получается очень большое количество. и-изомера. Например, при введе НИИ изопропила в толуол образуется 29,8% л -изопропилтолуола (табл. 7). Пытались объяснить этот результат при помощи нормального алкили рования до 1,3,4-триалкилпроизводного с последующей потерей одной алкильной группы в положении 4 [123, 256]. Одпако нри помощи пря< мых экспериментальных исследований в настоящее время установлено, что i-изомер, образующийся в результате прямого алкилирования толуола [84], не люжет рассматриваться как продукт вторичной изомеризации или дэалкилирования. [c.421]


    Если считать, что в реакции замещения водорода металлом в первую очередь происходит атака карбаниона по углерод-водородной связи, то можно было бы ожидать, что сравнительная скорость ее в различные положения должна была бы контролироваться сравнительными плотностями электронов в тех положениях кольца, в которых находятся атакуемые атомы водорода. Представляется невероятным, чтобы существовал какой-либо механизм изменения этих плотностей электронов, в котором резонанс играл бы какую-либо роль. Отсюда следует, что сравнительные плотности электронов должны определяться в первую очередь индуктивным влиянием заместителя. Исходя из этого полон<ения, электронные плотности в моноалкилбензолах должны быть наиболее высокими в о-положении и должны уменьшаться в ж- и п-псложениях в указанном порядке. Из этих данных следует, что замещение в о-положе- [c.474]

    Влияние заместителей на реакционную способность ароматического ядра и ориентацию вступающей нитрогруппы такое же, как при других реакциях электрофильного замещения в ароматическое ядро. Ввиду значительного дезактивирующего влияния нитрогруппы каждая последующая стадия нитрования протекает значительно медленнее предыдущей l(k //г -lXl]. Поэтому реакцию л/ожно осуществить с высоким выходом любого из продуктов последовательно-параллельного замещения (моно-, ди- или три-нитролроизводных), подбирая силу нитрующего агента и температуру. Так, при нитровании толуола вначале в более мягких условиях (40°С) образуются мононитротолуолы (смесь 58—59% орто-, 4—5% мета- и 36—39% паро-изомеров), которые затем в более жестких условиях (70—80°С) дают дннитротолуолы (смесь в ос-новнсм 2,4- и 2,6-изомеров) и в конце концов — тринитротолуол  [c.343]

    Прямое образование дифенилдодекана в данном случае затруднено, видимо, из-за невозможности одновременной адсорбции на поверхности катализатора обоих гексаметиленовых колец. Кинетические исследования реакции жидкофазного дегидрирования показали, что скорость образования ароматических углеводородов зависит от количества алкильных заместителей в циклогексановых кольцах. Соответствующий материал помещен в табл.81. Для того чтобы эффект влияния заместителей был более отчетлив, большинство исследованных углеводородов содержало по два циклогексановых кольца. В той же таблице приведены для сопоставления данные по скоростям образования ароматических углеводородов из нормальных алканов и алкилциклопентанов в тех же условиях. Как видно, скорость образования ароматических углеводородов в этих случаях весьма низкая, что имеет первостепенное значение для исследования этим путем сложных углеводородных смесей, состоящих из углеводородов различных рядов. Весьма важным является также то, что реакция гидрогено-лиза циклопентановых колец в условиях жидкофазного дегидрирования не протекает. Это обусловливает устойчивость сложных мостиковых бициклических систем типа бицикло(3,2,1) октана и пр. гел-Замещенные циклогексаны также кинетически весьма [c.315]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]

    Влияние заместителей в фенильной группе на полимеризацию замещенного стирола различно, в зависимости от типа заместителя и положения его в бензольном ядре. В большинстве случаев заместитель, находящийся в фенильной группе, ускоряет процесс полимеризации, особенно если заместитель находится в орто-положении к винильной группе. С увеличением размера заместителя его ускоряющее влияние снижается, очевидно, вследствие нарастания пространственных трудностей, возникающих в реакциях присоединения таких мономерных молекул друг к другу. [c.360]

    Имеющиеся экспериментальные данные показывают, что, действительно, для субстратов с первичными радикалами и метилом реакции протекают по механизму 5 2, с третичными — по 5л-1. Соединения, содержащие вторичные радикалы, и некоторые соединения бензильного типа относятся к пограничной области. В реакциях замещения первичных галогенопроизводных обнаружено влияние заместителей у -углеродного атома объемные заместители препятствуют образованию переходного состояния и тем самым тормозят реакцию. Так, например, реакции неопентилхлорида (СНз)зССН2С1 с нуклеофильными реагентами протекают значитель- [c.93]

    Полярность о-саязи, индуктивный эффект. Механизм реакций нуклеофильного замещения атома галогена в галогеналкилах. Переходное состояние, энергетика реакции. Сравнительная активность атомов галогена в разтичного типа галогенопроизводных (объяснение). Неподвижность галогена у кратной связи. Сравнительная кислотность гидроксила а разного типа соединениях (объяснение). Водородная связь. Взаимное влияние гидроксила и ароматического ядра в феноле. Влияние заместителей и их положения в ядре ((кнола на кислотность гидроксильной группы. Спектры (ПМР, ИК и УФ) галогенопроизводных, спиртов и с нолов. Гербициды. [c.250]

    Стереохимия нуклеофильного замещения может быть осложнена влиянием соседних групп, которые в состоянии взаимодействовать с центром атаки. Рассмотрим такое влияние на примере реакции замещения гидроксильной группы бромом при взаимодействии трео-З-бромбутанола-2 с НВг. в предпочтительной конформации объемные отрицательные заместители Вг и ОН будут трансоидны [c.195]

    Таким образом, по первоначальному определению эффект транс-влияния рассматривался как кинетический. Его мерой является воздействие гранс-заместителя на подвижность уходящего лиганда. Так, для комплекса цис-[Р1 (N113) ЕСЬ]" скорости реакции замещения хлорид-иона, находящегося в транс-положении к лиганду Е, на молекулу пиридина (Ру) резко уменьшаются в ряду Е = 02114. N02, Вг , С1 , который совпадает с рядом трансвлияния. Измеренная при 25°С и постоянной концентрации пиридина в этаноле константа скорости псевдопервого порядка к для реакции [c.391]

    Необычен характер влияния заместителей в этой реакции. Нитрогруппа оказывает сильное активирующее действие, по только в орго-положении (а не мета или пара) [149]. Группы R и OR оказывают активирующее влияние во всех положениях. Реакцию ингибируют не только такие группы, как ОН, NH2, NHR, NH OR, что и следовало бы ожидать для ароматического нуклеофильного замещения, но и группы СООН (но пе OOR), SO2NH2 и им подобные, при наличии которых реакция совсем не происходит. Причина этого заключается в побочных реакциях. [c.31]

    Видно, что эти механизмы состоят из двух или трех стадий соответственно, и тем не менее вполне возможна согласованность двух или трех из них. Принципиально механизмы можно различить, изучая влияние заместителей на миграцию групп. В механизме а реакция по отношению к мигрирующей группе является электрофильным ароматическим замещением с переходным состоянием, в котором кольцо положительно заряжено. Электронодонорные заместители в орго- или /гара-положении будут способствовать миграции, электроноакцепторные — замедлять ее. При механизме б реакция является нуклеофильным ароматическим замещением с отрицательно заряженным переходным состоянием эффект заместителей будет противоположным. Полученные результаты согласуются с механизмом а [189]. Остается открытым вопрос о числе стадий в механизме. Имеются доказательства того, что в некоторых случаях процесс двухстадиен интермедиат 62 был выделен в виде литиевого производного и превращен в диарилацетилен нагреванием [190] кроме того, показано протекание водородно-дейтериевого обмена [185]. Однако в других случаях возможно согласованное осуществление двух стадий. Стереоселективность реакции не требует такого согласованного механизма, так как винильные карбанионы могут сохранять конфигурацию (т. 1, разд. 5.5). [c.151]

    Какого влияния на реакцию электрофильного замещения следует ожидать от присутствия в ароматическом кольце в качестве заместителя группы ЫНЗОаСбИд N( Hз)з Ы(СНз)2  [c.47]

    Появление уравнения Гаммета вызвало огромное количество экспериментальных исследований, в ходе которых было показано, что а-константы, онределенные нз констант понизацнн бензойных кислот, не во всех случаях служат правильной мерой электронного влияния заместителей. Существенные отклонения наблюдаются во всех тех случаях, догда заместитель находится в пара-положении к реакционному центру и может оказывать на него влияние ио механизму прямого полярного сопряжения. К таким реакциям в первую очередь относятся изучаемые в настоящей книге реакции электрофильного и нуклеофильного ароматического замещения. Для этих случаев были разработаны новые константы заместителей, обозначаемые как а+ для электрофильных и для нуклеофильных реакций. В ряде случаев появилась потребность в константах заместителей, в которых учитывалось бы только их индуктивное влияние. Они определены из констант ионизации феиилуксусных кислот или из констант скоростей гидролиза их эфиров и обозначаются как а° (табл. 1). [c.49]

    Скорость реакции радикального арилирования бензола возрастает при введении в его молекулу заместителей любого характера, причем заместитель ориентирует вступающий заместитель преимущественно в орто- и пара-положения. Так, нитробензол и анизол фенилируются примерно в три раза быстрее бензола, образуя о- и п-фенилпроизводные с некоторым преобладанием орто-замещенных. Эта специфика влияния заместителей при радикальном замещении объясняется тем, что стабильность радикального ст-комплекса зависит прежде всего от делокализации в нем неспаренного электрона. При этом и электроноакцепторные и электронодонорные заместители, находящиеся в орто- и лара-положе-нии к месту радикальной атаки, увеличивают делокализацию неспаренного электрона в ст-комплексе и тем самым повышают стабильность и облегчают его образование  [c.226]

    Значение р реакции замещенных бензоилхлорндов с анилином в бензоле при 25 °С 1,219, а реакции замещенных анилина бензоилхлоридом в этих же условиях —2,07. Объясните механизм каждой реакции и влияние заместителей на реакционный центр. [c.247]

    Это очень напоминает ситуацию, имеющую место при элек-трофильном замещении в хлорбензоле (стр. 160), когда преимущественное орто-пара-ориентирующее влияние заместителя (преимущественная стабилизация переходных состояний, соответствующих орто- и пара-замещению, за счет взаимодействия пеподеленных электронных пар атома хлора с системой зх-орби-талей ароматического кольца) сопровождается общим уменьшением скорости замещения по сравнению со скоростью замещения в самом бензоле (сильный индуктивный эффект атома хлора способствует общей дезактивации ароматического кольца и снижению его реакционной способности в отношении реакций электрофильного замещения). [c.181]


Смотреть страницы где упоминается термин Влияние заместителей реакции замещения: [c.475]    [c.481]    [c.136]    [c.497]    [c.88]    [c.86]    [c.93]    [c.225]    [c.169]    [c.300]    [c.246]    [c.148]    [c.190]    [c.227]    [c.40]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.337 , c.342 ]




ПОИСК





Смотрите так же термины и статьи:

Заместителей влияние

Реакции влияние заместителей

Реакции замещения



© 2025 chem21.info Реклама на сайте