Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы свободные соединение рекомбинация

    Обрыв цепи — группа реакций, приводящая к исчезновению активных частиц и способная вызвать прекращение цепного процесса. Обрыв может быть линейным, если скорость его пропорциональна концентрации активных промежуточных частиц в первой степени. К ним относятся взаимодействия активных промежуточных частиц с поверхностью (материалом стенки) сосуда с соединениями металлов разной степени окисления, способными отдать или отобрать один электрон с валентно-насыщенными молекулами (ингибиторами), следствием чего является образование малоактивного свободного радикала. Такой радикал не способен к продолжению цепей и погибает при рекомбинации с каким-либо другим радикалом. Примером обрыва цепей на молекулах ингибитора может служить окисление углеводородов в присутствии дифениламина  [c.382]


    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    Суммарные скорости цепных реакций обычно сильно снижаются в присутствии соединений, которые могут взаимодействовать с атомами и радикалами и превращать их в соединения, неспособные участвовать в стадиях развития цепи. Такие вещества часто называют ловушками радикалов или ингибиторами. Кислород действует как ингибитор при хлорировании метана, так как он быстро взаимодействует с метильным радикалом, образуя сравнительно устойчивый (менее реакционноспособный) радикал перекиси метила СНзОО-. Это приводит к эффективному обрыву цепи. В благоприятных условиях цепь хлорирования метана может пройти от 100 до 10 ООО циклов, прежде чем произойдет обрыв вследствие рекомбинации свободного радикала или атома. Эффективность (или квантовый выход) реакции, т. е. количества прореагировавших веществ относительно количества поглощенного света, является, таким образом, весьма высокой. [c.109]

    Если связь С—Н в.молекуле метана разорвать таким образом, чтобы в каждой части молекулы осталось по одному электрону, образуются атом водорода и метильный радикал. (Название метил относится к группе СНз— и образовано из слова метан заменой окончания -ан на -ил.) В этом гипотетическом процессе разрыва связи необходимо затратить энергию в количестве 104 ккал/моль разрываемых связей. При рекомбинации двух метильных радикалов перекрываются с образованием связи две 5/ з-орбитали (каждая с одним электроном) и освобождается энергия 88 ккал/моль образующихся связей. Таким образом, углерод-углеродная связь почти так же прочна, как углерод-во-дородная. Вновь образованная молекула НзС—СНз называется этаном подобно метану, она не имеет свободных орбиталей или неспаренных электронов, обладает неполярными связями и химически совершенно инертна, также в первую очередь из-за высоких энергий активации. Если оторвать атом водорода от этана (для этого необходимо затратить 98 ккал/моль) с образованием этильного радикала СНз—СНг— и присоединить последний к ме-тильному радикалу (при этом освободится 85 ккал/моль), полу-чцм новое соединение — пропан СНз—СНг—СНз. Можно но вторить этот процесс и получить бутан СНз—СНг—СНз—СНз Молекула бутана образуется также при рекомбинации двух этильных радикалов (при этом освобождается 83 ккал/моль) Теоретически этот процесс можно продолжать до бесконечности [c.127]


    В действительности эта реакция более сложна. Димеризация не может происходить в результате простого бимолекулярного столкновения, так как энергия обоих радикалов равна или больше, чем эпергия, необходимая для разрыва молекулы димера на два исходных свободных радикала. Соединение двух простых свободных радикалов (например, СНз-) возможно только вследствие тримолекулярного столкновения с молекулой инертного газа М, поглощающей большую часть энергии рекомбинации [c.367]

    Несмотря на то что определение содержания концевых групп представляет собой прямой метод исследования механизма обрыва цепи, важно, чтобы при его применении были выполнены определенные условия. Эти условия были обсуждены Бевингтоном, Мелвиллом и Тейлором [38]. Они сводятся к следующему а) должен быть известен состав радикала инициатора, дающего начало росту цепи б) процессы термической и фотохимической полимеризации должны протекать в незначительной степени в) дегидрирование мономера радикалами инициатора не должно быть значительным г) если используются радиоактивные соединения, то под влиянием их радиоактивности не должны образовываться свободные радикалы из молекул мономера или растворителя д) скорость реакций передачи цепи должна быть очень мала, иначе обрыв цепи будет происходить не только по механизмам диспропорционирования или рекомбинации двух растущих цепей. [c.273]

    Механизм П. наиболее подробно изучен на примере поликонденсации дифенилметаиа и др. углеводородов иод действием перекиси трет-бутшш. Мономер нагревают до темп-ры 180—200°С, при к-рой происходит интенсивный распад перекиси (период полураспада ок. 1 мшь). Введение перекиси в нагретый мономер приводит к возникновению пары первичных свободных радикалов П- из каждой молекулы перекиси (см. схему). Последние атакуют подвижные атомы водорода, находящиеся в га-положении к бензольному кольцу, карбонильной или сложноэфирной группе мономера, и отрывают их. В результате из мономера возникают вторичные свободные радикалы, рекомбинация к-рых приводит к образованию димера, а первичные свободные радикалы превращаются в трет-бутиловый спирт или др. соединения. Под воздействием новой порции первичных свободных радикалов димер превращается во вторичный радикал, рекомбинация к-рого дает тетрамер, и т. д. [c.19]

    Механизм происхождения четной нефти юка неясен, хотя и были попытки объяснить его. Так, в середине 60-х годов профессор химии Оксфордского университета в Англии Р. Робинсон предположил, что в земной коре при повышенных температурах и давлениях происходит распад молекул углеводородов с образованием их осколков-свободных радикалов, и при их повторном случайном соединении (рекомбинации) преимушественно образуются четные углеводороды. Рассуждал он, вероятно, следующим образом. Допустим, в процессе созревания нефти некоторые молекулы углеводородов в каком-то месте разрываются на два фрагмента, после чего образовавшиеся радикалы рекомбинируют случайным образом, образуя новые углеводородные молекулы. Очевидно, что из нечетного углеводорода должен получиться один четный Кчет и один нечетный Кнеч радикал, тогда как из четного с равной вероятностью могут получиться либо два четных радикала, либо два нечетных. Значит, при любом составе исходной углеводородной смеси и достаточно большом числе разрывов мы получим одинаковое количество Кцет и Кнеч- [c.129]

    Образование метана обусловлено реакцией метильного радикала с молекулами, способными отдавать атомы водорода (реакция передачи цепи). Монометиланилин является продуктом соединения (рекомбинации) свободных радикалов СНз и ЫНСоНб непосредственно после их образования. В более вязкой среде (в растворах полиизобутилена или полистирола) выход метана понижается. Это объясняется уменьшением подвижности образующихся свободных радикалов, которые, находясь в непосредственном соседстве, соединяются друг с другом. В результате радикалы СНз не успевают вступить в реакцию с соединениями, способными передать им водород для образования метана. На основании того, что разложение полимеров в растворах, а также в расплавленном и в размягченном состоянии происходит с более высокой скоростью, можно сделать вывод об относительно большей стабильности полимеров в вязких системах. [c.87]

    Ценные сведения о внутриклеточных процессах дает изучение распада оптически активных соединений. Радикалы со свободной валентностью на асимметрическом атоме С могут рекомбинировать по-разному. Продукт рекомбинации может сохранить взаимное расположение фрашентов и дать оптически активную молекулу (димер). Если один из радикалов в клетке поворачивается на 180°, то такая пара дает при рекомбинации мезо-форму. Если оба радикала поворачиваются на 180°, то при рекомбинации образуется оптически активный димер с обратным знаком вращения. Схема клеточных процессов при распаде оптически активных азосоединений имеет следующий ввд  [c.195]


    Определяющими факторами второй стадии, основной в процессе получения меченых соединений, являются вероятность образования промежуточного комплекса и степень возбуждения молекулы или комплекса. В зависимости от степени замедления атома отдачи процесс образования соединения, содержащего радиоактивный атом, протекает по механизму упругих или неупругих соударений. В первом случае меченая молекула образуется в результате рекомбинации свободного радикала и атома отдачи, потерявшего всю (предельный случай) или значительную часть энергии в результате упругого столкновения с аналогичным стабильным атомом молекулы. Такое взаимодействие приводит к получению меченых молекул, являющихся продуктами замещения равноценных или близких по массе атомов на атомы отдачи. Во втором случае — случае неупругих соударений — атом отдачи воз--буждает молекулу в целом, что иногда приводит к образованию промежуточных комплексов с избыточной энергией. [c.58]

    В обш ем эти исследования показывают вполне отчетливо, какую важную роль играет отложение углерода нри катализированном металлами пиролизе органических соединений. Кроме того, эти работы дали нам возможность изучить рекомбинацию свободных радикалов на металлических поверхностях. Как правило, рекомбинация идет с гораздо меньшей скоростью, чем можно было предполагать радикал ударяется о стенку в среднем до 10 раз прежде чем прилипнуть к ней. С другой стороны, было отмечено, что скорость рекомбинации в высшей степени зависит от состояния поверхности, что делает сомнительными применяемые способы измерения среднего времени жизни свободных радикалов по методу зеркал Панета. [c.274]

    Поскольку при применявшихся давлениях частота столкновений между частицами имеет порядок 10 в сек., можно сделать вывод, что при столкновении с молекулами водорода или азота свободный метил не выводится немедленно из строя. Более поздние эксперименты показали, что носителями активных алкильных радикалов могут служить также многие другие газы, например, аргон, гелий, углекислота и даже пары воды I M. стр. 102). Но средняя продолжительность жизни метильног ) радикала должна в некоторой степени зав исеть от диаметр. реакционного сосуда, температуры и природы газа-носителя -. Можно сделать вывод, что в условиях опытов, первоначально проведенных Панетом, большинство процессов вывода метильных радикалов из строя было вызвано их рекомбинацией в этан на стенках сосуда. Удалось подсчитать, что в холодных стеклянных или кварцевых трубках метильные радикалы претерпевают в среднем 1000 столкновений со стенками трубки до того, как произойдет рекомбинация. При 500° С, с использованием гелия в качестве носителя, активность теряется только примерно прп одном из 10 000 столкновений со стенкой. Каждое столкновение метильного радикала с поверхностью свинца или сурьмы нри-1ЮДИТ, повидимому, к химическому соединению. В отличие от атомарного водорода (стр. 95) метильные радикалы не рекомбинируются каталитически на поверхностях платины, желез ,, меди или никеля, поскольку проволочки из этих металлов, по мощенные в струе газа около источника свободных радикалов, не нагреваются. Быстрые реакции происходят, однако, с щелочными металлами — литием, натрием и калием, а также с 1сталличсскими таллием, оловом, мышьяком и висмутом, для которых хорошо известны стабильные металлоорганические [c.142]

    Эта обычная форма атаки свободным радикалом известна как передача цепи (radi al transfer) ( R, 57, 123). Метильный радикал используется для дегидрирования различных органических соединений примером может служить превращение уксусной кислоты в янтарную. Радикал -СН2СООН относительно устойчив, и рекомбинация наступает не сразу. [c.506]

    Свободные радикалы представляют собой электронейтральные частицы с непарными электронами. Среди свободных радикалов имеются частицы с большой энергией — они малоустойчивы и крайне реакционноспособны. Так, радикал метил СНз имеет среднюю продолжительность жизни 8,4-10 сек. Такие свободные радикалы, как этил С2Н5, метилен или карбен СНз, также мало устойчивы их время жизни — всего несколько тысячных долей секунды. Эти свободные радикалы не могут существовать длительное время и легко взаимодействуют друг с другом (рекомбинация свободных радикалов), а также и с не-диссоциированными молекулами с образованием устойчивых соединений. К долгоживущим свободным радикалам относятся частицы, в которых непарный электрон включается в цепь сопряжения л-связей. Таков, например, радикал трифенилметил (СбН.5)зС [c.316]

    В начале XX в. химики открыли свободные радикалы как одну из активных форм химического вещества. Оми образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, например, радикал метил СНз или этил СНз — СНг с трехвалентным атомом углерода. Свободные радикалы характеризуются наличием одиночных (неспарепных) электронов, чем и объясняется их исключительная химическая активность, способность к рекомбинации. Свободные радикалы могут вызвать цепную реакцию в. молекулах, которые при других условиях являются устойчивыми. Оказалось, что многие процессы (окисление, крекинг, полимеризация непредельных соединений и т. д.) протекают как радикально цепные. [c.78]

    Другой возможный механизм рекомбинации радикалов поддействием света состоит в том, что избыточная энергия, которая локализуется на свободном радикале в у-облученном полимере, приводит к образованию нового радикала, расположенного рядом. Эти два радикала рекомбинируют с образованием двойной связи. Наличие неспаренного электрона может ослаблять ближайшие связи. (Например, энергия отрыва атома водорода от этана равна 98 ккал-моль , а энергия отрыва атома Н от этильного радикала значительно меньше — около 40 ккал -моль .) С этим, очевидно, связана легкость, с которой происходят реакции разложения, перегруппировки и диспропорционирования радикалов. Такой диссоциативный механизм гибели радикалов, возможно, играет роль в радиационной химии высокомолекулярных соединений. В ИК-спектре полиэтилена полоса 985 см , соответствующая сопряженным двойным связям, становится заметной, когда количество гпраяс-виниленовых двойных связей равно 4 на 1000 атомов углерода в цепи [209]. Это говорит о том, что происходит отрыв одного атома водорода от метиленовой группы, соседней с образовавшейся двойной связью, а затем от аллильного радикала и последующее образование сопряженных двойных связей. По-видимому, рекомбинация радикалов по такому механизму может происходить только в процессе облучения. [c.345]

    Передача цепи. Для обрыва цепной реакции имеется многО различных способов. Наиболее важными из них являются дис-пропорционирование, рекомбинация свободных радикалов и передача цепи. Первые две реакции обрыва цепи почти не поддаются внешнему регулированию. Реакция передачи цепи может быть специально вызвана путем введения особых веществ для регулирования длины полимерной цепи. Многие химические соединения (например, тиолы, пергалогенизированные парафины, альдегиды,, спирты, сложные эфиры, алкилированные ароматические углеводороды и т. д.) способны обрывать рост полимерных цепей путем передачи радикала. Различные мономеры отличаются друг от друга по степени легкости передачи радикальной функции передающему агенту, поэтому для каждого мономера наиболее эффективное соединение должно быть найдено экспериментально. [c.437]

    Рассмотренные выше сведения о генерации и поведении в кислых средах катион-радикалов ароматических соединений, полученные методами электронного парамагнитного резонанса и абсорбционной спектроскопии в ультрафиолетовой и видимой областях, не позволяют сделать однозначных заключений о роли подобных частиц в образовании и превращениях аренониевых ионов, а следовательно, и в реакциях электрофильного замещения в ароматическом ряду. Не вызывает сомнения, что при определенном соотношении энергетических уровней взаимодействие АгН и Х+ может сопровождаться образованием радикальной пары АгН+, X, находящейся в равновесии со свободными радикалами АгН+ и X , причем связывание радикалов X- ведет к накоплению в системе катион-радикала АгН+. Остается, однако, не ясным, могут ли образование и рекомбинация радикалов АгН+ и Х оказаться основным путем образования а-комплексов (путь б, в), энергетически более выгодным, чем прямой путь (а). [c.159]

    В реакциях окисления молекулярным кислородом, как и в других цеиных процессах, обрыв реакционной цепи осуществляется не только путем рекомбинации радикалов, но и вследствие их взаимодействия с ингибиторами. Механизм действия значительной группы ингибиторов удовлетворительно объясняется теорией цепных реакций И. И. Семенова, согласно которой обрыв цепи ингибиторами можно рассматривать как частный случай передачи цепи с образованием менее активного свободного радикала [1, 2]. Такой механизм вполне приемлем для ингибиторов, в молекуле которых содержится подвижный атом водорода. Однако имеющийся в литературе опытный материал показывает, что ингибиторами окисления молекулярным кислородом могут служить вещества самой различной химической природы (фенолы, амины, аминофенолы, органические и минеральные кислоты, вода, хиноны, сульфиды и др.). Кроме того, нужно учитывать, что в реальных условиях автоокислепия углеводородов в реакционной среде возможно одновременное существование не только свободных радикалов типа R, R0, ROO, НО, Н00 , но и неустойчивых перекисных соединений типа ROOR, которые в свою очередь могут непосредственно реагировать с молекулами ингибитора. [c.94]

    Твердое тело не имеет сплошь заполненного атомами пространства. Даже при плотнейшей упаковке в идеальном кристалле имеется некоторое свободное пространство, состоящее-из пустот сложной формы и каналов между ними. Это пространство принято называть свободным объемом. Если при распаде входящего в состав твердого тела иона или молекулы возникает радикал с геометрическими размерами, близкими к характерным размерам свободного объема, то эти радикалы имеют определенную вероятность выскользнуть через эти каналы из зоны образования и тем самым избегнуть рекомбинации в исходную молекулу или ион. Согласно этому выход продуктов--радиолиза должен возрастать с увеличением свободного объема в соединениях одного типа. Это и наблюдалось для ряда-солей неорганических кислот [380] по конечным продуктам. Известен пример, где эффект свободного объема проявляется и для радикалов. Из рис. 5.7. видно, что для различных ацетатов сумма выходов свободных радикалов (СНз, СН2СОО ,, СНзСОО=) в функции свободного объема укладывается на одну прямую, исходящую из свободного объема, численно равного объему радикала СНз. [c.255]

    На образование в системе свободных радикалов часто указывает присутствие среди продуктов реакции небольших количеств димеров. Образование в качестве побочного продукта фторирования метана СгРб уже упоминалось как доказательство промежуточного образования в, реакции радикалов СРз, С другой стороны, отсутствие димера указывает, что соответствующий радикал может не присутствовать (Хотя следует помнить, что в цепных реакциях количество образующихся продуктов рекомбинации может быть чрезвычайно мало). Например, фенильные радикалы, возникающие при нагревании перЬксида бензоила,. взаимодействуют/ с ароматическими соединениями с образованием фенилйрованных продуктов 91. Отсутствие среди продуктов биарильного соединения Аг—Аг отвергает схему (138), которая, включает в себя радикалы Аг, и делает предпочтительной альтернативную схему реакции (139). Другим доказательством схемы (139) является факт выделения в ряде случаев димера промежуточных радикалов 92. [c.97]


Смотреть страницы где упоминается термин Радикалы свободные соединение рекомбинация : [c.342]    [c.417]    [c.408]    [c.492]    [c.232]    [c.492]   
Стабилизация синтетических полимеров (1963) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Радикал рекомбинация

Рекомбинация

Рекомбинация свободных радикало

Свободные радикалы

Свободные радикалы ион-радикалы



© 2025 chem21.info Реклама на сайте