Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элюирование выход

    Хлороформом элюирован (выход количественный) II, т. пл. 240—241° С. Литературные данные [4] т. пл. 243—244° С. [c.863]

    Зависимость удерживаемых объемов от температуры имеет большое практическое значение. Так, при изменении температуры колонки изменяется порядок выхода компонентов смеси. При температурах колонки, соответствующих областям а, а", а ", происходит совмещение максимумов пиков индивидуальных веществ. В области температур Ь первым выходит компонент 1, затем компоненты 2, 3 а 4. При температуре с происходит инверсия порядка элюирования компонентов 3 и 4. При температуре й первым вымывается компонент 4, затем 1, 3, 2. [c.83]


    Разделяющий эффект гель-хроматографии обусловлен тем, что молекулы малых диаметров способны проникать в гель глубже и удерживаться там дольше, поэтому при элюировании они выходят из колонки после более крупных молекул. Происходит как бы просеивание молекул. Слой геля в хроматографической колонке характеризуют высотой к и диаметром с1. При больших диаметрах скорость потока и разделения больше, чем при малых диаметрах. Однако разделение сложных смесей производят на узких и длинных колонках. [c.361]

    Слабо удерживаются сильнополярные вещества, они элюируют раньше менее полярных и неполярных (близких по молекулярной массе и геометрической структуре) если на полярном адсорбенте сильнополярные вещества удерживаются сильно и для их десорбции необходимо градиентное элюирование с увеличением полярности элюента, то из колонны с неполярным адсорбентом при применении полярных элюентов сильнополярные вещества выходят достаточно быстро. [c.307]

    При использовании ионообменной хроматографии для анализа наиболее эффективно применять методы промывания или элюирования (см. рис. 1,в и г). В этом случае необходимо получить определенные математические зависимости, позволяющие полностью рассчитать формы выходных кривых (см. рис. 1, в и г) или основные их параметры (положение максимума, точку начала и конца выхода зоны из колонки). Если расчетные выходные кривые компонентов анализируемой смеси не перекрываются, то разделение полное, если кривые перекрываются, то разделение неполное. [c.181]

    Элюирование растворами кислот. Этот метод применяют при образовании в хроматограмме гидроксидов металлов или малорастворимых соединений с анионами слабых кислот (фосфатов, карбонатов, фторидов некоторых металлов, солей с анионами органических кислот и др.). Поскольку в результате растворения М А , НгА и других соединений образуется одна и та же слабая кислота Н А (или вода при растворении гидроксидов), то относительная концентрация М ", и других ионов на выходе из колонки будет определяться соотношениями ПР малорастворимых соединений в соответствии с уравнением (189). Оптимальную концентрацию кислоты рассчитать нельзя, так как неизвестна активная концентрация осадителя в фазе сорбента. Поэтому концентрацию кислоты, обеспечивающую избирательное извлечение из колонки наиболее растворимого соединения или последовательное растворение осадков в хроматограмме, находят экспериментально. [c.239]


    Рви — давление на входе в колонку Рвых — давление на выходе из колонки), приведение затраченного на элюирование вещества объема газа-носителя к О °С (273,15 К) и отнесение его к 1 г неподвижной фазы дает возможность определить принципиально новую физико-химическую константу соединения — его удельный объем удерживания Vg. [c.166]

    Если на неподвижный слой адсорбента поступает раствор, содержащий компоненты А и В, то эти компоненты при элюировании жидким десорбирующим агентом С перемещаются к выходу аппарата и удаляются в виде экстракта (А+С) и рафинада (В+С). Скорость перемещения компонентов А и В через слой адсор- [c.141]

    Для ступенчатого градиентного элюирования хроматографических групп была использована возможность разделения смеси элюентов по способу фронтальной хроматографии [3, 5], согласно которому разделение элюентов должно идти по схеме, представленной на рис. 1. При разделении смеси, например, из трёх растворителей различной адсорбционной активности в предварительной колонке (см. рис. 1, а) первым из колонки выйдет некоторое количество наиболее слабо адсорбирующегося растворителя А в чистом виде, затем смесь растворителя А с более сильно адсорбирующимся растворителем В и, наконец, исходная смесь растворителей А, В и С. Поступая в разделительную колонку, растворитель А вытесняет с силикагеля слабо адсорбирующуюся часть образца (компонент а) и движется вместе с ним к выходу из колонки. Затем по этой же схеме десорбируются компоненты Ь и с. [c.6]

    Ацетонитрил имеет ряд преимуществ перед метанолом. При хорошей очистке он лучше пропускает в ближнем ультрафиолетовом диапазоне (ниже 210 нм) и позволяет работать в смеси вода — ацетонитрил при 200 и даже 190 нм. Он обычно обладает лучшими растворяющими свойствами для проб, чем метанол. При использовании смесей метанол — вода вязкость такой смеси не является аддитивной величиной (так же как и для смесей ацетонитрил — вода) и при 25 С меняется от 0,89 и 0,57 МПа с (для чистых воды и метанола соответственно) до 1,4 (цифры для смеси ацетонитрил — вода соответственно 0,89, 0,43 и 0,98). Большая вязкость смесей метанол — вода по сравнению со смесями ацетонитрил — вода (почти в 1,5 раза) затрудняет использование колонок, заполненных частицами сорбента размером 3 и 5 мкм, при использовании водно-метанольных смесей. Точно также при градиентном элюировании колонки, работающие с системой метанол — вода, подвергаются при равном расходе действию больших давлений и быстрее выходят из строя. Наконец, не малую роль играет и то обстоятельство, что метанол относится к группе особо опасных ядов, находящихся на строгом контроле и учете, тогда как ацетонитрил к этой группе не относится. [c.29]

    Основной величиной, характеризующей поведение вещества в условиях газовой хроматографии, является время элюирования [124]. Временем элюирования называют величину, показывающую, во сколько раз зона данного вещества движется по колонке медленнее, чем газ-носитель (например, водород). Эта характеристика зависит от таких параметров, как температура, скорость тока газа-носителя, качество наполнения колонки, размеры аппаратуры и т. д. Зависимость величины времени элюирования от скорости тока газа-носителя устраняется введением понятия удерживаемый объем [124], которое определяется как произведение времени элюирования на скорость протекания газа-носителя. Фактически это объем газа-носителя, прошедший через колонку с момента внесения образца до момента, когда данный компонент смеси выходит из хроматографической колонки в максимальной концентрации.  [c.491]

    Смесь элюированных веществ и газа-носителя, которым в данном случае также является двуокись углерода, по выходе из колонки пропускают через концентрированный раствор едкого кали, который поглощает двуокись углерода. Отдельные компоненты смеси собирают в специальном сосуде, где измеряется давление при постоянном объеме. [c.502]

    Спектральные данные приведены для образца, полученного хроматографированием сырого продукта на 100 г силикагеля при элюировании смесью диэтиловый эфир - н-пентан 1 5 [выход 1,20 г (84%)]. [c.507]

    При начале выхода пика воды из колонки, установите температуру термостата 200 С на 10 минут (для увеличения скорости элюирования воды). [c.18]

    ДЛЯ определения значений В12 различных смесей [201, 202]. Метод основан на измерении объемов, удерживаемых газом-носителем при различных давлениях газа-носителя, с последующей экстраполяцией на нулевое давление газа. Для такой экстраполяции предложены два метода приближенного описания процесса элюирования [201, 203], которые, к сожалению, дают различные значения В12 при обработке одних и тех же экспериментальных данных. Недавно Крюикшанк, Виндзор и Янг [202] сформулировали задачу по-новому с использованием местного давления и скорости на выходе газа-носителя. Это позволило более успешно производить экстраполяцию на нулевое давление. [c.117]


    Предварительно переводят ионогенные группы катионита в П+-форму, пропуская через колонку 40 мл 3 М раствора НС1. Для этого 20 мл кислоты наливают в емкость 2 и через несколько секунд (после полного выхода пузырьков воздуха из трубки 4) открывают кран 6 и устанавливают необходимую скорость вытекания раствора (I капля в 1 с). Когда уровень раствора опустится до нпжней частп трубки 4, закрывают кран 6 н наливают в емкость 2 новую пор-цртю кнслоты. Снова устанавливают оптпмальиую скорость элюирования. [c.55]

    Периодически добавляют в емкость 2 десорбент и проводят элюирование до полного выхода кобальта из колонки, о чем свидетельствует исчезновение оранжево окраски элюата, С помощью фотоэлектроколориметра измеряют оптическую плотность D каждой порции элюата со светофилг.тром 620 им (для определения содержания меди) и затем со светофильтром 480 нм (для определения содержания кобальта), Метолик ] педелоипм о" i ierKoi i плотности приведена в работе 17. В качестве раствора сравнения используют воду. По калибровочным [c.57]

    Через 30—40 мин элюирования фракции полиэтилеигликоля выходят из колонки. За началом выхода ЫаС1 наблюдают по показанию милливольтметра 9. Когда милливольтметр покажет 20 мВ, тумблер на щите 8 переключают в положение электропроводность . При этом перо потенциометра переходит влево и выходная кривая для хлорида натрия вычерчивается в перевернутом виде по отношению к кривой для полиэтилеигликоля (рис. 19). [c.62]

    Из колонны с силикагелем с гидроксилированной поверхностью при элюировании смесью неполярного и слабополярного растворителей монозамещенные бензола выходят в такой последователь- [c.293]

    Последовательность выхода антрацена и фенантрена и в этом случае противоположна полученной на силикагеле с гидроксилированной и аминированной поверхностью (см. рис. 16.4, 16.5 и табл. 17.1). Преимущественное удерживание антрацена по сравнению с фенантреном было отмечено при элюировании полярным растворителем с силикагеля с привитыми алкильными группами С]8 (см. рис. 17.4 и табл. 17.1), а также при газовой хроматографии на ГТС (см. лекцию 9). Удерживание же таких сильных доноров, как аценафтилен относительно аценафтена и бенз(а)пирен относительно бенз(е) пирена, на модифицированной тетранитрофлуореном поверхности различается очень сильно. [c.330]

    Адсорбция из растворов олигомеров — полимеров со сравнительно небольшой молекулярной массой (от 300 до 5000) —происходит в соответствии с их химическим строением. На рис. 18.4 показано разделение олигобутадиенов и их моно- и диоксипроизвод-ных со средней молекулярной массой около 1200 на колонне с широкопористым силикагелем при градиентном элюировании с постепенным увеличением содержания полярного компонента метилэтилкетона в н-гептане. Первым из такой колонны при элюировании чистым н-гептаном выходит олигобутадиен, вторым при добавлении в н-гексан 5% метилэтилкетона выходит монооксиолигобутадиен и третьим, при содержании в н-гептане 15% метилэтилкетона, — диоксиолигобутадиен. Этот пример показывает, что методом адсорбционной хроматографии можно разделять синтетические олигомеры по типу и числу функциональных групп в их макромолекулах. [c.337]

    В колоночной (в том числе газовой) хроматографии по достижении положения, показанного на рис. 61, б, подачу подвижной фазы не прегфащают. Хроматографирование продолжают до тех пор, пока подвижная фаза выносит из колонки разделяемые вещества. Этот процесс называют элюированием, а выходящую из колонки подвижную фазу, содержащую разделяемые вещества, — элюатом. Элюат обычно контролируют на содержание разделяемых веществ с помощью датчиков, которые называют детекторами. Сигналы детекторов принимаются измерительными приборами и передаются к самописцам. Получают хроматограммы, подобные той, которая показана на рис. 61, в. Если на оси абсцисс отложено время, по хроматограмме можно определять время удерживания вещества в колонке. Для 81 это 1, а для 83 — 2 (отсчет времени ведется с момента ввода смеси разделяемых веществ). Часто все же по оси абсцисс откладывают не время, а объем элюата. Нулевая точка тогда соответствует выходу той порции подвижной фазы, в которую была введена смесь разделяемых веществ. Потом в элюате меняются концентрации разделяемых веществ в соответствии с различными степенями их удерживания. По полученной хроматограмме определяют объем удерживания. Для 81 это v , а для 83 = а-Время (объем) удерживания при постоянных условиях хроматографирования представляет собой величину, характерную для данного вещества. Поэтому наряду с другими методами обнаружения для идентификации веществ можно использовать значения времени (объема) удерживания. Количества же разделенных веществ пропорциональны площадям их пиков. Это используют для проведения количественных определений. Можно также собрать отдельные порции элюата и определить содержание в них разделяемых веществ с помощью подходящих методов количественного анализа. [c.258]

    Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются заранее известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему У . Хотя данный метод применяют, главным образом, для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облетает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ. [c.42]

    При разработке метода разделения сложных смесей веществ, особенно биологического и природного происхождения. Исследователю часто приходится сталкиваться с тем, что в их состав не только входит большое количество соединений, но и сильно различаются их свойства. Подобрать в этом случае сорбент и растворитель, которые обеспечивали бы разделение всех или большинства интересующих исследователя компонентов, обычно не удается. Однако еще тогда, когда колонки в хроматографии были малоэффективными, было найдено и средство для решения таких задач — использование растворителя, элюирующая сила которого постепенно увеличивалась. Это приводило к тому, что как слабо, так и сильно удерживаемые вещества выходили из колонки за приемлемо короткое время, при этом зоны сильно удерживаемых соединений сужались и давали более узкие и симметричные пики. Когда эффективность колонок была повышена, популярность градиентного элюирования несколько уменьшилась, однако для многих объектов до настоящего времени это единственно приемлемый вариант — ВЭЖХ с градиентом растворителя, или градиентная ВЭЖХ (ГВЭЖХ). [c.65]

    Если все вещества, которые вас интересуют, выходят достаточно быстро и с хорошим разрешением, можно переходить к калибровке по искусственным смесям и начинать количественную работу. Если же выходят не все вещества, следует попытаться добиться их элюирования, увеличив силу растворителя. Полезно, если есть возможность, для сокращения объема поиска использовать градиент растворителя от слабого до наиболее сильного. При этом не следует забывать два положения во-первых, колонка должна быть промыта от тяжелых компонентов предыдущих проб, анализировавшихся изократически, сильным растворителем во-вторых, всегда следует проверить отсутствие ложных пиков при градиенте, введя вместо пробы чистый растворитель. Если исследователь не располагает возможностью применить градиент, следует использовать метод поиска от самого сильного растворителя к слабому. [c.136]

    Большинство современных насосов снабжено указателями и ограничителями нижнего и верхнего пределов рабочего давления. Давление в хроматографической системе является исключительно важным параметром, и его необходимо контролировать. Для этой цели обычно используют указатель давления с проточными тензодатчиками. Объем датчиков очень мал, поэтому не возникает затруднений при замене растворителя в градиентном элюировании. Ограничители давления автоматически отключают насос при выходе давления из установленного диапазона, что существенно повышает безопасность работы. Ограничитель верхнего предела также очень полезен для предотвращения порчи колонок с некоторыми сороентами, которые могут разрушиться при превышении допустимого для них рабочего давления. [c.141]

    Выделение свободного 3-аланина или его соли. Метод выделения зависит от того, в виде какой соли получают 3-аланин при гидролизе. Если этот процесс осуществляют соляной кислотой, то получают хлоргидрат 3-ала-нина. Для выделения из этой соли свободного 3-аланина предложены различные реагенты гидрат окиси лития [40, 51], окись свинца, а затем обработка водородом [40]. Эти реагенты либо дороги, либо требуют сложной обработки во вредных условиях. Наиболее эффективным является метод ионообмена на катионите КУ-2 [52] с элюированием 2%-ньм раствором аммиака с последующим выпариванием и кристаллизацией. Выход 92,0%. [c.140]

    В простейшем случае подача буферного раствора на колонку осуш,е-ствляется, как и при обычной хроматографии, при помош,и резервуара с постоянной высотой уровня жидкости, причем скорость тока регулируется краном на выходе из колонки. Для ускорения тока буфера можно создать некоторое избыточное давление по способу, показанному на рис. 419, стр. 454. Более целесообразно использовать специальные микронасосы, позволяюш,ие осуш,ествить элюирование с постоянной регулируемой скоростью. Так, например, поршневые насосы, сконструированные в экспериментальных мастерских Чехословацкой Академии наук [67], позволяют регулировать скорость потока в диапазоне от 5 до 500 мл/час (рис 494). Они имеют стеклянные клапаны или клапаны золотникового тйпа (нержа-веюш,ая сталь по тефлону) и снабжены специальным командным устройством, обеспечиваюш,им автоматическую смену буферов и работу коллектора фракций (см. разд. 5.2 и 6). Насос поддерживает строго постоянный ток буфера при давлении несколько атмосфер. [c.554]

    Частицы пробы размером более 1 мкм удерживаются по механизму, который отличается от механизма, характерного для описанного выше диффузионно контролируемого режима. Изменение режима иа стерический характерн-зуется обращением порядка элюирования, т. е. чем больше частицы, подвергаемые стерическому ФПП, тем раньше они элюируются. Когда зтн большие частицы, броуновским движением которых можно пренебречь, подвергаются действию поля, они останавливаются у аккумулирующей стенки. Эта тенден-1щя противоположна существованию гвдродинамических подъемных сил, которые увлекают частицы вверх и вдаль от стенки в условиях высокой скорости. Несмотря на то, что теория такого процесса удерживания до иастояпдаго времени не 1юлностью разработана, понятно, что между приложенным полем и этими подъемными силами, индуцированными потоком, должен быть достигнут очень тонкий баланс. Если скорость потока мала по сравнению с приложенным полем, частицы могут адсорбироваться на стенках и элюироваться непредсказуемо долго или не элюироваться вовсе. Если скорость потока слишком велика, чтобы эффективно компенсироваться полем, подъемные силы приведут к существенному ухудшению разрешения. Если же необходимый баланс достигается, инициация потока вдоль канала после релаксации вызовет движение частиц по потоку со скоростями, определяемыми степенью, с которой они выходят в поток равновесное расстояние от центра тяжести частиц до стенки будет примерио равно радиусу частиц. Уравнение удерживания для этого гидродинамического режима работы в таком случае может быть выражено следующим образом  [c.314]

    Благодаря своему заряду карбонат имеет очень хорошие элюирующие свойства, и его можно использовать в сравнительно низких концентрациях. Чаще всего применяются элюенты, которые представляют собой буферные растворы, приготовлеппые смешением карбоната и бикарбоната. Селективность такого элюента можно легко изменить, меняя соотношение компонентов, т.е. меняя значение pH элюента. Кроме того, чтобы обеспечить быстрое или медленное элюирование, не влияя на порядок выхода анализируемых попов, можно просто изменить концентрацию элюента. [c.6]

    Наделение пробы па индивидуальные компоненты достигается в соответствии с удерживанием каждого компонента хроматографической колонкой. Время, необходимое для элюирования композита из колонки, называется (абсолютным) временем удерживания (1г) и определяется по времени выхода максимума его хроматографического пика. В процессе хроматографического разделения происходит распределение компонента пробы между подвижной и неподвижной фазами. Время нахождения компонента в подвижной фазе (1 ) постоянно для всех составляющих анализируемой смеси. Величину Ш обычно называют "мертвым временем" колонки или временем удерживания несорбирующегося вещества. Эту величину можно легко определить по времени удерживания сорбирующегося в колонке вещества, нанример метана. Однако Казано, что математический расчет мертвого [c.4]


Смотреть страницы где упоминается термин Элюирование выход: [c.326]    [c.434]    [c.221]    [c.362]    [c.523]    [c.8]    [c.141]    [c.9]    [c.221]    [c.296]    [c.319]    [c.10]    [c.118]    [c.590]    [c.88]    [c.319]    [c.82]    [c.194]    [c.413]   
Аффинная хроматография (1980) -- [ c.27 , c.28 , c.32 , c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Больцмана распределение объем элюирования выхода

Объем выхода элюирования

Элюирование



© 2025 chem21.info Реклама на сайте