Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные переходы, вращательная структура колебательная структура

    При излучении электронных спектров влияние колебательных и вращательных степеней свободы выражается в том, что вместо одной линии, соответствующей определенному электронному переходу, в спектре проявляется целая серия линий, частоты которых отличаются друг от друга на величину, соответствующую частоте колебаний в свою очередь, каждая линия этой серии имеет сложную тонкую структуру, обусловленную вращением молекулы. Полный набор различных колебательных и вращательных линий, соответствующих одному электронному переходу, образует одну спектральную полосу. Такие спектральные полосы можно увидеть в спектрах газов. [c.7]


    Соотношения величин энергии электронных, колебательных и вращательных переходов схематически показаны на рис. 7.3. Из рисунка видно, что электронным переходам Ь сопутствуют колебательные и вращательные переходы, а колебательным — вращательные. Поэтому в электронных спектрах часто наблюдается колебательно-вращательная тонкая структура, а в колебательных — вращательная. [c.160]

    Вращательная структура. Вращательная структура данного колебательного перехода, т. е. полосы, зависит от типов электронных ч остояний, между которыми происходит переход. Рассмотрим сначала переходы 2 —2. Правило отбора для квантового числа N этих переходов есть = н= 1 (стр. 54), что в случае переходов 2 — —Ч, идентично ДУ = 1. Другими словами, получаем R- и Р-ветви, так же как и для инфракрасных колебательно-вращательных полос вклад вращения в волновое число определяется теми же уравнениями,, что были уже введены для колебательно-вращательных полос уравнениями (82) и (83) соответственно для v и vp [или единым уравнением (84)1. Единственное отличие заключается в том, что, поскольку теперь В к В" принадлежат различным электронным состояниям, разница между ними может быть значительной. Именно этим обусловлена гораздо более сильная сходимость к длинным или коротким волнам, приводящая к образованию характерных кантов [когда у(т +1) — у(т) в уравнении (84) стремится к нулю]. Высокочастотный кант в / -ветви (красное оттенение полосы) образуется при В <С В", а при В" образуется низко- [c.74]

    Электронные переходы в молекулах сопровождаются одновременным изменением колебательной и вращательной энергии, вследствие чего каждый электронный переход в молекуле дает ряд полос, состоящих из большого числа близко расположенных линий, обусловленных изменением колебательной и вращательной энергии молекулы. Изменения колебательной энергии молекулы определяют место отдельных полос в системе. Изменения вращательной энергии молекулы определяют тонкую структуру отдельных полос. Полосатые спектры в близкой ИК-области обусловлены только изменением колебательной и вращательной энергии молекул, а спектры в далекой ИК-области вызваны изменениями только вращательной энергии. [c.16]

    При возбуждении электронного перехода в молекуле возбуждаются одновременно также колебательные и вращательные переходы. Поэтому при малой разрешающей способности получаются широкие системы полос (полосатый спектр). Система полос, принадлежащая данному электронному переходу, состоит из отдельных полос, каждая из которых соответствует колебательному переходу. В этих полосах, в свою очередь, при высоком спектральном разрешении обнаруживается (только для газов) тонкая вращательная структура. [c.424]


    Поглощение излучения в видимой или ультрафиолетовой областях приводит к изменению электронной энергии молекулы, которое всегда сопровождается также изменением вращательной и колебательной энергии. Поэтому полный электронный спектр состоит из ряда систем полос. Каждая система (см. приложение, рис. 20) соответствует определенному изменению электронной энергии и включает много полос, каждая из которых относится к определенному колебательному переходу и еще может иметь вращательную тонкую структуру. Большинство переходов в инфракрасной области, обладающих наибольшей интенсивностью, обусловлены изменением колебательного квантового числа (обычно от какого-либо его небольшого значения), как правило, на одну или две единицы. Однако в электронных спектрах, хотя большинство молекул находилось первоначально в низших колебательных состояниях, колебательное квантовое число может меняться на несколько единиц. Дело в том, что электронный переход осуществляется гораздо быстрее, чем молекулярное колебание. Поэтому межъядерное расстояние [c.334]

    Электронные переходы в двухатомных молекулах. Часть спектра, находящегося в видимой и ультрафиолетовой области, не может быть объяснена наличием вращательного или вращательно-колебательного движения. Структура спектра здесь является более сложной и объясняется наличием электронных переходов. [c.75]

    Кроме атомов, спектры излучения имеют многие двух- и трехатомные молекулы. Излучение молекул происходит также в результате изменения их электронной энергии. Но так как при этом изменяется колебательная и вращательная энергия молекулы, исходный и возбужденный уровни электронной энергии расщепляются па ряд близких по значению состояний. Поэтому в результате электронного перехода вместо одной линии в спектре возникает ряд близко расположенных линий, которые образуют полосу. Спектры излучения молекул вследствие этого называют полосатыми. Как и линейчатые спектры излучения атомов, они характеризуются длиной волны кантов полос и их интенсивностью. Спектры излучения некоторых молекул используют для спектрального анализа. Например, спектр излучения радикала СЫ применяют для обнаружения углерода, СаР —для определения фтора. Различие величины массы ядер у изотопов оказывает значительное влияние на сверхтонкую структуру спектральных линий. Эта особенность положена в основу спектрального анализа изотопов. [c.143]

    Как известно [2, 3], при повышении температуры возрастает энтропия системы частиц и, в частности, происходит выравнивание распределения молекул по состояниям, т. е. молекулы возбуждаются и переходят в более высокие вращательные, колебательные и электронные состояния. Колебательные состояния имеют свои наборы вращательных состояний, а каждое новое электронное состояние — новые наборы и колебательных, и вращательных состояний. В результате наблюдаемые ИК-спектры усложняются как за счет увеличения числа линий вращательной структуры, так и за счет наложения горячих колебательно-вращательных полос. Например, в случае двухатомных молекул около полосы 1—0 появляются полосы 2—1, 3—2 и т. д...., отличающиеся по частоте от основной полосы на величину, равную удвоенной ангармоничности. Кроме того, возрастает в 2—3 раза температурное (допплеровское) уширение линий вращательной структуры [6]. Все это, вместе взятое, приводит к более раннему слиянию линий вращательной структуры. Кроме того, с повышением температуры вращательная структура полос расширяется, а максимумы интенсивности понижаются и смещаются в сторону больших значений вращательных квантовых чисел. В итоге в ИК-полосах образуются канты, а результирующая огибающая приобретает асимметричный сложный контур. Из таких спектров можно получить лишь весьма ориентировочную информацию о вращении молекул, более того, становится неопределенным положение максимума полосы относительно ее начала. Обычно полуширина таких полос составляет при температуре около 1000° С величину порядка 50—100 см а смещения максимума могут достигать нескольких десятков см . [c.66]

    При обсуждении образования структуры полосы можно для простоты предположить, что в течение электронного перехода вращательная энергия не меняется (т. е. Е = Р"), так что можно рассматривать только колебательную, или грубую, структуру спектра. Далее, можно предположить, что [c.115]

    Общий подход Малликена состоит в следующем. Полный спектр, обусловленный молекулярным электронным переходом, считается аналогичным (и имеющим примерно одинаковую интенсивность) одиночной линии, связанной с таким же одиночным электронным переходом в атоме. Например, непрерывный молекулярный спектр соответствует очень широкой атомной линии, тогда как молекулярный спектр с колебательной и вращательной структурой отвечает атомной линии с тонкой структурой. Полная абсолютная сила осциллятора молекулярного электронного перехода определяется как интеграл интенсивности по всем результирующим полосам, включая континуум. Таким образом, эта операция подобна расчету абсолютной интенсивности электронного перехода в атоме. [c.136]


    Гак же как и для двухатомных молекул, каждая электронно-колебательная полоса имеет тонкую вращательную структуру, возникающую при переходах между отдельными вращательными подуровнями верхнего и нижнего электронно-колебательных уровней. Для простейших молекул колебательная и вращательная структуры разрешены и полностью интерпретированы. Из колебательновращательной структуры спектров многоатомных молекул могут быть определены энергия возбуждения верхнего электронного состояния, колебательные и вращательные постоянные и геометрическая конфигурация молекулы в основном и возбужденном электронных состояниях. В табл. 52 для иллюстрации приведены некоторые данные, полученные при исследовании электронно-колебательно-вращательных спектров простых молекул. [c.435]

    Показанные на рис. П1-41 структуры молекул получены из спектральных данных. Как и атомные ( 4), молекулярные спектры имеют квантованный характер. Возникновение их может быть обусловлено электронными переходами, т. е. изменениями состояния тех или иных электронов молекулы. Такие изменения связаны с энергиями порядка сотен или десятков ккал/моль и поэтому отражаются в ультрафиолетовой или видимой части спектра. Отражение в нем находят и колебательные движения атомов, энергия которых обычно имеет порядок единиц ккал/моль. Наконец, происходят также отражаемые спектром вращательные движения молекул, энергии которых исчисляются малыми долями ккал/моль. [c.100]

    Спектры испускания молекулы, в отличие от спектров поглощения, не представляют собой совокупности отдельных линий, отвечающих электронным переходам, а имеют вид полос. Дело в том, что, кроме движения электронов, в молекуле совершаются еще колебания ядер атомов, а вся молекула в целом вращается. Уровни энергий колебательных движений расположены гораздо ближе друг к другу, чем электронные, а вращательные еще примерно в 100 раз чаще. Канедому электронному переходу, сопровождающемуся относительно большим изменением энергии, отвечает группа колебательных переходов. В свою очередь каждый колебательный переход связан с рядом вращательных (тонкая структура спектра). Поэтому в спектре получаются не линии, а колебательные полосы. Каждый электронный переход связан с группой таких полос. Сущность спектрального анализа состоит в том, что каждый элемент при внесении в пламя пли дуговой разряд дает спектр испускания, характеризующийся своей, отличной от любого другого элемента совокупностью линий определенных длин волн. Среди них встречаются световые волны различной интенсивности, и наиболее яркая полоса сообщает окраску всему спектру. Папример, цвет пламени соединений калия фиолетовый, лития — малиновый, бора — зеленый и т. п., хотя в спектре испускания имеются и другие полосы. [c.138]

    При возбуждении молекулы в ней происходят сложные энергетические изменения (рис. 89) электроны переходят с одного уровня на другой, одновременно изменяется и система возможных колебательных и вращательных уровней. Это усложняет спектр и образует ту характерную структуру полосатых спектров, которая резко отличает молекулярные спектры от линейчатых спектров атомов. [c.144]

    Разность энергии между наиболее низким и первым возбужденным состоянием составляет 2 - 10 эВ для электронных переходов, 0,2 - 2 эВ для колебательных и 10" - 10 3 эВ для вращательных энергий. Этим переходам соответствует сложная индивидуальная структура молекулярных спектров, причем для каждой линии выполняется условие частот Бора (2.71). [c.42]

    До сих пор обсуждение правил отбора касалось лишь электронной компоненты перехода. В молекулярных спектрах возможно появление колебательной и вращательной структуры, хотя для сложных молекул, особенно в конденсированной фазе, где столкновительное уширение линий становится существенным, вращательные, а иногда и колебательные полосы [c.42]

    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]

    Колебательная структура. В общем случае при электронном переходе изменяются все три формы энергии (электронная, колебательная и вращательная). Остановимся сначала на колебательной структуре, т. е. пренебрежем вращением и рассмотрим все возможные колебательные переходы для данного электронного перехода. Начиная с данного верхнего (или нижнего) колебательного уровня возможны серии переходов на все колебательные уровни нижнего [c.65]

    Молекулы типа симметричного волчка. Тонкая вращательная структура электронных полос молекул типа симметричного волчка подобна структуре колебательно-вращательных полос этих молекул. Вращательные правила отбора зависят от того, параллельно ИЛИ перпендикулярно оси волчка направлен электронный момент перехода. В первом случае (параллельные полосы) правила отбора имеют вид [c.163]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]

    Колебательно-вращательные спектры линейных многоатомных радикалов очень похожи, конечно, на спектры стабильных линейных молекул (см. [II], гл. IV), если их основные электронные состояния относятся к типу Е. В этом случае вращательная структура колебательных переходов Ей—Е и Пц—Е для симметричных молекул должна быть в инфракрасной области совершенно такой же, как у электронных полосЕ — Е иП — Е двухатомных радикалов. Для симметричных линейных молекул типа ХУг только колебания va и V3 активны в инфракрасной области (рис. 53). Для несимметричных молекул все колебания активны в инфракрасной области (индексы g тя. и должны быть опущены). У радикалов такие спектры в газовой фазе еще не найдены, однако в твердой матрице при очень низкой температуре фундаментальные частоты в инфракрасной области были получены для ряда свободных радикалов, особенно Миллиганом и Джекоксом. Естественно, при этих условиях вращательная структура не наблюдается.- [c.99]

    Переход молекул данного соединения с одного электронного уровня на другой сопровождается поглощением большого числа фотонов, энергия которых отличается на величину колебательных или вращательных переходов. В результате электронного перехода получается электронно-колебательно-вращательная полоса, состоящая из множества близко расположенных линий. Отдельные вращательные линии хорошо разрешаются только в спектрах газообразных веществ. В спектрах растворов, жидкостей и твердых образцов чаще всего колебательно-вращательная структура не видна. Лишь в некоторых случаях, наприхмер в спектре поглощения раствора бензола в неполярном растворителе, отчетливо видна колебательная структура электронной полосы (рис. 156). [c.277]

    Подавляющее число спектров испускания связано с излучением двухатомных молекул. Однако известно небольшое количество систем, которые являются результатом излучения трехатомных и многоатомных молекул. В ряде случаев такие системы наблюдались в спектрах поглощения. Оказывается, что большинство возбужденных электронных состояний многоатомных молекул неустойчиво, и поэтому спектры, соответствующие переходам с участием такого рода состояний, не могут быть обнаружены в излучении, в поглощении же наблюдаются только сплошные спектры. В тех же случаях, когда можно наблюдать спектры мн()гоатомных молекул, картина очень сложна и хотя некоторые из этих спектров, как, например, спектры lOj и бензола, имеют довольно правильный характер и могут быть, во всяком случае частично, проанализированы, в общем случае анализ неосуществим. За исключением спектров небольшого числа линейных молекул, которые могут быть рассмотрены теоретически таким же образом как и двухатомные, об электронной и вращательной структуре таких спектров известно очень мало. Анализ колебаний усложняется большим числом частот колебаний трехатомная молекула обладает тремя колебательными степенями свободы, а молекула из N атомов имеет 3iV — 6 степеней правда, число различных частот будет меньше этого числа, если молекула обладает большой степенью симметрии. Попытки вывести правила для определения изменения колебательного квантового числа при электронных переходах были сделаны Герцбергом и Теллером [143] и Ку [180], которые нашли, что разрешенными являются только некоторые из возможных полос. Однако их выводы расходятся с результатами исследования спектра поглощения SO2, и развитие теории может быть, вероятно, осуществлено только после дальнейшей экспериментальной работы. [c.37]

    Каждый электронный переход вызывает изменение колебательного и соответственно вращательного состояния. Хотя гомоядерные двухатомные молекулы не дают чисто колебательных и чисто вращательных спектров, в электронном спектре проявляется вращательная и колебательная структура в виде серий полос, отвечающих электронным переходам. Чем больше поглощенная энергия, тем более сближаются полосы. Возбуждение электронов приводит к возбуждению колебательных состояний и далее к диссоциации молекулы на невозбужденный и возбужденный атом. Если сообщенная молекуле энергия превышает энергию, необходимую для этого процесса, то избыток ее идет на увеличение кинетической энергии атомов. Спектр поглощения газообразных атомов является непрерывным, поэтому у границы сходимости полос возникает область сплошного поглощения (континуум). Волновое число этой границы гр (также у акс) определяет энергию перехода от невозбужденной молекулы к атомам, один из которых возбужден. Вычтя из этой энергии энергию электронного возбуждения атома Дбат, получим энергию диссоциации молекулы на невозбужденные атомы >0 (рис. XXIX. 5). [c.346]

    Метан и другие насыщенные углеводороды. 11ри возбуждении электронным ударом и вакуумным ультрафиолетовым излучением метана и других насыщенных углеводородов наблюдаются интенсивные переходы на элек-тронно-колебательные возбужденные уровни, часть которых лежит ниже потенциала ионизации, а часть являются автоионизационными [152—157]. Спектры полных потерь энергии электронов и потерь на ионизацию показывают, что к ионизации молекул приводит лишь часть переходов в автоионизационные состояния. Высвечивание возбужденных состояний неэффективно (квантовый выход менее 10 ) [152], несмотря на то, что вероятности оптических переходов в поглощении превышают 10 сек . Фосфоресценция молекул связана с излучением возбужденных продуктов диссоциации [156]. Поскольку эти измерения проводились при малых давлениях (р < 10 мм рт. ст.), тушение возбужденных уровней при соударениях с другими молекулами маловероятно. Единственное объяснение отсутствия излучения ия возбуя денных состояний молекул состоит в том, что все они либо нестабильны, либо стабильны, но вероятности предиссоциации из них велики по срав нению с вероятностями радиационных переходов Г к ) 10 -Л (к/). В спектрах поглощения света и спектрах потерь энергии электронов не удается разрешить ни вращательной, ни колебательной структуры (исключение составляет этан, у которого наблюдалась колебательная структура в спектре) [152]. В работе [153] было высказано предположение, что возбужденные состояния являются нестабильными, и оценена вероятность распада из нижнего триплетного состояния — З-Ю " сек . Поскольку это значение является, по-видимому, завышенным, отсутствие структуры в спектрах может быть связано только с большой плотностью состояний [154]. [c.144]

    Для молекулы, находящейся на высоком колебательном уровне в возбужденном электронном состоянии, есть две возможности или вернуться на более низкий энергетический уровень за счет излучения света, или же перейти в состояние, где уровни ее энергии окажутся в континууме н вследствие этого избыток энергии пойдет на разрыв химической связи, т. е. произойдет диссоциация. Таким образом, если переход от дискретной системы уровней к сплошной разрешен соответствующими правилами отбора, то наступление предиссоциации должно выразиться не только в том, что исчезнет вращательная структура полос, но и в том, что произойдет уменьшение интенсивности флюоресценции. Последнее можно использовать для фиксирования предиссоциации. Во многих случаях этот метод установления предиссоциа-дии оказывается более удобным, чем обнаружение расширения вращательных линий в полосе. Например, при облучении NHa светом, длина волны которого соответствует области предиссоциации, полностью исчезает флюоресценция аммиака и распад аммиака уже не зависит от давления. Эти факты совершенно однозначно указывают на то, что диссоциация аммиака происходит непосредственно после поглощения света, а не -в результате дополнительного влияния столкновения молекул друг с другом. [c.68]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Электронным переходам соответствуют линии, лежащие в ультрафиолетовой и видимой областях спектра, а излучению, вызванному колебательными и вращательными переходами, — линии инфракрасной области (рис. 31). Электронные переходы часто сопровождаются одновременным изменением колебательных уровней. В результате спектры испускания молекулы не представляют собой совокупности отдельных линий, отвечающих электронным переходам, а обнаруживают более сложную структуру и имеют вид полос. Практически удобно изучать электронные спектры поглощения, используя жидкости или растворяя исследуемое вещество в малополярном растворителе. При этом электронный спектр не осложняется вращательно-колебательными переходами и лучше поддается интерпретации. Если свет с интенсивностью I проходит в веществе путь дЛиной х, причем концентрация поглощенного вещества равна С, то доля поглощенного света dill равна [c.63]

    Четко разделить различные типы спектров невозможно. Так, в электронных спектрах могут проявляться колебательные, вращательные переходы, а также переходы между уровнями магнитной структуры (ЭПР), в ядерных спектрах — уровни ЯКР. В спектрах ЭПР, как показано далее, могут проявляться уровни, обусловленные взаимодействием неспаренных электронов с магнитными ядрами, в спектрах ЯМР — взаимодействием с неспаренными элек-1ронами. Следует отметить, что в ряде случаев добавочные расщепления не разрешаются приборами, а из-за перекрывания дают уширение наблюдающихся спектральных линий. Поэтому для точной расшифровки спектров и получения надежных данных об энергиях уровней следует проводить исследование каждого типа спектров в своем спектральном диапазоне. В связи с этим мы примем следующую систему изложения электронные спектры атомов [c.217]

    Так как все три перечисленных выше эффекта налагаются друг на друга, молжу-лярные спектры, в отличие от атомных, состоят не из отдельных линий, а из ряда полос ( полосатые спектры ). Область электромагнитных волн, в которой расположена данная система полос, определяется характером электронного перехода, распределение отдельных полос внутри системы — изменениями колебательной энергии, а тоакаЯ линейчатая структура полос — изменениями вращательной энергии. [c.99]

    Поэтому при поглощении молекулой ультрафиолетового излучения высокой энергии наблюдаемый спектр поглощения состоит из широких полос, являющихся результатом наложения большого числа узких полос, соответствующих различным переходам между близко расположенными подуровнями. Сложная природа электронных спек-ров многоатомных молекул делает очень трудным их полный анализ даже при использованип приборов высокого разрешения, т. е. высоко монохроматичных потоков излучений. Отсутствие вращательной и вращательно-колебательной структур можно наблюдать в спектрах жидких веществ и растворов, что связано с взаимодействием между соседними молекулами растворенного вещества и влиянием сольватации (большинство химических исследований относится именно к этим условиям). Полярные растворители обусловливают обычно значительно большие изменения в полосах поглощения, чем неполярные. Это объясняется тем, что оптические спектры возникают в результате поглощения или излучения света внешними электронами, наименее прочно связанными с ядром, которые требуют для возбуждения меньше энергии, чем внутренние электроны. [c.8]

    Дополнительно к этим трем типам спектров в последние годы наблюдались спектры в радиочастотной и микроволновой областях, которые соответствуют переходам между уровнями тонкой структуры данных вращательного и колебательного уровней в данном электронном состоянии. К особым случаям относятся спектры элек-тронно-спинового резонанса и ядерно-магнитного резонанса, соответствующие переходам между зеемановскими компонентами данного уровня (компонентами, в которых данный уровень расщепляется в магнитном поле). [c.24]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]


Смотреть страницы где упоминается термин Электронные переходы, вращательная структура колебательная структура: [c.294]    [c.203]    [c.166]    [c.166]   
Спектры и строение простых свободных радикалов (1974) -- [ c.65 , c.74 , c.101 , c.108 , c.158 , c.162 ]

Спектры и строение простых свободных радикалов (1974) -- [ c.65 , c.74 , c.101 , c.108 , c.158 , c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Переход электрона

Переходы вращательные

Переходы колебательные

Электронно-колебательно-вращательное



© 2025 chem21.info Реклама на сайте