Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амп ный и карбоксильный азот

    Азот лизина = 2 X (аминный азот— карбоксильный азот ), где аминный азот определяется по реакции с азотистой кислотой, а карбоксильный азот определяется по реакции с нингидрином. [c.59]

    Вычитая из величины s количество свободных аминокислот (рассчитываемое по карбоксильному азоту), получают количество пептидных связей в молекуле белка (а также, следовательно, средний молекулярный вес и среднюю дл.ину цепи этих пептидов).  [c.171]


    Комплексон HI, как и другие комплексоны, образует растворимые внутрикомплексные соли со многими металлами. При этом металл замещает атомы водорода карбоксильных групп —СООН, а также связывается координационной связью с атомами азота  [c.337]

    Свойства полученных полимеров, их сажевых смесей и наполненных вулканизатов приведены в таблице. Введение в макромолекулу полиизопрена карбоксильных групп (каучук СКИ-ЗК), гидроксильных (совместно с галогеном, каучук СКИ-ЗМ) или азот-кислородсодержащих (каучук СКИ-ЗА) позволяет получать не-вулканизованные смеси с высокой когезионной прочностью и вулканизаты с исключительно ценными свойствами. [c.230]

    Белки — это полимеры, построенные из небольших молекул, называемых аминокислотами. Каждая аминокислота содержит углерод, азот и водород, в некоторых также имеется сера. Как и сахара, белки - это строительные блоки для построения более сложных углеводов. 20 природных аминокислот образуют все белки. Они имеют общие структурные характеристики все они содержат амино- (-NN2) и карбоксильную (-СООН) группы (рис. IV.8). [c.259]

    Большинство промышленных присадок и их композиций содержат в своем составе кислород, серу, фосфор, азот, хлор, кальций, барий, цинк, магний, стронций и такие функциональные группы, как карбоксильная, гидроксильная, сульфогруппа, дитио-фосфатная, аминогруппа, трихлорметильная и некоторые другие. При этом в большинстве случаев каждая присадка содержит в основном от одного до четырех элементов или функциональных групп. Для получения присадок, содержащих эти элементы и функциональные группы, по-видимому, немалое значение имеет доступность и дешевизна применяемых реагентов и их реакционная способность. [c.9]

    Рассчитать содержание азота в модифицированном полиакрилонитриле, если 18% нитрильных фупп гидролизовано до карбоксильных. Привести химическую структуру этого сополимера. Какими физико-химическими свойствами он будет обладать  [c.276]

    Эта группа используется для защиты аминогруппы, причем алкилирование идет по 3ы1-механизму. Тритильная группа весьма кислотолабильна. Тогда как ацильные и сульфогруппы защищают аминогруппу, уменьшая нуклеофильность атома азота, тритильная группа не влияет на его нуклеофильность (основность) она блокирует аминогруппу, создавая стерические затруднения. На практике это может оказаться недостатком, поскольку объемистая тритильная группа способна также затруднять образование пептидной связи (активированной) карбоксильной группой. [c.74]

    Комплексов I может образовать 4 связи с ионом металла, а комплексон II — 6 связей за счет карбоксильных групп и атомов азота. Поэтому один ион комплексона заменяет несколько монодентатных лигандов и, таким образом, практически устраняется ступенчатость комплексообразования. [c.152]


    Она является четырехосновной кислотой. При ионизации сначала отщепляются ионы водорода карбоксильных групп К = l,01 10 Ki == 2,14-10 . Отщепление ионов водорода, связанных с азотом, характеризуется значительно меньшими константами ионизации К = 6,92 х [c.152]

    Шестичленное кольцо пиридина, содержащее гетероатом азота, проявляет ароматический характер, и гомологи пиридина, подобно гомологам бензола, подвергаются окислению таким образом, что боковые цепи разрушаются и превращаются в карбоксильные группы. В результате получаются пиридинкарбоновые кислоты. [c.215]

    Далее определяют молекулярную массу и осуществляют количественный элементный анализ вещества. На основании данных о массовой доле углерода, водорода, азота, галогена, серы и т, д. выводят брутто-формулу вещества. С целью определения строения вещества проводят функциональный анализ. Существует целый ряд химических методов качественного и количественного анализа различных функциональных групп гидроксильной, карбоксильной, эпоксидной, аминогруппы, кратных связей и т. д. [c.229]

    По мере увеличения специфичности межмолекулярного взаимодействия возрастает его направленность. Это особенно важно при образовании пространственных комплексов с комплексообразующими ионами металлов, в частности с ионами u +. Эта особенность была использована в жидкостной хроматографии для разделения смесей оптических изомеров, в том числе аминокислот. В лекциях 4 и 5 были указаны два пути иммобилизации лигандов для этой цели. Один из них заключается в химической прививке лигандов, несущих комплексообразующий ион, к адсорбенту-носителю (см. схему 5.26). Такими лигандами могут служить азот аминогруппы и кислород карбоксильной группы. Так, например, в случае Ь-оксипролина  [c.330]

    Большой класс хорошо растворимых внутрикомплексных солей дают различные комплексоны, например три-лон Б и т. д. Связь металла с лигандом осуществляется через атом азота и карбоксильную группу. Ввиду хорошей растворимости получаемых соединений их выделение из раствора иногда представляет определенные [c.64]

    Каждая молекула глицина использует обе функциональные группы. Одна группа может связываться с центральным атомом через азот аминогруппы по донорно-акцепторному механизму, вторая — через кислород карбоксильной группы обычной ковалентной связью. Комплексообразователь при этом оказывается как бы втянутым внутрь лиганда, охвачен связями наподобие клешней рака. Отсюда и происходит название хелат (клешни рака). [c.250]

    Из квадратичных уравнений типа (7.31), вообще говоря, не следуют линейные соотношения между логарифмами констант устойчивости комплексов двух катионов вида (7.34). В ряде случаев они все же наблюдаются. Например, из табл. 7.1 следует, что при переходе от Mn к Ре +. от Со + к N1 +, от Сс1 + к Си вклады донорных атомов азота и карбоксильных групп изменяются пропорционально, в частности для пары N1—Со их отношение равно 1,43. При малой роли остальных слагаемых в (7,31), для этих пар ионов выполняются корреляции типа (7.34), например соотношение [c.372]

    Общий азот в гидролизатах определяется методом Кьельдаля с учетом мер предосторожности, выработанных долголетним опытом [18, 335]. Аммиачный азот образуется при кислотном гидролизе в основном за счет расщепления амидных4 связей остатков аспарагина и глутамина . Он легко определяется микродиффу-зионко [426]. Содержание карбоксильного азота устанавливается измерением количества СО2, выделяющейся при обработке гидролизата нингидрином (стр. 126), и последующим пересчетом этой величины на эквивалентное количество азота теоретически полученный результат должен отражать содержание свободных аминокислот. Однако некоторые пептиды в этих условиях также выделяют небольшое количество СОз (стр. 126) и значение, получаемое для карбоксильного азота, оказывается, вероятно, несколько завышенным. Если оно не превышает 1—2% от общего азота, то найденная величина является сомнительной. [c.169]

    В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, иминс-, тиогруии, а также в виде карбоксильных, карбонильных и некоторых других групп. Согласно наиболее распространенному мнению, действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл — кислота. В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, снижающее скорость коррозии. [c.508]

    Кислород. В нефтяных остатках кислород в основном концентрируется в смолисто-асфальтеновых компонентах. Содержание его в остатках различных нефтей находится в пределах 0,1-0,6% и входит он в состав ароматических и гетероциклических кетонов (типа хинона и флуоре-на), а также в карбоновых кислотах и кольцах фурана [22]. Установлено, что в смолисто-асфальтеновых соединениях кислород преимущественно входит в состав функциональных групп (карбонильной, карбоксильной, гидроксильной и сложноэфирной). Эти группы в основном определяют поверхностную активность смол и асфальтенов. В асфальтенах, вьщелен-ных из гудронов, большая часть кислорода входит в состав гидроксильных и карбонильных групп (около 80%). По относительному содержанию гетероатомов в смолах и асфальтенах наблюдается следующая закономерность в асфальтенах содержание серы выше, чем кислорода, а кислорода аыше, чем азота в смолах содержится кислорр а больше, чем серы, а серы больше чем азота [22]. [c.18]


    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Первые работы, посвященные изучению химической природы смолисто-асфальтеновых веществ, относятся к началу нашего столетия. В основном эти нсследования проводили при помощи химических методов. Еще Маркуссон в 1915 г. подвергал воздействию крепкой азютной кислоты смолы и асфальтены в растворе хлороформа при температуре 10 °С. При этом были получены нитросоединения, содержащие б—6% азота. С формальдегидом в присутствии серной кислоты смолы и асфальтены образовывали форма-литы. Эти реакции показали, что в смолах и асфальтенах присутствуют ароматические кольца. Марганцовокислым калием (в пиридиновом растворе) смолы и асфальтены окисляются до кислот, практически не омыляются, имеют низкое ацетильное число, не реагируют с пятисернистым фосфором. На основании этих данных Маркуссон сделал вывод, что смолы и асфальтены не содержат гидроксильных, карбонильных, карбоксильных и эфирных [c.27]

    Пяти- и шестичленные гетероциклы, содержащие кАслород, азот или серу, энергетически менее стабильны, чем бензол, и легче гидрируются. Так, например, фуран и его производные, содержащие метильную, карбоксильную, оксиметильную, карбоксиметильную группы и др., гидрируются на платиновом катализаторе Адамса в среднем в 2,7 раза быстрее бензола и его аналогичных производных Введение заместителей, как и в случае бензола, уменьшает скорость гидрирования фуранового кольца. Аналогично, скорость гидрирования метил- и полиметилпиридинов меньше скорости гидрирования пиридина Однако введение метильных заместителей в пир-рольное кольцо ускоряет гидрирование Возможно, что в этом случае, как полагает автор , могли быть получены неверные результаты из-за чрезвычайно легкой окисляемости пирролов на воздухе. При гидрировании соединений, содержащих два кольца — бензольное и гетероциклическое, — бензфурана, индола, бензтиофена (тионаф-тена) и хинолина на высокотемпературных сульфидных катализаторах, как правило, в первую очередь гидрируется гетероциклическое кольцо Однако в этих условиях процесс гидрирования ослож- [c.159]

    Несмотря на разнообразие нефтей, сэдержание углерода и водорода в асфальтенах колеблется в сравнительно узких пределах С 80—86% (масс.), Н 7,3—9,4% (масс.), отношение С Н также сравнительно постоянно и равно 9—П. Различие в содержании гетероатомов значительно больше. По данным Сергиенко содержание кислорода в асфальтенах в зависимости от природы нефти может колебаться от 1 до 9, серы, от О до 9, азота от О до 1,5— 3,0% (масс.). Химические и спектральные методы анализа показали, что кислород в асфальтенах входит в состав гидроксильных, карбонильных, карбоксильных и сложноэфирных групп. В нативных асфальтенах преобладают гидроксильные и карбонильные группы до 80% (масс.). В асфальтена.ч из окисленных битумов преобладают сложноэфирные группы [ 60% (масс.) кислорода] Некоторые исследователи считают, что 1 ера входит в состав суль фидных мостиков между фрагментами молекулы асфальтенов Другие, в том числе Сергиенко, придерхиваются мнения, что ато мы серы включены в циклические структурные элементы, содер жащие кольцо тиофена или тетрагидрэтиофена. Спектральными методами были также обнаружены циклические соединения, содержащие сульфоксидную группу. [c.211]

    Гиматомелановые кислоты выделяются в виде раствора красно-бурого цвета. Осажденные из раствора, они представляют собой коричневые аморфные порошки, содержащие около 62% углерода и 3—6% водорода. В этих кислотах содержится также и азот. В воде гиматомелановые кислоты образуют коллоидные растворы и суспензии, а в этиловом спирте — истинные растворы. Их молекулярная масса 700—900. Содержат метоксильные (1 мг-экв/г), карбоксильные (1,4—3 мг-экв/г) и фенольные группы (3,7— 5,0 мг-экв/г). [c.146]

    Бензойная кислота легко этерифицируется путем растворения ее в 10%-ном растворе углекислого натрия и кипячения полученного раствора с метиловым или этиловым эфиром п-толуолсульфокислоты [215а]. Любопытно, что подобным же образом можно получить эфир из салициловой кислоты, не затрагивая фенольной группы, тогда как аминобепзойные кислоты алкилируются у атома азота. При растворении оксибензойной кислоты в двух эквивалентах щелочи фенольная группа алкилировалась бы, по всей вероятности, в большей степени, чем карбоксильная. [c.367]

    Совершенно очевидно, что азотистые соединения имеют биогенное происхождение. Весьма вероятно, что порфириновые группировки создавались еще живыми организмами и перешли в нефть в качестве унаследованного продукта. С другой стороны, источником азотистых соединений могли быть белковые йещества, потому что белки содержат до 15—19% азота. Так как белки характерны главным образом для животных организмов, именно эти последние рассматривались как исходный материал нефти. В результате распада белков образуются различные аминокислоты с одной или двумя карбоксильными группами, если распад белков происходил в анаэробных условиях. В случае аэробного разложения белков азот выделяется в виде аммиака. Анаэробное разложение белков дает кроме аминокислот некоторые циклические соединения, содержащие пироллоповые или пирролидоновые циклы. Если исходный материал нефти содержал полисахариды, возможна реакция их альдегидной группы с аминогруппой аминокислот, При этом образуются темные продукты конденсации. Этой реакции приписывается большая роль при образовании углей из смешанного целлюлозно-лигнинового материала. Продукты конденсации аминокислот с целлю лозным материалом, так называемые меланоидины, возможно, могли бы дать циклические азотистые соединения, по своему строению достаточно далекие от исходных форм. Однако все эти предположения требуют еще прямых доказательств. [c.166]

    Итак, согласно предположенному механизму, карбоксильная, группа 01и-270 действует как общее основание, доставляющее нуклеофил — молекулу воды — к карбонилу. В присутствии метанола первая стадия протекала бы просто в обратном направлении. Следовательно, только второе депротоннрование может сдвинуть реакцию в прямом направлении, и этот перенос протона должен происходить с участием гидроксильной груипы Туг-248, выступающей в качестве мостика между ОН--группой и азотом расщепляемой амидной связи. Этот механизм дает объяснение упомянутому ранее эффекту индуцированного соответствия . [c.348]

    В некотором смысле это превращение моделирует карбоксилирование биотина по азоту и последующий перенос карбоксильной группы к атому углерода, связанному с карбонильной группой. [c.482]

    В случае оптически активных кислот, карбоксильная группа которых находится при асимметрическом атоме углерода [например, (СеНбСНа) (СНз)СНСООН], расщепление амида,, по Гофману и расщепление азида, по Курциусу. приводят к образованию оптически активного амина (Джон н Уэллнс). Остаток (СеНзСНг) (СНз) СН—. который в промежуточном продукте (С6Н5СН2) (СН,1)СНСОГ перемещается от углерода к азоту, сохраняет при этом свою конфигурацию,. Это доказывает, что углеводородный остаток перемещается со всеми своими электронами и при этом не выходит за пределы поля действия других атомов, [c.163]

    ЦИЮ аминокислот в расплаве проводят при 220—280° в атмосфере азота при непрерывном перемешивании. Окончание реакции определяется изменением концентрации карбоксильных групп или вязкости раствора. Поликонденсацию можно проводить также в среде расплавленного фенола или в ксиленоле при 200— 210°. [c.444]

    Многие металлы способны замещать атомы водорода карбоксильных групп ЭДТА, одновременно связываясь координационно с азотом аминогруппы. Образуются очень прочные комплексные соединения с несколькими пятичленными кольцами. Строение комплекса двухвалентного металла можно схематически выразить формулой  [c.428]

    Рассмотрим характер конформационных изменений, возникающих при комплексообразовании карбоксипептидазы А с субстратоподобным ингибитором [15]. В активном центре свободного фермента (см. рис. 5) имеется система водородных связей (пунктир), которая простирается от Aгg-145 через амидные связи полипептидной цепи (01и-155, А1а-154, 01п-249) и молекулу воды (она не указана на рис. 5) до фенольного гидроксила Туг-248. При контакте этого же фермента с квазисубстратом глицил- -тирозином (см. рис. 7) электростатическое взаимодействие свободной карбоксильной группы квазисубстрата с гуанидиновой группой Aгg-145 (пунктир) вызывает смещение последней на 2 А (по сравнению с ее положением в свободном ферменте). Более того, это смещение одного остатка влечет за собой нарушение всей системы водородных связей, что приводит к повороту боковой цепи Туг-248 с перемещением ее фенольного гидроксила на 12 А. В результате между ней и амидным атомом азота в молекуле квазисубстрата образуется водородная связь (пунктир на рис. 7). [c.24]

    В образовании сложного нуклеофила, обладающего высокой степенью эффективности действия, принимает участие наряду с 8ег-1.95 также и имидазольная Труппа Н18-57 (см. [2, 6—9, 16]). При этом атом азота N"2 гистидина образует водородную связь с кислородом гидроксила серина (рис. 31). Вторая водородная связь, как полагают Блоу и др. [37], существуех между атомом азота № гистидина-57 и карбоксильной группой остатка Азр-102, расположенного В глубине ферментной глобулы. Система водородных связей приводит к увеличению отрицательного заряда на гидроксильной группе 8ег-195, что способствует усилению ее нуклеофильности. [c.129]

    Соединения ионов металлов с комплексонами называются комплексопатами. В соответствии с правилом циклов Чугаева комплексные соединения, содержащие циклические группировки, более прочны, чем соединения без циклов. Ком-плексоны являются очень прочными соединениями. Особенно прочные комплексы образуются с участием ЭДТА, называемого в виде двунатриевой соли комплексоном III, или трилоном Б. Данный комплексен занимает шесть координационных мест в координационной сфере комплексообразователя за счет четырех атомов кислорода карбоксильных групп и двух атомов азота. [c.368]

    Способность к специфическим межмолек улярным взаимодействиям придают полимерам ПА атомы кислорода карбоксильных и сложноэфирных групп, имеющие неподеленные электронные пары. В гораздо меньшей степени эти свойства проявляют я-связи ароматических ядер. В ПАН электронная плотность сосредоточена на атомах азота, это придает ПА и ПАН свойства адсорбента третьего типа. Полиарилат хорошо растворяется в органических растворителях, например в бензоле и эфире, а полиакрилонитрил в диметилформа-миде и диметилоульфоксиде. Поэтому эти полимеры можно использовать для модифицирования поверхности макропористых кремнеземов методом адсорбции из растворов. [c.85]

    Методика работы. В стакане приготавливают смесь стирола и метакриловой кислоты в мольном соотношении 2 1 и растворяют 0,5% динитрила азо-бис-изомасляной кислоты (от суммы мономеров). Смесь наливают в пять ампул или пробирок с пришлифованными пробками (по 5 мл). В первой ампуле сополимеризация проводится без добавок, в остальные ампулы добавляют по 5 мл следующих растворителей бензола, диоксана, диметилформамида, пиридина. Ампулы продувают инертным газом (азотом или аргоном), запаивают, тщательно перемешивают содержимое и помещают в термостат с температурой 60°С. Сополимеризацию проводят до сиропообразного состояния. Затем ампулы быстро охлаждают, осторожно вскрывают и содержимое высаждают горячей водой из диоксана и диметилформамида и петролейным эфиром или гекса-ном из бензола и пиридина. Сополимеры переносят в стакан с чистым осадителем, промывают и сушат в предварительно взвешенных чашках Петри сначала на воздухе, а затем в сушильном шкафу при 40—50 °С до постоянной массы. Содержание кислоты в сополимере определяют анализом на карбоксильные группы (см. с. 40). Полученные результаты вносят в табл. 3.5. [c.46]


Смотреть страницы где упоминается термин Амп ный и карбоксильный азот: [c.60]    [c.373]    [c.166]    [c.137]    [c.25]    [c.31]    [c.347]    [c.481]    [c.234]    [c.51]    [c.61]    [c.94]    [c.320]    [c.234]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксильный ион



© 2025 chem21.info Реклама на сайте