Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматограмма на слое

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Проявление хроматограммы. По окончании процесса хроматографирования любым, кроме проточного, методом анализируемые вещества остаются на слое сорбента. Однако большинство определяемых соединений бесцветно, поэтому зоны хроматографируемых веществ остаются невидимыми. Их следует проявить, т. е. сделать видимыми. Поэтому пластинку по окончании процесса хроматографирования вынимают из камеры, растворитель испаряют и приступают к проявлению. Существует два способа проявления химический и физический. [c.144]


    В тонкослойной хроматографии большое значение для получения надежных и воспроизводимых результатов имеет овладение техникой эксперимента (приготовление сорбента, его нанесение, установление толщины слоя, подготовка пластинок, нанесение пробы вещества, подача растворителя, проявление хроматограмм и другие операции). [c.134]

    Если длина слоя, занимаемого пробой в начальный момент, ма ла и равна о= Упр/(5Го), то размывание в колонке определяется уравнением (1.10). На выходе вещества из колонки вследствие его десорбции зона расширяется в Го раз, а максимальная концентрация уменьшается в это же число раз. Таким образом, после вымывания распределение концентрации вещества не отличается от его распределения в слое по форме и отличается только масштабом. Поэтому распределение вещества на выходе из колонки, а следовательно, и получаемая при этом хроматограмма описываются уравнением (1.10). [c.31]

    Тонкослойная хроматография [20— 22]. Разделение проводят на стеклянных пластинках, равномерно покрытых слоем активированного твердого адсорбента. На нижнюю (стартовую) линию пластины наносят капли исследуемой смеси, после чего пластину под определенным углом погружают в ванну с десорбентом так, чтобы уровень его был ниже стартовой линии. При движении фронта растворителя происходит разделение компонентов смеси. Для идентифицирования образовавшихся пятен хроматограмму проявляют с помощью тех или иных реагентов или рассматривают пластину в ультрафиолетовых лучах. Затем измеряют площадь образовавшегося пятна и Л/. Обычно величина характерна для индивидуальных соединений или групп однотипных соединений. [c.83]

    С) и 100 г конц. соляной кислоты. Реакционную массу выдерживали при 40 С и постоянном перемешивании в течение 32 ч. В результате реакции образовывался вязкий маслянистый продукт темно-красного цвета. Избыток фенола 3—4 раза декантировали кипящей водой. Маслянистый слой обрабатывали затем 65 мл этилового спирта, предварительно подогретого до 50—55 °С. При этом образовывались белые кристаллы аддукта (мольное соотношение производного хромана и спирта в аддукте 3 1), которые дважды промывали спиртом и сушили. Высушенный аддукт имел т. пл. 165—166 °С. Он отличается большой стабильностью и может быть разрушен только при температуре выше 166 °С. Однако он хорошо растворяется в щелочах при нагревании, поэтому его растворяли в 40—50 мл 2 н. раствора ЫаОН при нагревании и кипятили 15 мин. Затем раствор охлаждали до комнатной температуры и обрабатывали 10%-ным раствором соляной кислоты. Выпавшие хлопья белого продукта отфильтровывали, дважды кипятили с водой и сушили. Полученное производное хромана имело т. пл. 157—158 °С. Хроматограмма показывает отсутствие в нем примесей.  [c.192]

    Параметры хроматограммы. Если на выходе нз слоя сорбента регистрировать изменение во времени (или объеме подвижной фазы) какого-либо свойства потока подвижной фазы, то на лепте регистратора запишется выходная хроматографическая кривая— хроматограмма (рис. 3.1). Параметры выходной кривой, называемые параметрами удерживания, могут служить средством выражения результатов хроматографического разделения смеси веществ. [c.187]

    Сущность метода. На стеклянную пластинку наносят слой адсорбента толщиной 250 мкм (кизельгура О, порошкообраз-ной целлюлозы, оксида алюминия). При этом лучше использовать имеющиеся в продаже пленки. Оправдало себя применение выпускаемых в ЧССР специальных пластинок (силуфолов), представляющих собой алюминиевую фольгу, покрытую слоем силикагеля. На пластинку на расстоянии 1,5 см от нижнего края наносят с помощью микропипетки анализируемые раство-рьл. После испарения растворителя пластинки ставят в специальную разделительную камеру, заполненную подвижным растворителем на высоту примерно 0,5 см. Пространство камеры должно быть насыщено парами растворителя. При получении восходящей хроматограммы подвижная фаза движется от линии старта вверх. По мере ее развития появляются пятна, характерные для определенных веществ, так как компоненты смеси движутся с различной скоростью. В основе разделения лежат адсорбционные процессы. [c.88]

    Итак, в условиях линейной равновесной газовой хроматографии с учетом существующей продольной диффузии распределение концентрации в зоне подчиняется уравнению (20) и соответствует гауссовскому распределению. Скорость движения центра зоны, соответствующего максимальной концентрации, постоянна для данного вещества по всей длине слоя и определяется уравнением (14). Картина распределения соответствует хроматограмме, приведенной на рис. 7, в. [c.23]

    Самый простой вариант круговой хроматографии изображен на рис. 34, На чашку Петри помещают хроматограмму слоем вниз, а растворитель подводят со дна чашки с помощью фитилька, обмотанного проволокой [181]. Простое устройство для проведения круговой хроматографии описано также в работе [230]. Круговую хроматографию на закрепленных слоях можно осуществить также, используя методики, применяемые в бумажной хроматографии. Устройство для проведения круговой хроматографии на гибкой фольге показано на рис. 35 [223]. [c.102]


    Последовательность образования осадков. Порядок расположения зон образующихся осадков зависит от способа получения хроматограммы. При этом следует различать два варианта раствор хроматографируемых веществ вводится в неподвижную фазу (в слой сорбента в колонке или в тонком слое), в которой содержится осадитель, или же раствор осадителя вводится в твердую фазу, содержащую определяемые вещества. Обычно пользуются первым вариантом. [c.161]

    Разработан метод определения примесей в дифенилолпропане с большой точностью без предварительного их кoнцeнтpиpoвaния . Раствор исследуемого вещества хроматографировали восходящим способом в тонком флюоресцирующем слое силикагеля, закрепленном на стеклянной пластинке с помощью гипса и активированном при 100 С в течение 30 мин. (силикагель предварительно смешивали с родамином С). Раствор для элюирования — смесь хлороформа, ацетона и метанола (36 1 1). Хроматограмму проявляли, кратковременно действуя на пластинку парами иода при освещении (прямым солнечным светом или мощной лампой накаливания). Разделенные вещгства наблюдали при свете люминесцентной лампы, снабженной светофильтром. [c.188]

    Для определения примесей в техническом дифенилолпропане было применено хроматографирование в тонком слое силикагеля, пропитанного формами-дом, в среде хлороформа с добавкой 1% этанола . Разделившиеся вещества проявляли на хроматограмме водным раствором диазотированной сульфаниловой кислоты. Были обнаружены семь примесей, из которых идентифицированы только три — трис-фенол I, фенол и орто-пара-изомер дифенилолпропана. [c.188]

    Качественное и количественное определение по осадочным хроматограммам упрощается, если анализируемый раствор содержит радиоактивные вещества. Тогда после хроматографирования и вы-сушиванпя бумаги ее экспонируют некоторое время на светочувствительном слое фотобумаги или фотопленки. После проявления и закрепления снимка наличие радиоактивных веществ устанавливают по возникшим на снимке черным концентрическим кольцам. Количественный анализ производят по интенсивности почернения. Для качественных определений возможно применение люминесцентного анализа. [c.169]

    После заполнения колонки в нее осторожно приливают раствор анализируемого вещества (или смеси веществ) в подобранном растворителе. При адсорбционной и распределительной хроматографии исследуемый раствор должен занимать в колонке небольшой объем, покрывая поверхность носителя или адсорбента. При ионообменной хроматографии можно добавлять растворителя больше. После внесения хроматографируемой смеси приступают к проявлению хроматограммы, пропуская через слой адсорбента (нли [c.157]

    Тонкослойная хроматография. В этом методе в качестве стационарной фазы применяют тонкий слой кизельгура, оксида алюминия, карбоната кальция, целлюлозы и т. п., нанесенный на стеклянную пластинку. Метод сочетает такие преимущества, как небольшое время развития хроматограммы (от нескольких минут до нескольких часов), с поразительным в ряде случаев эффектом разделения. [c.246]

    Выполнение работы. Подготавливают хроматермограф № 5 к работе. Нагревают печь до такой температуры, чтобы она была равна 100° С в верхней части. Печь устанавливают в исходном положении. На выходе газа из хроматографической колонки, т. е. в самом нижнем слое адсорбента, устанавливают термопару и присоединяют ее холодные спаи к потенциометру типа ПП. Устанавливают определенную скорость потока газа-носителя, которым может служить азот. Вводят в верхнюю часть колонки 0,5 мл чистого -бутана или его смесь с воздухом (соответственно в большем количестве). Устанавливают заданную скорость спуска печи вдоль колонки и включают спусковое устройство. Следят за температурой по потенциометру и выходом из колонки бутана по выходной хроматограмме на самописце. В момент достижения максимума отклонения пера самописца при десорбции бутана фиксируют показание потенциометра. По этому показанию, пользуясь градуировочным графиком, определяют температуру десорбции бутана. [c.136]

    Как и Б случае бумажной хроматографии, положение пятна на тонкослойной хроматограмме характеризуется фактором замедления Я/. Слой сорбента может быть закреплен на пластинке при помощи вяжущих веществ. Такую пластинку с закрепленным слоем можно использовать не только для восходящей, но и для нисходящей хроматографии. [c.51]

    Для получения вакантной хроматограммы можно использовать любой хроматограф с проточными камерами детектора. Вакантная хроматография имеет ряд практических преимуществ перед обыкновенной газовой хроматографией. Так как анализируемая смесь непосредственно пропускается через слой сорбента, а дозировка осуществляется по объему газа-носителя, то резко упрощается и уточняется операция дозировки. Исчезает необходимость в применении специальных материалов для изготовления дозаторов. Устраняется возможность термического разложения анализируемых неустойчивых соединений в дозаторах обычной конструкции. Допускается применение более активных сорбентов, что приводит к большей селективности разделения. [c.20]

    I — цитронеллол II — гераниол, а — хроматограмма смеси терпенов б — хроматограмма слоя GGI4 после первой экстракции пропиленгликолем в — хроматограмма слоя I, после второй экстракции пропиленгликолем г — хроматограмма пропипенгликолевого экстракта смеси терпенов. Условия анализа длина колонки 180 с сорбент — 2.5% карбовакса 1540 на хромосорбе температура 175 скорость потока газа 60 см /мин газ-носитель Не. [c.245]

    Убедившись в герметичности соединений отдельных деталей, узлов установки и стабильности нулевой линии самописца, в колонку 7 через узел ввода пробы 6 впустить разделяемую смесь в жидком виде шприцем, охлажденным жидким азотом или твердой двуокисью углерода. Можно вводить смесь и в газообразном состоянии, однако в этом случае эффективность разделения намного хуже. Чтобы отобрать жидкую смесь из ампулы, шприц сначала погрузить в хладагент, затем, наполнив его, быстро ввести пробу в колонку через резиновую мембрану узла ввода пробы 6. Попав в колонку, смесь сжиженных газов мгновенно испаряется даже при комнатной температуре, при которой проводят процесс разделения. Увлекаемая потоком газа-носителя смесь, пройдя через слой сорбента, разделяется на отдельные компоненты. Последние выходят из колонки в такой последовательности 1) бутен-1 вместе с метилпропеном (общий пик / на хроматограмме) 2) транс-бутен-2 (пик //) 3) цис-бутен-2 (пик ///) (рис. 91). [c.218]

    Вакантная хроматография предложена в 1962 г. А. А. Жуховицким и Н. М. Туркельтаубом. Они дали теоретическое и экспериментальное обоснование этого способа, хотя некоторые идеи его были высказаны ранее Виллисом и Рейли с сотрудниками. Принцип способа состоит в том, что через колонку с сорбентом непрерывно пропускается анализируемая смесь, а периодически дозируется чистый газ-носитель. В результате детектор регистрирует пикообразную хроматограмму с тем же числом пиков, которые появились бы при анализе той же смеси обычным элюент-ным способом, но направленных в противоположную сторону. Эти противоположно направленные пики называются вакансиями. Жуховицкий и Туркельтауб показали, что вакансии перемещаются вдоль слоя сорбента по тем же законам, что и в обычной проя-вительной хроматографии. [c.20]

    В камеру помещают хроматограмму слоем внмз непосредственно над системой желобков. Резервуар заполняют системой растворителей для элюирования хроматограммы. При этом смеси растворителей в отдельных желобках насыщают пространство между желобком и находящимся над ним участком хроматограммы. Желобки предварительно заполняют смесями растворителей нужной полярности, тем самым состав паров и их адсорбция слоем сорбента программируются [c.105]

    Для получения авторадиограммы готовую хроматограмму слоем внутрь плотно совмещают со светочувствительным с лоем фотобумаги или рентгеновской пленки, ио-мещепно) в светонетгроницаемую коробку. Продолжительность контакта зависит от качества бумаги или пленки и активности вещества. [c.54]

    Рассмотрим в качестве примера определение спиртов в смеси с альдегидами, кетонами, углеводородами и сложными эфирами [20]. Сконцентрированные в ловушке с сорбентом загрязнения извлекались тетрахлоридом углерода, а затем полученный экстракт обрабатывали пропиленгликолем. При этом хорошо растворимые спирты переходят в слой пропиленгликоля, а очень большая доля альдегидов, кетонов, углеводородов и сложных эфиров остается в растворе СС14. Карбоновые кислоты, фенолы и амины, которые точно так же хорошо растворимы в пропиленгликоле, можно удалить до экстракции обработкой щелочью или кислотой. Для слоя СС14 после однократной или, лучше, повторной экстракции наблюдается заметное уменьшение пиков спиртов, а на хроматограмме слоя пропиленгликоля появляются почти исключительно пики спиртов (рис. VI. 1). [c.249]

    Тыква и Вотруба [53] описали применение полупроводникового детектора для регистрации радиоактивности на гелевых электрофоретограммах. Они использовали прибор, схематически изображенный на рис. 5.9 и сходный с прибором для измерения активности на тонкослойных хроматограммах. Слой геля разрезали в продольном направлении на четыре полоски толщиной 1,3 м. После высущивания на стеклянной пластине под вакуумом срезы помещали в измерительный прибор. Радиоактивность можно было измерять либо при непрерывном движении с заданной скоростью, либо при дискретном перемещении через 1 и 7 мин. По утверждению авторов, метод позволяет получить разрешение такого [c.151]

    Вытеснительный метод. В вытеснительном методе десорбция компонентов смеси осуществляется потоком раствора, содержащего сильно сорбирующееся вещество — вытеснитель. Заполненную сорбентом колонку предварительно промывают подвижной фазой и вводят порцию анализируемой смеси. Затем через колонку пропускают поток подвижной фазы, содержащей вытеснитель. Компоненты анализируемой смеси перемещаются вдоль слоя сорбента впереди фронта зоны вытеснителя, причем порядок расположения зон компонентов определяется их сорбционными свойствами. Хроматограмма вытеснительного анализа (рис. 3) представляет собой ступенчатую кривую. Однако в отличие от фронтального метода каждая ступень хроматограммы соответствует одному компоненту анализируемой смеси. В отличие от проявительного в вытеснительном методе компоненты смеси не разбавляются промывающим растворителем. [c.15]

    Техника нанесения пробы анализируемого вещества. Решающую роль в получении четких хроматограмм и особенно в количественных расчетах играют и количество наносимой пробы, и правильное ее нанесение на тонкий слой сорбента. Применяются два способа нанесение пробы в виде точки и в виде полосы. Последним способом пользуются главным образом в препаративной хроматографии. [c.138]

    Сорбционная способность неподвижной фазы по отношению к разделяемым веществам характеризуется временем удерживания /д. Это — расстояние на хроматограмме от момента введения вещества в слой сорбента до момента появления на выходе из слоя сорбента вещества в максимальной концентрации в потоке подвижной фазы. Объем подвижной фазы, прошедший при этом через слой сорбента, называют объемом удерживания У  [c.187]

    Такими носителями могут быть различные порошки (силикаты, крахмал, целлюлоза и др.), а также бумага. В случае применения в качестве носителя сыпучих тел осадитель смешивают предвари-рительно с носителем, загружают в хроматографическую колонку либо наносят на пластинку. При получении осадочной хроматограммы на бумаге последнюю предварительно пропитывают раствором, содержащим осаждаюш,ее вещество. Этот тип осадочной хроматографии является наиболее распространенным и выполняется в трех вариантах колоночном, в тонком слое и на бумаге. [c.165]

    ГСТЛ с самописцем. Кран-дозатор хроматографа заполняют из газометра заранее составленной смесью водорода, окиси углерода (яд ) и метана в эквимолекулярных соотношениях. Колонку с адсорбентом продувают с постоянной скоростью 60 мл1мин воздухом, служащим в данном случае газом-носителем. Когда установится постоянная нулевая линия на самописце, вводят пробу анализируемого газа в колонку с адсорбентом. Для этого кран-дозатор поворачивают так, чтобы поток газа-иосителя проходил через него. Затем наблюдают изменения, происходящие на ленте самописца, на которой вычерчиваются хроматограммы анализируемых газов. Первым записывается пик водорода, затем окиси углерода и последним — пик метана. При выбранной длине слоя адсорбента и скорости газа-носителя водород вымывается примерно на первой минуте от момента впуска анализируемой смеси, окись углерода — на второй, метан — на четвертой. [c.140]

    Закрепление осадков. Важным услопием получения четкой осадочной хроматограммы является закрепление осадков в месте их образования, так как под действием протекающего раствора осадки могут сползать вдоль слоя носителя в колонке, вследствие чего эффект разделения может быть сведен к нулю. [c.165]

    На рис. УП1.2 изображена обычная проявительная хроматограмма трех веществ, полученная при помощи гель-хроматографни. Здесь введена еще одна величина — объем выхода Увых, равный объему растворителя, прошедшего весь слой геля от момента внесения анализируемого вещества в колонку до появления максимума концентрации этого вещества на выходе. Нетрудно видеть, что Увых является обычным удерживаехмым объемом. Для молекул, не проникающих в гель, Увых=1 "вн. [c.227]

    Проявительная хроматография. Заполненную сорбентом колонку промывают чистым газом Е, обычно сорбирующимся слабее всех остальных компонентов смеси. Затем, не прекращая потока газа Е, в колонку вводят порцию анализируемой смеси, например вещества А и В, которые сорбируются в верхних слоях сорбента (рис. 1, а) и вследствие движения газа постепенно перемещаются вдоль слоя сорбента с различными для каждого компонента скоростями. В результате зона лучше сорбирующегося вещества, например В, постоянно отстает от зоны хуже сорбирующегося вещества А (рис. 1, б, в) и при достаточной длине колонки смесь веществ А и В разделяется (рис. 1,г). Изменение концентрации вымываемых веществ по выходе из колонки может быть зафиксировано в виде непрерывной кривой, называемой хроматограммой (рис. 1, <3). [c.10]

    Задачи работы приготовить растворы компонентов и составить свесь хроматографировать на пластинках с закрепленным слоем сорбента o6iapy-жить и идентифицировать зоны количественно определить содержание вецест-ва в зонах иа хроматограмме. [c.240]


Смотреть страницы где упоминается термин Хроматограмма на слое: [c.245]    [c.245]    [c.111]    [c.202]    [c.16]    [c.92]    [c.146]    [c.38]    [c.320]    [c.48]    [c.15]   
Курс газовой хроматографии (1967) -- [ c.235 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Визуальная оценка хроматограмм в тонком слое

Дополнение. Вытеснение и ионный обмен на хроматограммах в тонких слоях

Количественная оценка хроматограмм в тонких слоях

Количественное сканирование радиоактивных хроматограмм в тонком слое (Б. Вуд)

Получение распределительной хроматограммы методом обращенных Получение распределительной хроматограммы в тонком слое

Прямая спектрофотометрия на хроматограммах в тонком слое

Хроматограмма

Хроматограмма в тонких слоях

Хроматограмма в топких слоях



© 2025 chem21.info Реклама на сайте