Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фурана производные получение

    Способы получения фурана и его производных. 1. Фуран впервые получен при сухой перегонке (декарбоксилировании) пирослизевой кислоты (бариевая соль)  [c.534]

    В данном разделе рассматриваются методы получения и свойства только таких гетероциклических соединений, у которых суммарное количество я- и р-электронов гетероатома в цикле отвечает формуле Хюккеля 4п + 2 (например, фуран, тиофен, пиррол, пиридин, хинолин и др.). (При таком подходе вне рассмотрения здесь оказываются такие соединения, как капро-лактам, сукцинимид, фталевый ангидрид, которые являются функциональными производными различных классов соединений алифатического или ароматического ряда.) [c.508]


    В качестве исходных веществ для синтеза многих производных фурана используют широко доступные фурфурол и фуран, полученный из фурфурола декарбоксилированием в газовой фазе. [c.279]

    Чрезвычайно важное значение для синтеза различных производных пиррола, тиофена и фурана имеют реакции депротонирования. Фуран и тиофен депротонируются такими сильными основаниями, как -бутиллитий и диизопропиламид лития, и при этом образуется а-анион, поскольку атом водорода в этом положении обладает подвижностью вследствие индуктивного электроно-акцепторного влияния гетероатома. Полученный таким образом анион способен реагировать с самыми разнообразными электрофилами с образованием а-замещенных фуранов и тиофенов. Эта методология существенно расширяет возможность использования процессов электрофильного замещения в синтезе различных производных фуранов и тиофенов, поскольку позволяет получать исключительно а-замещенные соединения, а также использовать даже слабые электрофильные реагенты. Использование металлированных Ы-замещенных пирролов также обеспечивает ценный синтетический подход к различным а-за-мещенным пирролам. При отсутствии заместителя при атоме азота депротонирование пиррола приводит к пиррил-аниону, который обладает нуклеофильными свойствами, и при его взаимодействии с электрофильными реагентами образуются производные индола, замещенные по атому азота. [c.307]

    Реакции присоединения ядра фурана. В соединениях ряда фурана проявляются свойства, характерные для сопряженных диеновых систем виниловых эфиров и типичных ароматических соединений. Фуран способен к различным реакциям присоединения. Присоединение водорода приводит к получению восстановленных фуранов. Часто эта реакция осложняется расщеплением цикла поэтому вопрос о восстановлении фурановых производных будет подробно рассмотрен ниже (стр. 124)..  [c.108]

    Меркурирование фурана протекает в щелочной среде, что особенно удобно, так как позволяет избежать действия кислотных реагентов, к которым фуран очень чувствителен [91]. Замещению подвергается водород при а-углеродном атоме, что может быть легко доказано реакцией полученного ртутного производного с хлористым ацетилом, приводящей к получению х-ацетилфурана (IX—XI). [c.113]

    Цеолиты типа X имеют достаточно широкие входные окна и адсорбируют подавляющее большинство компонентов сложных смесей все типы углеводородов, органические сернистые, азотистые и кислородные соединения (меркаптаны, тиофен, фуран, хинолин, пиридин, диоксан и др.), галогензамещенные углеводороды (хлороформ, четыреххлористый углеводород, фрео-ны), пентаборан и декаборан. Применение цеолитов СаХ и NaX основано на избирательности адсорбции, а не на молекулярно-ситовых свойствах. При полном замещении катиона натрия на кальций цеолит СаХ, в отличие от цеолита NaX, не адсорбирует ароматические углеводороды или их производные с разветвленными радикалами, например 1,3,5-триэтилбензол и м-ди-хлорбензол. На этом свойстве основан метод идентификации цеолитов этих двух типов и установление полноты ионного обмена при получении цеолита СаХ. [c.367]


    В целях компактности и удобства изложения сведения об источниках получения, использовании и физических свойствах пи-рола, фурана, тиофена, пиридина и некоторых из наиболее важных полициклических производных суммированы в табл. 27-2. Из этой таблицы видно, как много типов гетероциклов может быть получено из каменноугольной смолы. Примечательно также очень большое различие температур кипения пиррола по сравнению с фураном или тиофеном. Более высокая температура кипения пиррола обусловлена ассоциацией с участием водородных связей. Другие свойства гетероциклов будут рассмотрены ниже. [c.375]

    Конденсацией N,N -диалкил-, аралкилзамещенных этилендиаминов с фурфуролом и его 5-производными получен ряд фуран-2-ил-содержащих имидазолидинов [12-16]. 2-Фурановый заместитель также может быть введен в положения 1,3,4,5-имидазолидинового кольца. [c.221]

    Фуран и его производные. Методы получения. 1) Нагревание слизевой кислоты с последующим декарбоксилированием промежуточно образующейся пнрослизевой кислоты  [c.511]

    Одним из изучаемых направлений химии фурана является перекис-ное окисление последнего и его производных в присутствии соединений переходных металлов (V, Сг, Мо). Установлено, что реакция окисления является много направленной и отзывчивой к условиям протекания. Каталитическое окисление фуранов в присутствии соединений Сг и Мо открывает новые возможности получения не только уже известных труднодоступных веществ (например, р-формилакриловая кислота, гидрофураноны, гидро-фураны), но и новых перспективных в практическом использовании соединений. [c.30]

    Эта реакция, протекающая с фураном и многими его производными с одной стороны, и такими диенофилами, как малеиновый ангидрид и кислота, ацетилендикарбоновый эфир и кислота, наиболее наглядно демонстрирует диеновую природу фуранового цикла. Подробный обзор известных синтезов такого рода с фуранами приведен выше (см. часть 1). Благодаря исключительной легкости, с которой образуется большинство подобных аддуктов (обычно просто при стоянии смеси реагентов при комнатной температуре), диеновый синтез является удобным препаративным методом получения эндоксодигидро- и тетрагидрофталевых кислот. В связи с тем, что эндоксогексагидрофталевые кислоты и многие их производные оказались сильными гербицидами и дефолиантами (1), их синтез осуществляется этим путем и в промышленных масштабах. [c.167]

    Триэтокситетрагидрофуран — прозрачная, бесцветная жидкость со слабым эфирным запахом. Он является ис- -одным продуктом для синтеза производных тропана. Известный метод получения 2,3,5-триэтокситетрагидрофурана состоит из двух стадий а) синтез 2,5-диэтокси-2,5-дигидрофу-рана действием на фуран брома в этиловом спирте [1] или электролитическим алкоксилированием фурана [2] б) получение 2,3,5-триэтокситетрагидрофурана присоединением этилового спирта к 2,5-диэтокси-2,5-дигидрофурану в присутст-Бии кислотного катализатора [3]. [c.206]

    Нами разработан способ получения неописанных ранее производных 1,2-дигидроизохинолилфуранов при взаимодействии изохинолина с производными фурана в присутствии ацилирующих агентов. Реакция изохинолина с фураном осложняется образованием смеси трудноразделимых продуктов. Однако, в случае сильвана реакция протекает гладко, что позволяет рекомендовать этот способ для получения 2-бензоил-1 - (2-метилфурил-5) -1,2-дигидроизохинолина. [c.24]

    Некоторые виды растительного сырья, такие как лиственная древесина и части однолетних растений, например кукурузная кочерыжка, солома, подсолнечная лузга, хлопковая шелуха, богатые пентозанами, широко используются в гидролизной промышленности для получения фурфурола, кристаллической ксилозы, пяти -атомного спирта—ксилита и других продуктов. Наибольший интерес из этих продуктов представляет фурфурол, являющийся родоначальником большого числа соединений фуранового ряда, находящих разнообразное применение в химической промышленности. Среди этих производных в первую очередь нужно отметить фуриловый и тетрагидрофуриловый спирты, фуран, тетрагидрофу-ран, адипонитрил, сильван и малеиновый ангидрид, которые используются как растворители и мономеры для синтеза многих полимерных веществ, а также как исходное сырье для производства ряда важных фармацевтических препаратов, инсектофунгицидов и других продуктов. [c.5]

    Как и для фуранов, имеется мало данных о получении производных тиофена методом дегидрирования хинонами. Попытки дегидрировать 3,4-диокситиола Н хлоранилом закончились безуспешно [49]. Однако дигидротиофены легко дегидрировать хлоранилом с очень хорошими выходами, причем считается, что в настоящее время этот метод является наилучщим [50]. Тиофеновое ядро, по-видимому, стойко по отношению к хлоранилу, так как многие тиофенбензодигидрокарбазолы удалось ароматизировать при действии хлоранила [51]. Этот же хинон использовался для превращения 2-(циклогексен-1-ил) тиофена в 2-фенилтиофен с высоким выходом [52]. Если бы метод имел общий характер, то о н был бы наиболее полезным в области полициклических азагетероциклических соединений, поскольку в этих случаях каталитические процессы не всегда можно применять из-за способности таких доноров отравлять катализаторы. [c.341]


    Другой путь использования принципа линейности соотношения свободных энергий заключается в изучении влияния заместителей на скорость электрофильного замещения. Для семи 2-замещенных фуранов была получена гамметовская зависимость между скоростями трифторацетилирования в положение 5 и константами заместителей о+, известными для производных бензола [14]. Фурановый цикл оказался более чувствительным к влиянию заместителей, чем тиофеновый полученные для этой реакции значения р соответственно равны —10,7 и —7,4. Аналогичная обработка данных [c.119]

    Из-за трудностей получения реагентов Гриньяра в ряду фурана они вытеснены более удобными литиевыми соединениями. При действии бутиллития фуран легко обменивает атом водорода в положении 2 на литий [102]. С помощью бутиллития может быть осуществлен и обмен галогена на литий. При действии диизопропиламида лития на галогенфураиы при —70 °С происходит исключительно обмен на литий а-атома водорода [103]. Литиевые производные при действии соответствующих реагентов подвергаются обычным реакциям карбонизации, формилирования и алкилирования при обработке хлоридом меди (И) [104] они вступают в реакции конденсации (схемы 35—41). [c.140]

    Оксепин получен также термически индуцированной перегруппировкой 7-оксаквадрициклана [10]. Замещенные оксепины, например диэфир (8), могут быть приготовлены сходным путем из производных оксаквадрициклана, полученных фотолизом аддуктов, которые образуются при взаимодействии фуранов и производных ацетилена по реакции Дильса—Альдера [II] (схема 5). Оксепины, изомерные продуктам термической перегруппировки, получены [c.214]

    Кроме того, фуран, очевидно, не может образоваться из пиррола или наоборот, и в этих двух реакциях следует допустить образование различных промежуточных продуктов. При более детальном исследовании первоначальных синтезов Ганча Фейсту удалось выделить малые количества фуранового производного. Однако в случае эфира ацетондикарбоновой кислоты выходы фуранового соединения значительно увеличиваются, как это показано в более поздней работе Рейхштейна и Шокке [53]. Для получения в этих синтезах лучших выходов рекомендуется применять вместо аммиака пиридин [54]. [c.105]

    При пропускании фурана и его гомологов с сероводородом над окисью алюминия при 350° получаются с низкими выходами соответствующие тио-фены [152] . Если в подобных условиях вести реакции с тетрагидрофура-нами, то выходы тетрагидротиофенов значительно лучше. Точно так же при замене сероводорода аммиаком фуран образует пиррол наряду со следами индола, карбазола и пирроколина [152, 153]. Замена аммиака первичными ароматическими или алифатическими аминами приводит к получению Ы-замещенных пирролов. Как и в случае превращения производных фурана в тиофены, лучшие выходы азотсодержащих гетероциклов получаются из тетрагидрофуранов .  [c.130]

    Для детального исследования летучих органических веществ, выделяемых растениями был применен ХМС анализ с предварительным концентрированием на гидрофобных сорбентах [349] Концентрирование осуществляли пропусканием О 5—1 л воздуха, содержащего летучие выделения листьев растений че рез стеклянные трубки 25 см X 6 мм заполненные О 5—О 7 г Карбохрома или Тенакса G со скоростью О 25 л/мин Десорбцию проводили при 300 °С в течение 30 мин непосредственно в стальную капиллярную колонку с динонилфталатом начальный участок которой охлаждали жидким азотом температуру ко лонки программировали со скоростью 3°С/мин в интервале от 40 до 130 °С Колонка через сепаратор соединялась с масс спектрометром LKB 2091, масс спектры получали при энергии электронов 70 эВ Полученные масс спектры сравнивались со спектрами каталога При изучении состава летучих выделений Листвы 14 видов древесных растений обнаужено более 50 раз ных соединений парафиновые и непредельные углеводороды, спирты, сложные эфиры, карбонильные соединения, фуран и его производные, большое число монотерпеновых углеводородов и их производных Общим для всех растений является выделение изопрена и ацетона [c.146]

    Химия 0-, S-, М-гетероцию1ических соединений и их конденсированных систем в течение последних лет интенсивно изучается. Объектом нашего исследования на первом этапе являются реакции цнклоконденсацин 1,3-дикарбонильных соединений гетероциклического ряда и их производных в синтезе функционально замещенных фуранов, азолов, азинов и их конденсированных аналогов. Не менее важным аспектом в теоретическом и практическом плане наших исследований было поиск, классификация и унификация методов получения замещенных 1,4-бензтиазина и его близких аналогов - важных биологически активных соединений. [c.77]

    Таким образом, возможность получения галоидметиль-ных производных эфиров фуран-2-карбоновой кислоты на основе фурфурола [3] открывает новые возможности использования производных фурана в различных синтезах, которые представляют интерес не только для получения биологически активных веществ, но и являются исходными продуктами в органическом синтезе. [c.141]

    С целью получения 4,5-замещенных производных фуран-2-карбоновой кислоты изучалась реакция хлорметилирова-иия в. р-положении фуранового ядра [8]. С этой целью метиловый эфир 5-метилфуранкарбоновой кислоты (VI), получающийся с достаточно хорошим выходом, был подвергнут хлорметилированию в условиях, сходных с хлорметилирова-нием алкильных эфиров I. В качестве растворителя кроме хлороформа применялись дихлорэтан, тетрахлорэтан, четыреххлористый углерод, при этом выход эфира 4-хлорметил-5-метилфуран-2-карбоновой кислоты (XI) существенно не меняется. [c.143]

    Исследование биологических свойств натриевых солей полученных пенициллинов, проведенное в химиотерапевтическом отделе ИТОХ Ю. 3. Тер-Захарян, показало, что производные фуран-2-карбоновой кислоты, за исключением замещенных азотсодержащими гетероциклическими остатками, являются активными в отношении грамположительных микроорганизмов. Введение в 5-ое положение фуранового кольца радикалов отражается на их активности в различной степени. Так, введение метильного радикала приводит к резкому снижению активности, введение же брома, этильного, бензильного или замещенных бензильных радикалов отражается на нх активности в незначительной степени. [c.209]

    Величины констант взаимодействия, полученные путем тщательного анализа спектров фуранов, приведены в табл. VI [4, 5, 60]. Из данных таблицы следует, что взаимодействие между атомами водорода соседних углеродных атомов (орто-взаимодействие) в производных фурана меньше (2—3 гц), чем в производных бензола Ъгц). Такие же низкие значения констант орто-взаимодействия найдены и для других пятичленных гетероциклов по-видимому, величины констант взаимодействия являются функцией размеров цикла. Аналогичное явление было отмечено в ряду ароматических углеводородных циклов [89]. Природа заместителя не сильно сказывается на величинах констант взаимодействия в ряду фурана. Варьирование 35 И /45 незначительно превышает ошибку опыта. Более заметно изменяется /34. В табл. VI 2-заме-щенные фураны приведены в порядке увеличения электроотрицательности заместителя, определяемой по химическим сдвигам водородов кольца (табл. VII). Хотя изменения /34 и невелики (порядка 0,5 гц), имеет место корреляция между значением этой константы взаимодействия и электроотрицательиостью заместителя. Аналогичная корреляция существует и в ряду замещенных пирролов. Однако в этом случае она не столь очевидна из-за большей ошибки и меньшего числа изученных соединений. Попытки объяснить эти корреляции до сих пор еще не предпринимались. [c.431]

    Фуран взаимодействует с производными малеиновой кислоты на холоду с образованием термически неустойчивого аддукта [495—497]. Так же реагируют алкильные производные фурана и недавно полученные полицианфураны [498]. В аналогах фурана — парациклофанах — оба фурановых кольца участвуют в диеновом синтезе с ацетилендикарбоновым эфиром [499]. Ниже приведены два изомера 47 и 48 [c.547]

    Производные фурана вступают в диеновый синтез с большим числом диенофилов, содержащих двойную или тройную связь. В результате размыкания кислородно о мостика в ад-дуктах происходит построение шестичленного карбоцикла [1093]. Так, ароматизация при действии кислот аддуктов (3i), полученных реакцией замещенных фуранов (30) с малеиновым ангидридом, использована для синтеза замещенных фталевых ангидридов (32), гидрирование одной двойной связи в аддуктах с дизамещенными ацетиленами (34) или с дегидробензолом, (33) и последующая ароматизация под действием кислоты — для синтеза производных бензола и нафталина соответственно Обработка кислотой аддуктов фуранов с ацетиленовыми диенофилами служит методом синтеза фенолов и нафтолов так, фенол (35) получают из аддукта (34), образовавшегося при реакции фурана (30) с диметилацетилендикарбоксилатом (36). Аддукт (33 R=H) фурана с дегидробензолом в метанольном растворе НС1 количественно превращается в нафтол-1. Ретродиено-вый, термический распад аддуктов применяется для синтеза труднодоступных 3,4-дизамещенных фуранов, например эфира дикарбоновой-3,4 кислоты (38) из аддукта (34), [c.485]

    Путем восстановления З-бензоил-2-нафтойной кислоты II и взаимодействия полученного производного с избытком фенилмагнийбромида получается спирт III, который далее превращается после дегидратирования в соединение IV. Это кристаллическое вещество (темно-красные пластинки) устойчиво в темноте, но его растворы настолько нестабильны, что перекристаллизовать это соединение невозмол<но. Замещенный фуран IV немедленно реагирует с Ы-фенилимидом малеиновой кислоты, 1,4-нафтохиноном и тетрацианэтиленом, образуя аддукты типа V. Последние представляют собой бесцветные вещества, которые легко вновь разлагаются так, бесцветный на холоду раствор соединения V в бензоле при нагревании приобретает красную окраску. Тиофе-новый аналог соединения IV получается взаимодействием IV с пятисернистым фосфором в сероуглероде. Это твердое вещество красного цвета, которое в растворах более устойчиво, чем IV, но менее активно как диен. Оно присоединяет тетрацианэтилен, но не присоединяет М-фени-лимид малеиновой кислоты. [c.444]

    Гетероциклические соединения понятие о гетероатоме. Ароматические гетеро циклические соединения. Понятие ароматичности химическое и квантово-механическое. Правило Хюккеля. Пятичленные гетероциклические ароматические соединения фуран, тиофен, пиррол. Причины их ароматичности. Нахождение в природе, способы получения, химические свойства, суперароматичность. Гидрированные производные фурана, тиофена, пиррола. Гетероциклические аминокислоты пролин, оксипролин. Понятие о строении гемина и хлорофилла ароматическая система пор-фиринов. [c.189]


Смотреть страницы где упоминается термин Фурана производные получение: [c.5]    [c.17]    [c.60]    [c.215]    [c.4]    [c.103]    [c.116]    [c.27]    [c.103]    [c.116]    [c.27]    [c.146]    [c.47]    [c.876]   
Новые методы препаративной органической химии (1950) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Фуран

Фуран получение

Фуран производные



© 2025 chem21.info Реклама на сайте