Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид лития свойства

    Так, например, твердые сплавы, применяемые для изготовления режущих частей инструментов, изготовляют порошковым методом из карбидов вольфрама и титана и металлического кобальта. Карбиды вольфрама и титана отличаются высокой твердостью и тугоплавкостью, но наряду с этим являются хрупкими, а кобальт обладает хорошими пластическими свойствами, поэтому при прессовании и спекании смеси частицы карбидов связываются кобальтом, образуя плотный твердый сплав. На основе глинозема и металлического хрома порошковым методом получают материал, обладающий при высокой температуре хорошей антикоррозийной стойкостью на воздухе до температуры 1200° С, а в продуктах сгорания топлива до 1600° С этот материал не поддается также воздействию жидкой стали и печных шлаков. Порошковыми методами изготовляют пористые подшипниковые втулки, постоянные магниты (на основе железа и алюминия), которые в литом состоянии обладают большой хрупкостью и не поддаются механической обработке, а также материалы для контактов электрических аппаратов и т. д. [c.303]


    Действительно, по многим свойствам литий больше похож на магний, чем на остальные щелочные металлы например, литий, как и магний, легко реагирует с азотом н углеродом с образованием нитрида и карбида. Бериллий больше похож иа алюминий, чем а магний и щелочноземельные металлы оксид и гидроксид бериллия амфотериы, как оксид н гидрооксид алюминия, в то время как оксид и гидроксид магния проявляют исключительно основные свойства. В виде простого вещества бор больше похож Иа кремний, чем на типичный металл алюминий. Одна из аллотропных модификаций фосфора — черный фосфор — по электрическим свойствам схожа с графитом, в то время как твердый илн жидкий азот — типичный изолятор. По окислнтельиы.м свойствам хлор гораздо ближе к кислороду, чем к фтору. Действительно, реакция [c.120]

    Литий способен вступать в реакцию с углеродом (в вакууме, при температуре красного каления), образуя карбид гСд-Карбид лития представляет собой бесцветное или серое кристаллическое вещество, очень бурно реагирующее с водой. При этом литий сгорает в окись, а углерод выделяется в свободном состоянии. Реакция сопровождается взрывом [36]. Если подвергать карбид лития медленному воздействию водяного пара, то разложение карбида происходит с выделением ацетилена и образованием гидрата окиси лития. Как элемент первой группы периодической системы литий образует с серой растворимый в воде сульфид. Сульфид может быть получен взаимодействием паров серы с нагретым металлическим литием. Свойства сульфида лития аналогичны свойствам сульфида натрия, практического применения сульфид лития пока не имеет. [c.466]

    Гидрид лития весьма реакционноспособен очень бурно реагирует с водой с жидким аммиаком взаимодействует с образованием амида, а с газообразным — лишь при 320° С с кислородом, хлором и азотом при обычной температуре не взаимодействует, но при нагревании с азотом образует нитрид лития, с хлором и хлористым водородом — хлорид лития. При длительном нагревании до 650—700° С ЫН взаимодействует с серой, углеродом, кремнием и фосфором с образованием сульфида, карбида, силицида и фосфида лития соответственно. Обладая резко выраженными восстановительными свойствами, он легко восстанавливает окислы, хлориды и сульфиды металлов [371]. Гидрид лития имеет высокую электропроводность, поэтому может быть подвергнут электролизу (на катоде выделяется литий, а на аноде — водород). Гидрид лития образует двойные гидриды (алюмогидрид, борогидрид и др.), которые широко используются в аналитической химии и для органического синтеза. [c.16]


    Добавка кобальта к простой углеродистой стали увеличивает ее сопротивление износу. Кроме того, она улучшает и ее режущие свойства. Одним из лучших литых твердых сплавов является стеллит . Выпускается не менее 40 видов этого сплава. Важную область применения кобальта составляет производство сверхтвердых сплавов, полученных спеканием карбида вольфрама и металлического [c.399]

    Черная металлургия, потребляющая около 90% ванадия, использует его легирующие, раскисляющие и карбидообразующие свойства. В специальных сортах сталей ванадий способствует образованию тонкой и равномерной структуры, делает сталь более плотной, повышает вязкость, предел упругости, предел прочности при растяжении и изгибе, расширяет интервал закалочных температур. Карбиды ванадия повышают твердость стали, увеличивают сопротивление истиранию и ударным нагрузкам. Ванадий является важной добавкой в инструментальной (до 2%) и конструкционной (до 0,2%) сталях. Развитие тяжелого и транспортного машиностроения обязано ванадиево-марганцовой стали, отличающейся большим сопротивлением удару и усталости. Ванадий используется для легирования сталей в комбинации с хромом, никелем, молибденом, вольфрамом. Ванадием легируют также чугун. В машиностроении применяют чугунное литье с присадкой 0,1—0,35% V для изготовления паровых цилиндров, поршневых колец и золотников паровых машин, прокатных валков, матриц для холодной штамповки. Ванадий является компонентом сплавов для постоянных магнитов. Для введения ванадия в сталь используют феррованадий — сплав с железом, содержащий 35—80% V. [c.477]

    Одним из необходимых условий создания износостойкого материала является обеспечение высокой твердости его поверхности. Такими свойствами обладают многие карбиды металлов. Карбиды металлов входят в составы сплавов карбидообразующих элементов (Сг, , Т1) с углеродом (до 4% С). Их применяют для изготовления литых и наплавочных материалов. [c.631]

    Сталями сплавам на основе карбидов (металлокерамическим, литым и типа стеллитов) вольфрам придает твердость, прочность, износостойкость с сохранением этих свойств до высоких температур. Быстрорежущие стали содержат вольфрама до 20%, инструментальные — до 2%, конструкционные — десятые доли процента. В стеллитах (литые сплавы вольфрама, кобальта, хрома) до 50—55% вольфрама (в основном в виде карбидов), в металлокерамических твердых сплавах 30—92% (в виде карбида W ), в литых карбидах 98% вольфрама, остальное углерод, что соответствует почти чистому карбиду Wa . [c.245]

    В сером чугуне углерод находится в виде свободного графита этот чугун используют для литья. Белый чугун содержит карбид железа РезС, называемый цементитом. Такой чугун очень тверд и хрупок и обычно применяется для получения стали. Добавка к чугуну фосфора делает его более текучим. Это свойство широко используют для художественного литья. [c.265]

    Научные работы посвящены разработке теории смачивания расплавленными металлами поверхности твердых тел (металлов, сплавов, оксидов, карбидов, боридов). Изучал поверхностные свойства чистых металлов и бинарных металлических систем в широких температурных пределах. Исследовал термодинамические свойства литых жидких сплавов, твердых растворов металлов, кнтерметал-лических соединений. Построил диаграммы состояния многих двойных и тройных металлических систем, изучил кинетику смачивания н растекания металлических расплавов по поверхности твердых тел, кинетику и механизм контактного взаимодействия твердых металлов с металлическими расплавами, кинетику роста промежуточных фаз на контактной границе, кинетику и механизм спекания в присутствии жидкой фазы. [82] [c.185]

    М. Е. Гарбер исследовал карбиды легированием базисного чу гуна (2,7—3,1% С) хромом в пределах 5,07—31,1% [22]. Количест но карбидов во всех чугунах было примерно одинаковым и состав ляло 26,6—32,0%, и только в сплавах с 29—31% Сг оно достигалс 35% по массе. Механические свойства изучали на литых образца после отпуска их при температуре 200° С в течение 2 ч. Повышение содержания хрома с 5,1 до 7,1% мало изменяет прочность чугунов Начиная с содержания 8,85% Сг механические показатели (вре менное сопротивление, предел прочности при изгибе) резко повыша ются. Дальнейшее повышение содержания хрома (до 20%) улучшает эти свойства. Для чугунов с содержанием хрома свыше 25% [c.58]

    Умело сочетаются теоретические разработки создания безвольфрамовых и других твердых сплавов, обеспечивающих повышенную износостойкость, с их внедрением в производство. Проводятся исследования условий получения и изучаются физико-технические свойства литых карбидов, магнитных, электроизоляционных, катодных материалов. Направленность работ координируется Институтом проблем материаловедения АН СССР, являющегося общепризнанным центром страны в области материаловедения. [c.70]


    К работам по карбидным твердым сплавам примыкают работы кафедры по исследованию условий получения и физико-технических свойств литых карбидов (канд. техн. наук А. Н. Степанчук). Сложное исследование условий переплавки расходуемых карбидных электродов в дуговой электропечи привело к разработке оптимальных условий переплавки с получением плавленных карбидов не только предельного состава, но и в областях гомогенности. Особые условия формирования и кристаллизации плавленных карбидов приводят к появлению у них свойств, недостижимых при использовании металлокерамической технологии, что определило их успешное использование в качестве эффективных ускорителей электронов, катодов плазмотронов, абразивов (в последнем случае зерна плавленных карбидов имеют прочность, в несколько раз превышающую прочность обычно полученных абразивных частиц тех же карбидов). [c.80]

    Углеграфитовые Ж. м. отличаются жаропрочностью в сочетании с высокой термостойкостью и низкой удельной массой. Жаростойкость таких материалов достигается нанесениел жаростойких покрытий. В тугоплавких стеклах и ситаллах жаростойкость сочетается со спец. оптическими свойствами и низким коэфф. термического расширения. Материалы на основе окислов и тугоплавких соединений, керамико-металличес-кие, композиционные и углеграфи-товыо материалы, жаростойкие бетоны и цементы получают из порошков с последующим формованием и отвердением (бетонов и цементов) или спеканием. Материалы на основе тугоплавких соединений и композиционные материалы могут быть получены методом горячего прессования. Металлические и некоторые композиционные Ж. м. на основе металлов получают методами металлургической технологии (плавление — литье — обработка давлением — термическая обработка) с целью получения заданных свойств. Для повышения жаростойкости на металлические и углеграфитовые материалы наносят жаростойкие нокрытия методами диффузионного насыщения, плазменного, газопламенного или детонационного напыления, газофазного (пиролитического), электрохим., хим. или электрофоретического осаждения. Так, молибденовые снлавы в результате обработки в парах кремния или в газовой смеси четыреххлористого кремния и водорода покрывают жаростойким слоем дисилицида молибдена. Аналогичная обработка углеграфитовых материалов приводит к образованию па их поверхности жаростойкого покрытия из карбида кремния. Высокая жаростойкость некоторых тугоплавких соединений и металлических сплавов определяется их способностью образовывать при высоких т-рах в контакте с хим. агрессивной средой поверхностные плотные слои тугоплавких нелетучих продуктов взаимодействия, являющихся диффузионным барьером и уменьшающих скорость хим. реакции. Так, многие силициды, карбиды хрома и кремния, [c.423]

    Наряду со спеканием компактный вольфрам высокой плотности получают также методами осаждения из газовой фазы, электрохимическим и плазменным осаждением, дуговой, в том числе гарннссажной, и электронно-лучевой плавками, выращиванием монокристаллов в специальных кристаллизационных аппаратах с использованием электронного и плазменного нагревов (электронно-лучевая зонная плавка, плазменно-дуговая плавка). Плавка вольфрама в дуговых и электронио-лучевых печах обеспечивает эффективную очистку от примесей и получение крупных заготовок массой до 3000 кг, предназначенных для изготовления листов, профилей, труб и других изделий методами фасонного литья, прессования, прокатки. Для измельчения зерна с целью повышения технологической пластичности применяют модификаторы и раскислителя (например, карбиды циркония, ниобия и т. д.), а также гарниссажную плавку с разливкой металла в изложницу. Для снижения содержания примесей и одновременно создания более мелкозернистой структуры используют дуплекс-процесс электронно-лучевая плавка+электродуговая плавка Наиболее глубокая очистка от примесей реализуется при выращивании монокристаллов вольфрама. При этом у вольфрама появляются особые свойства, присущие только монокристаллическому состоянию, в частности анизотропия свойств, более высокая по сравнению с поликристаллами эрозионная стойкость, высокая устойчивость к расплавам и парам щелочных металлов, к термоциклированию, облучению, лучшая совместимость со многими неорганическими, в том числе металлическими, материалами и т. д. [c.398]

    По данным, приведенным в работе [4 ], введение 1 % Си в стали, содержаш,ие 12—14% Сг и 0,1% С, после термической обработки приводит к выравниванию свойств стали по всему объему отливки. Положительное влияние меди отмечается и другими авторами [7]. Исследование эрозионной стойкости стали 1Х14НД показало, что эта сталь благодаря наличию в ее составе меди обладает высоким сопротивлением микроударному разрушению. Структура этой стали в литом состоянии состоит из мартенсита и небольших участков хромистого феррита, по границам которых расположены карбиды хрома. Такая структура обусловливает высокие прочностные характеристики стали (см. табл. 68). После закалки с 1050° С и отпуска при 600° С структура стали улучшается, однако количество хромистого феррита почти не изменяется. Разрушение начинается с границ хромистого феррита и распространяется в сторону феррита. Разрушение мартенсита начинается после полного разрушения участков феррита. [c.195]

    Кроме спеченных изделий, постепенно получают распространение плавленые изделия из карбида бора, которые также позволяют использовать его высокие антиабразивные свойства. Плавленый карбид бора инертен к щелочам и кислотам. Прочность изделий из него подобна прочности стального литья [3]. [c.214]

    Обычно в расплавленном литейном чугуне содержится около 0,13% серы содержание серы перед литьем можно уменьшить до 0,005%, но обычно чрезмерная десульфурнзация нежелательна. Основное достоинство десульфуризации в том, что она позволяет использовать для загрузки в печи разнообразное сырье (например, дешевый скрап вместо дорогого передельного чугуна) получать мало-сернистый ( <0,02%) чугун для производства зернистого железа (таким образом снижается потребное количество магнийсодержащих добавок, которые также уменьшают количество получаемого шлака и, следовательно, случайных дефектов поверхности в отливках) уменьшить охлаждение снижает брак, обусловленный раковинами, и повышает механические свойства (предел прочности при растяжении для высокопрочного чугуна увеличивается на 12 и на 38% у железа с пределом нрочностп при растяжении 2200 кгс/см ). Как десульфурирующий агент карбид кальция обладает тем преимуществом, что образуется сухой гра-нулпрованны шлак со слабым сцеплением с огнеупорной футеровкой п очень ограниченно обратной отдачей серы из шлака в металл даже в сл5 чае использования кислой огнеупорной футеров си. [c.251]

    Совершенствование токарной и фрезерной обработки идет главным образом по пути создания и применения новых инструментальных материалов. В настоящее время на предприятиях химического машиностроения основными материалами режущей части токарных резцов и торцовых фрез являются твердые сплавы на основе карбидов вольфрама. По фавнению с быстрорежущей сталью твердые сплавы обладают повышенными теплостойкостью и износостойкостью, а сплавы группы ВК — и повышенной прочностью, что позволяет применять их в особо тяжелых условиях точения и фрезерования работа по корке после литья или ковки, работа с вибрациями, ударами и т.д. Еще более высокими режущими свойствами обладают новые марки твердых сплавов на основе карбидов титана (безвольфра-мовые твердые сплавы). Однако при обработке некоторых современных конструкционных материалов, например, высокотвердых сложнолегированных сталей, дисперсионно-твердеющих сплавов, специальных высоко [c.73]

    В последнее время широкое применение в промышленности нашел метод шликерного литья для получения изделий из окислов металлов, карбидов, боридов, силицидов, керме-тов и других материалов [408]. Шликер представляет собой ПКС — структурированную дисперсию с повышенным, по сравнению с керамическими массами, содержанием воды уп-руго-пластичные свойства шликера определяются также в основном взаимодействием дисперсных частиц друг с другом и с жидкой средой [413]. Аналогично тому, как при лакокрасочных покрытиях получают сплошные пленки из агрегативно устойчивых латексов [6], так и в других производствах принципиально подобным образом достигают монолитность изделий [512]. При шликерном литье керамических оптических зеркал составляют сложную рабочую смесь из так называемой коллоидной глины, китайской глины и полевого шпата. После излмельчения смесь перемешивают с водой до получения литейного шликера. Верхняя часть отлитого изделия под действием сил тяжести обогащается мелкими, а нижняя — крупными частицами, что благоприятно сказывается на технологии изготовления зеркал. Состав подобных сложных паст устанавливают эмпирически с учетом технологических [c.121]

    Содержание в алюминии углерода в виде карбида в количествах до 0,035—0,040 /о почти не сказывается на механических свойствах и электропроводности катаного металла, но заметно снижает ударную вязкость литого металла. Наиболее отрицательное влияние оказывает карбид алюминия при присутствии его в алючиинии вместе с А12О3, [186]. [c.221]

    Ферритные стали с содержанием хрома до 28%, без молибдена и с молибденом, при высоком содержании углерода также чувствительны к выпадению карбидов по границам зерен. Это приводит не только к структурной коррозии, но и к производственным трудностям, а также к охрупчиванию отливок. Большую стойкость и лучшие механические свойства имеют стали, модифицированные никелем, например сталь 1Х17Н4. Из них изготовляются многие специальные фасонные изделия. У литых ферритных сталей стойкость к межкристаллитной коррозии можно повысить увеличением содержания азота. [c.173]

    Влияние пластической деформации на структуру коррозионно-стойкой стали в общих чертах сводится к тому, что в процессе деформации в структуре стали образуются многочисленные дефекты кристаллической решетки двойники, плоскости скольжения, скопления и дислокаций, а также происходит распад аустенита с образованием квазимартенсита и мелкодисперсных карбидов х,рома. Пластическая дефО рмация коррозионно-стойких сталей повышает запас свободной энергии металла. При этом существенно меняются коррозионные свойства стали. В результате пластической деформации повышается стойкость сварных соединений к межкристаллитной коррозии. Влияние же пластической деформации на ножевую коррозию в лите ратуре освещено недостаточно. Между тем, установление этого фактора необходимо в связи с тем, что на практике как сварные соединения отдельных узлов и деталей, так и листы и трубы перед сваркой часто подвергаются деформации. Опыты по исследованию влияния последующей деформации на ножевую коррозию проводили на пластинах стали 12Х18Н10Т размером 20X80X3 мм с продольным швом. Пластины деформировались с различной степенью растяжения (от 2,5 до 25%). Скорость деформации составляла 1,2— 1,3 мм/мин. Степень деформации (%) рассчитывали по формуле [c.65]

    В общем цикле процесса термической обработки продолжительно сть, нагрева часто составляет до 40—80%, определяя количество необходимого ooHoiB Horo оборудования — печей и нагревательных аппаратов. Однако установлено, что превращения, происходящие в сплавах и сталях при нагреве— образование аусте нита, растворение карбидов, выравнивание неоднородностей литой структуры и др.— совершаются быстрее во время выдержки при конечной температуре, чем в процессе нагрева. Поэтому наиболее рациональным и экономичным является ускоренный нагрев деталей, если он не ведет к 0 бразованию трещин. Применение скоростного нагрева резко сокращает продолжительность операции термической обработки, значительно снижает потери металла в окалине и в ряде Случаев дает повышенные механические свойства металлов и сплавов. [c.9]


Смотреть страницы где упоминается термин Карбид лития свойства: [c.15]    [c.76]    [c.214]    [c.592]    [c.700]    [c.445]    [c.200]    [c.410]    [c.494]    [c.435]    [c.131]    [c.214]    [c.156]    [c.15]    [c.410]    [c.494]    [c.548]    [c.545]    [c.570]    [c.387]   
Лекции по общему курсу химии (1964) -- [ c.129 , c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Литий, свойства



© 2025 chem21.info Реклама на сайте