Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеризация сшивание

    Во многих случаях количественное решение вопроса о влиянии копцентрации узлов сетки осложняется тем фактом, что сшивающий агент входит в состав сетчатого полимера и таким образом Tg сетчатого полимера определяется двумя практически независимыми факторами 1) концентрацией узлов и 2) эффектом сополимеризации. Сшивание всегда приводит к возрастанию Tg, тогда как эффект сополимеризации в зависимости от химической природы сшивающего агента может привести либо к увеличению, либо к понижению температуры стеклования. Все известные экспериментальные работы [12, 45—48], выполненные с использованием различных систем, в которых эффектом сополимеризации можно пренебречь, показывают, что сшивание действительно всегда приводит к сдвигу температуры стеклования в сторону больших температур, т. е. [c.206]


    Одновременная деструкция двух полимеров в нейтральной среде — значительно более сложный процесс. В этом случае может расщепляться только один из полимеров, подвергнутых механической обработке, что приводит к образованию активных центров, а цепочки другого в условиях переноса служат основой для прививки. Если расщепляются оба полимера, то промежуточные активные элементы теоретически могут вступать в любые процессы (линейную деструкцию, блок-сополимеризацию, привитую сополимеризацию, сшивание) вероятность развития каждого из этих процессов находится в прямой зависимости от структуры исходных полимеров и от способности промежуточных фрагментов взаимодействовать между собой. [c.18]

    Для достижения комплекса требуемых свойств покрытий широко используют совмещение в лакокрасочном материале двух и более пленкообразующих путем их физической (смешение) или химической (поликонденсация, сополимеризация, сшивание) модификации. [c.10]

    С помощью ДТА можно изучать процессы получения (поли-конденсацию, полимеризацию, сополимеризацию и др.) полимеров, определять оптимальные условия этих процессов, исследовать влияние состава исходной смеси на скорость реакции. Этот метод широко используют для определения химических превращений полимеров. Так, с помощью ДТА можно определить оптимальные условия процессов вулканизации каучуков, отверждения ЭПОКСИДНЫ) смол, сшивания и др., охарактеризовать способность полимера к окислению (например, сравнивая две термограммы, полученные при нагревании на воздухе и в атмосфере инертного газа), оценить термическую стабильность и термодеструкцию полимера. [c.210]

    ИЗОПОРИСТЫЕ ИОНООБМЕННЫЕ СМОЛЫ, гелевые ионообменные смолы, в полимерном каркасе к-рых относительно регулярно расположены поперечные связи. Обладают повышенной проницаемостью и способностью обратимо сорбировать крупные орг. ионы. Стойки против отравления орг. в-вами (т. е. очень мала доля необратимой сорбции). Получ. сополимеризация винильного мономера с диеном, к-рый в выбранных условиях не способен к гомополимеризации сшивание линейного полимера в процессе хлорметилирования или аминирования. Наиб, распространены высокоосновные аниониты на основе полисти- [c.211]

    Химическая модификация полипропилена, т. е. направленное изменение его физических, механических или химических свойств введением в макромолекулу новых функциональных групп, сшиванием или сополимеризацией, представляет большой интерес с научной и практической точки зрения. [c.126]


    Наибольший интерес представляют ионные реакции сшивания по двойным связям. Однако радикальные процессы сшивания являются практически более важными. Инициирование таких реакций может происходить под действием кислорода или света, особенно в присутствии соответствующих катализаторов, например соединений двухвалентного кобальта ( воздушная сушка ). Боль-щие возможности в этом плане представляет сополимеризация. Для этого ненасыщенный полиэфир растворяют в мономере, способном к радикальной сополимеризации, и добавляют соответствующий инициатор. Выбранный инициатор определяет температуру полимеризации. При использовании перекисей, таких, как перекись бензоила, перекись циклогексанона или гидроперекиси,, полимеризацию проводят при 70—100°С ( горячее отверждение ), в присутствии окислительно-восстановительных систем — при комнатной температуре ( холодное отверждение ). Наиболее распространенными окислительно-восстановительными системами являются смеси перекиси и восстановителя, растворимого в органической среде (например, нафтенат или октоат кобальта или меди и третичный амин, такой, как Ы,Ы-диметиланилин). В качестве сшивающего агента обычно используют стирол. В результате реакции образуются прозрачные нерастворимые термостойкие продукты с [c.199]

    Процесс сополимеризации стирола с дивинилбензолом сопровождается гомополимеризацией обоих мономеров. При любых условиях реакции и соотношениях мономеров состав сополимера на ранних стадиях реакции обогащен дивинилбензолом вследствие его большей активности по сравнению со стиролом [37— 39]. Таким образом, сополимер в начале процесса получается с высокой степенью сшивания, а по мере реакции степень сшивания уменьшается. Это приводит к большой неоднородности структуры сополимера, которая отрицательно влияет на свойства получаемых ионитов. Поэтому является весьма актуальным получение полимерных матриц, лишенных этого недостатка. [c.20]

    Впоследствии Гордон и Ро [31] в ряде работ изучали сополимеризацию метилметакрилата и этилендиметакрилата и снова проверили теоретически и экспериментально возможность применения классической модели гелеобразования. Они заключили, что теория применима к их результатам, если учесть внутреннюю циклизацию растущих цепей, и если многократное сшивание (циклизация с участием нескольких первичных цепей) не играет важной роли. Далее, предполагавшаяся Уоллингом зависимость скорости образования сетки ют диффузии, которую можно было бы ожидать при сравни- [c.340]

    В качестве примера приведем две диаграммы (рис. 1 и 2), иллюстрирующие условия фазового разделения в процессах формирования сетчатого полимера путем сшивания и сополимеризации [60]. [c.96]

    НИЙ [30, 132, 136, 258, 259] физических свойств облученных полимеров и сополимеров винилхлорида позволяют считать преобладающим в одних случаях процесс образования поперечных связей, в других — деструкции [260]. Хотя поливинилхлорид относили к полимерам, преимущественно деструктирующимся при облучении [32], в дальнейших исследованиях было установлено, что при облучении в отсутствие воздуха поливинилхлорид в основном сшивается [261]. Наиболее достоверной характеристикой эффективности процессов сшивания поливинилхлорида является значение Сдс = 2,15 ( пс = 23 эв) [262, 263]. Нагревание облученного в вакууме поливинилхлорида или обработка его веществами, вызывающими набухание, даже в отсутствие кислорода воздуха способствуют образованию поперечных связей [264]. Наличие процессов деструкции доказывается уменьшением характеристической вязкости на начальных стадиях облучения, предшествующих же латинизации [263, 265]. Если бы эффективность процессов деструкции при облучении в обычных условиях не была значительна, процесс радиационного сшивания поливинилхлорида мог бы получить практическое применение. Однако процесс сшивания осуществляют путем привитой радиационной сополимеризации поливинилхлорида с тетрафункциональными мономерами, введенными в полимер [266-270]. [c.191]

    Другой большой класс непредельных полимеров получается при полимеризации мономеров, содержащих по две и больше виниловых групп. В большинстве случаев в процессе полимеризации участвует одна из двойных связей винилового мономера, а остальные входят в состав основной цепи или боковых функциональных групп и могут участвовать в последующей сополимеризации с другим мономером. Чаще всего, однако, рост цепи и образование поперечных связей происходят одновременно — уже при полимеризации дивинилового мономера. Этот случай не будет специально рассматриваться в этом обзоре, так как он не относится к реакциям полимеров. Кроме того, между сшиванием в процессе сополимеризации и сшиванием на второй стадии процесса, так же как и между структурой получаемых при этом сшитых полимеров, нет принципиальных различий [356]. [c.199]


    В основе классификации полимерных систем может лежать состав, методы получения, структура, области применения [7]. Согласно [8] все известные полимеры могут быть разделены так, как это сделано на схеме 1. На представлениях о строении полимерных цепей построен еще один вариант классификации (схема 2) [9]. Сперлинг применил для этой цели топологический подход с использованием теории графов (схема 3) [10]. Известна также классификация многокомпонентных полимерных систем, построенная с использованием понятий теории групп. Высказано предположение, что можно получить новые морфологические и топологические типы смесей, проводя так называемые обратные реакции [10]. Например, деструкция привитого сополимера или сетчатых структур может дать новые полимерные системы. Не исключается и возможность создания новых классификаций. Так, недавно предложена классификация многокомпонентных полимерных систем, в основе которой лежат элементы, представляющие определенные типы полимерных систем (гомо-и сополимеры, полимерные сетки и смеси) [11]. Более сложные системы составляют из данных элементов путем их соединения посредством бинарных операций, таких, как сополимеризация, сшивание, смешение, образование взаимопроникающих сеток (ВИС) и т. д. Такая классификация позволяет описать не только состав и метод получения полимерной системы, но и ее простран  [c.5]

    В распоряжении химиков, физико-химиков и механиков в на-огоящее время есть методы, применяя которые, можно создавать полимерные материалы с заранее заданными свойствами. Главные из этих методов изменение химической структуры макромолеку-лярных цепей, сополимеризация, сшивание линейного полимера в трехмерную структурную сетку, варьирование степени регулярности, регулирование режима кристаллизации, термическая обработка, ориентационное упрочнение, пластификация, введение различного рода наполнителей и др. [c.7]

    Изменение свойств полимера путем увеличения размеров макромолекул и изменения их структуры, например, в результате превращения линейного полимера в полимер сетчатой структуры. Этот метод назван методом костикообразования, или сшивания линейных полимеров. Ко второму направлению может быть отнесен также синтез новых полимеров путем блоксопо-лимеризации и привитой сополимеризации. [c.170]

    Наиб, широко применяют сетчатые сополимеры, получаемые суспензионной сополимеризацией стирола, производных акриловой к-ты или винилпиридинов с диенами, напр, с дивинилбензолом, диэфирами акриловой к-ты и гликолей, диизопропенилбензолом, к-рые служат сшивающими агентами. Длинноцепные сшивающие агенты используют для синтеза макропористых И. с. Степень сшивания, зависящая от содержания диена, влияет на набухание И. с. в воде и орг. р-рителях, пористость, кинетику и избирательность ионного обмена, прочность и химстойкость. В пром. И. с. содержание дивинилбензола может составлять от десятых долей % до 30%. Иногда сшивание производят путем полимераналогичных превращ. малосшитых и линейных полимеров. [c.264]

    Алкидные смолы [11] представляют собой разветвленные или сшитые полиэфиры, получаемые поликонденсацией, например, дикарбоновых кислот с олигофункциональными спиртами. Реакции прививки и сшивания протекают гладко и легко контролируются. Так, при поликонденсации фталевой кислоты (или ангидрида) с глицерином образуется полиэфир, который остается растворимым и плавким, если прекратить реакцию на стадии превращения карбоксильных или гидроксильных групп менее чем на 75%. Если степень конверсии достигает 75% (мол.), полиэфиры превращаются в полностью нерастворимые продукты. В отличие от реакций сшивания методом привитой сополимеризации ненасыщенных полиэфиров синтез сшитых алкидных смол следует проводить при [c.201]

    В случае сополимеризации соединения, содержащего одну двойную связь, с полиеновым мономером (сщивающий агент) произойдет сшивание образующихся полимерных цепей, возникновение мостиков в тех местах, де находятся остатки полиенового мономера, что также приведет к образованию трехмерного полимера. Прн этом число мостиков будет тем больше, чем выше доля сшивающего агента в исходной мономерной смеси и длиннее цепи (т. е. чем больше их степень полимеризации Д ). Другими словами, гелеобразова-нне, соответствующее возникновению одной поперечной связи на каждую линейную цепь, должно будет наступать тем раньше и критическая степень превращения Должна быть тем меньше, чем больше доля сшивающего агента и [c.225]

    Математическая обработка данных, полученных при изучении сшивания в этих системах довольно сложна, если не пользоваться упрощающими допущениями. Фокс и Греч [35] дали примерный анализ кинетики привитой иолимеризации и сделали вывод, что, наиболее вероятно, гелеобразование при привитой сополимеризации происходит в случае применения стирола. (Этот вывод основан только на известных кинетических константах во всех случаях принимается обрыв в результате соединения радикалов.) Предполагалось также, что возможно гелеобразование путем передачи цепи при гомополимеризации в массе метилакрилата и винилацетата этот вывод, конечно, неверен, если обрыв происходит только путем диспропорционирования. Бемфорд и Томпа [14] предприняли тщательное изучение простой привитой по,тимеризации. Схема реакций такая же, как (7.1) (при 8 = 0) и (7.11) с обрывом в результате соединения радикалов было принято, что концентрация мономера остается постоянной и что в начале реакции полимера нет. Описанным методом были рассчитаны некоторые моменты молекулярно-весового распределения. По-видимому, Qo и QJ остаются конечными при всех условиях, а моменты высшего порядка содержат множитель [c.343]

    Введение в натуральный каучук различных галогенсодержащих соединений снособствует увеличению эффективности радиационного сшивания в результате увеличения выхода свободных радикалов [153—156]. Присутствие в латексах натурального каучука воды также приводит к более интенсивному сшиванию при облучении [154—159]. Введение перед облучением в натуральный каучук обычных вулканизующих агентов, в том числе и серы, пе влияет [160] на эффективность процесса радиационного сшивания. Сера при облучении при 25° присоединяется к каучуку и несколько уменьшает эффективность радиационного сшивания [161]. Некоторые наполнители способствуют радиационному сшиванию, возможно, вследствие химического присоединения макромолекул каучука к поверхности частиц наполнителя. При радиационной привитой сополимеризации стирола и натурального каучука квантовый выход свободных радикалов, образующихся в молекулах каучука и инициирующих процесс, ( ир равен 0,26 [162]. Активность образующихся радикалов при инициировании привитой полимеризации ниже, чем в процессе образования поперечных связей возможно также, что в присутствии стирола свободные радикалы образуются в меньших количествах. [c.179]

    Можно также получить полимер с высоким молекулярным весом, исходя из несимметричного дивинилового мономера, и в том случае, если реакционноспособность двойных связей совсем не зависит друг от друга, но они значительно различаются по относительной реакционной способности. В этом случае при почти количественном участии в реакции двойных связей одного типа двойные связи второго типа не реагируют. Интересный пример такой реакции описан Батлером и Нешем [360], которые, исходя из винпл-р-хлорэтилового эфира и различных окисей алкенов, синтезировали ряд простых виниловых эфиров с различными ненасыщенными группами. Эти мономеры полимеризовали в присутствии ВГз при температуре —70° при этом в реакции участвовали только виниловые двойные связи, а двойные связи боковых групп могли быть использованы для последующего сшивания путем сополимеризации их с другим мономером. Таким образом, можно сделать вывод, что ненасыщенный полимер, способный к сшиванию при сополимеризации с мономерами, может быть синтезирован, исходя из мономера, в котором группы с двойными связями различаются ио структуре и не оказывают взаимного влияния на их реакционную способность. [c.200]

    Ненасыщенные полимеры этой группы получают главным образом путем модификации обычных полимеров, пе содержащих свободные двойные связи. Примеры практического использования соединеншг, способных к сшиванию при взаимодействии с мономерами, отсутствуют, однако Смете [364] упоминал о некоторых полимерах, способных при сополимеризации с мономерами образовывать привитые сополимеры. К ним относятся сополимер стирола, содержащий алифатические двойные связи, образующиеся при дегидробромировании полибромстирола [365], и мета-криловый эфир целлюлозы, получаемый путем этерификации целлюлозы хлорангидридом метакриловой кислоты [366]. [c.201]

    Из приведенного материала видно, что типичные системы, сшитые путем сополимеризации с мономером, содержат значительные количества непрореагировавших непредельных связей. Степень превращения этих связей сильно зависит от условий реакции [372, 384]. Часто наблюдается псевдоравповесное состояние, и дальнейшее увеличение степени сшивания, достигаемое при проведении реакции в данных условиях, может иметь [c.213]

    Ненасыщенный полимер содержит два различных активных центра для образования разветвлений или осуществления процесса прививки. Атомы углерода в а-положении по отношению к двойной связи наиболее реакционноспособны и чувствительны к атаке свободными радикалами и, следовательно, к передаче цепи, чем и обусловлено образование активных центров для прививки. Кроме того, двойные связи молекулы полимера могут участвовать в сополимеризации с виниловым мономером и являться активными центрами для роста боковых цепей. Сшивание и гелеобразова-ние обусловлены введением в боковую цепь более одной двойной связи. Сшивание может происходить и при соединении двух боковых цепей, принадлежащих различным основным цепям, особенно в случае стирола, поскольку обрыв цепи в процессе его полимеризации происходит в результате рекомбинации. [c.271]

    Прививку на различные природные полимеры осуществляли путем предварительного введения в них ненасыщенных групп. При взаимодействии крахмала с аллилхлоридом в присутствии щелочи образуется ненасыщенный эфир (аллилкрахмал). В результате сополимеризации этого ненасыщенного эфира со стиролом в присутствии гидроперекиси кумола был получен привитой сополимер аллилкрахмала, содержащий привитые полистирольные цепи. Чтобы уменьшить возможность поперечного сшивания, в молекулу крахмала следует вводить лишь небольшое число аллильных групп. [c.273]

    Сшитые структуры могут также образоваться вследствие того, что обрыв цепи при полимеризации стирола происходит в результате рекомбинации. Следовательно, две макромолекулы полиэфира, содержащие растущие полистирольные боковые цепи, могут взаимодействовать с взаимным обрывом растущих цепей. В тех случаях, когда для получения привитых сополимеров указанного состава в качестве винилового мономера используют метилметакрилат, сшивание происходит в результате сополимеризации метакрилата с малеатными группами полиэфира. Так как при полимеризации метилметакрилата обрыв цепи происходит преимущественно в результате диспропорционирования, сополимер полиэфира с метилметакрилатом, по-видимому, содержит много полиметилметакрилатных боковых цепей и представляет собой привитой сополимер. [c.274]


Смотреть страницы где упоминается термин Сополимеризация сшивание: [c.51]    [c.94]    [c.215]    [c.151]    [c.489]    [c.260]    [c.223]    [c.7]    [c.131]    [c.149]    [c.93]    [c.149]    [c.189]    [c.107]    [c.204]    [c.208]    [c.208]    [c.211]    [c.212]    [c.213]   
Основы химии полимеров (1974) -- [ c.395 , c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Сшивание



© 2025 chem21.info Реклама на сайте