Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переалкилирование в условиях

    Результаты экспериментов по переалкилированию м-алкил-и ызо-алкилбензолов на толуол представлены в табл. 5.2. В смеси алкилбензол — толуол в выбранных условиях протекает практически одна реакция межмолекулярной миграции групп по схеме  [c.175]

    У третичных алкильных групп даже в мягких условиях проведения реакции переалкилирования наблюдаются скелетные изомеризационные превращения, что характерно для образования алкил-катионов [219]. [c.226]


    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]

    При создании кинетической модели учитывали новейшие представления о химизме протекающих реакций и исходили из двух важных предпосылок 1) алкилирование — необратимая реакция, а переалкилирование — отдельная, независимо протекающая реакция 2) скорость превращения этилена в жидкой фазе не является лимитирующей до тех пор, пока концентрация высших полиэтилбензолов низка. Это позволило оценить значение кинетических констант для модели переалкилирования из данных по этой реакции. При подборе коэффициентов для совмещенной модели алки-л ирования-переалкилирования исходя из данных по алкилированию нужно было оценить лишь относительные скорости реакции по бензолу, этилбензолу и полиэтилбензолам в зависимости от условий реакции. Полученная кинетическая модель позволяет осуществлять корректную экстраполяцию в пределах крайних значений условий реакции, а также точно находить область режимов, наиболее практически интересных для работающей установки. [c.277]

    Из всех данных, которые можно получить в изотермическом реакторе алкилирования, лишь кинетические и термодинамические зависимости можно применить к адиабатическому аппарату. Если процессы алкилирования и переалкилирования проводят в раздельных реакторах, можно подобрать условия такими, чтобы продлить срок службы катализатора и получить чистый продукт при высокой эффективности процесса. [c.300]


    Время контакта в реакторе при заданной температуре определяется скоростью наиболее медленного процесса - переалкилирования. При 130 °С оно составляет около 60 мин. В этих условиях обеспечивается полная конверсия этилена и достигается равновесный состав реакционной смеси, который зависит от исходного соотношения реагентов. Обычно используют мольное соотношение этилен бензол = 1 (2- -3). При этом реакционная масса, выраженная в мае. %, имеет следующий состав бензол — 45- 56 этилбензол — 36+41 полиалкилбензолы — 8- 12. Расход бензола на тонну этилбензола составляет 0,8 т, этилена -0,26 т, хлористого алюминия — 4- 6 кг Съем этилбензола с единицы реакционного объема достигает 200 кг/(м -ч). [c.361]

    Время контакта в реакторе при заданной температуре определяется скоростью наиболее медленного процесса - переалкилирования. При 130 °С оно составляет около 60 мин. В этих условиях обеспечивается полная конверсия этилена и достигается равновесный состав реакционной смеси, который зависит от исходного соотношения олефин бензол. Обычно используют мольное соотношение олефин бензол = l (2- 3). При этом реакционная масса имеет состав [% (мае.)] бензол - 45-56 этилбензол - 36-41 полиалкилбензолы - 8-12. Расход бензола на тонну [c.400]

    Немного легче удается переалкилирование триэтилбора, как этого и следовало ожидать из рассмотренных выше условий равновесия. Кроме того, опыт показывает, что перегонка при атмосферном давлении или в вакууме при определенной температуре через некоторое время прекращается и может продолжаться только после повышения температуры. При этом часто попадают в область температур, при которых алюминийтриалкилы расщепляются на олефин и диалкилалюминийгидрид. Часто наблюдается дальнейшее разложение с отделением алюминия. Поэтому при переалкилировании лучше всего работать ири пониженном давлении, хотя к концу перегонки, несмотря на сравнительно высокую температуру реакции, количественная реакция невозможна [c.120]

    Специально проведенными опытами показано, что в условиях, при которых проводили сернокислотное алкилирование, реакции диспропорционирования, изомеризации и переалкилирования не протекают. [c.64]

    Например, уже давно используется метод [27] каталитической деструкции углей в феноле с добавкой в качестве катализатора /г-толуолсульфокислоты. Показано [28], что в этих условиях по существу протекает реакция переалкилирования типа реакции Фриделя — Крафтса, фенол связывается с ОМУ н по привесу последней можно судить о сравнительном количестве алифатических мостиковых связей. А. А. Кричко с сотр. [29] показали, что имеется корреляция между привесом ОМУ при деполимеризации угля в присутствии фенола и /г-толуолсульфокислоты и выходом жидких продуктов гидрогенизации. [c.92]

    В настоящее время известны следующие гетерогенные катализаторы алкилирования бензола пропиленом фосфорнокислотный, катализаторы на основе оксидов и солей металлов, оксиды, модифицированные ВР , аморфные алюмосиликаты, цеолиты и катиониты. Применение твердых катализаторов намного упрощает технологическую схему, позволяет автоматизировать процесс, исключает проблему коррозии аппаратуры, облегчает отделение продуктов реакции, не требующих дополнительной очистки, которая в гомогенном катализе приводит к образованию стойких эмульсий и больших объемов сточных вод. Эти катализаторы можно регенерировать и использовать многократно. В данном случае мы рассмотрим технологию алкилирования на цеолитах и катионитах. Первый пример промышленной реализации процесса позволяет приблизить производство к безотходному, а второй — применить совмещенный реакционно-ректификационный процесс. Перспективными представляются цеолитсодержащие катализаторы СаНУ , содержащие редкоземельные элементы, на которых переалкилирование протекает в условиях реакции алкилирования, так как указанные ранее побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывают их дезактивацию и старение. В связи с этим катализаторы периодически необходимо регенерировать при 400-500 °С кислородсодержащим газом или воздухом. [c.290]

    Основными переменными, которые определяют эффективность работы реактора на цеолитных катализаторах, являются соотношение бензола и олефина (например, пропилена), температура и время контакта. А главным показателем, по которому можно контролировать работу реактора, — селективность. Следует отметить, что при постоянной средней температуре селективность по кумолу (изопропилбензолу) возрастает с увеличением соотношения бензол пропилен независимо от времени контакта. Влияние же температуры более сложно. В частности, так как в большей части реакционного объема протекает обратимая и экзотермическая реакция переалкилирования, то селективность возрастает при снижении температуры, когда условия переалкилирования близки к равновесным. При оптимизации процесса необходимо учитывать, что с возрастанием соотношения бензол пропилен в сырье селективность возрастает по трем причинам  [c.291]


    С этой целью возьмем систему бутиламинов, исследование которых облегчается тем, что третичный амин в ней образуется лишь в ничтожных количествах. В таких условиях единственно возможные реакции — разложение аминов в олефин и их переалкилирование по обратимому процессу  [c.371]

    Как и сульфирование, реакция алкилирования по Фриделю — Крафтсу обратима. Обычные правила ориентации соблюдаются здесь поэтому только до тех пор, пока процесс протекает при кинетически контролируемых условиях (см. стр. 132), Следовательно, реакция должна быть вовремя прервана, что удается только в том случае, если скорость реакции можно поддерживать маленькой, т. е. если работают при мягких условиях (при низкой температуре и с малыми количествами катализатора) (см. общую методику). Напротив, при термодинамическом контроле, т. е. при более высоких температурах, продолжительном времени реакции, и больших количествах катализатора при алкилировании замещенных ароматических соединений часто получают преимущественно ле/па-замещенные. Кроме того, имеет место дезалкилирование и переалкилирование, особенно при применении сильнодействующих катализаторов. Если обрабатывают, например, п-ксилол хлористым алюминием, то наряду с о- и и -ксилолами. [c.302]

    Несмотря на указанные трудности, способ с использованием хлористого алюминия находит все более широкое применение (рис. 67). Реакция происходит практически без давления при 50—70 °С в реакционных башнях высотой 15 м. В этих условиях имеет место каталитическое переалкилирование, поэтому высокоалкилированные продукты целесообразно снова возвращать в процесс. Оптимальное отношение бензол пропилен составляет примерно 4,5- 4,7 1, выход 98% в расчете на бензол, расход катализатора 0,025 г/кг кумола. [c.266]

    Реакция переалкилирования ароматических углеводородов в настоящее время получила самостоятельное оформление в виде процессов для получения низших ароматических углеводородов—процессы Таторей (Япония) и Ксилолы плюс (США). В связи с отсутствием изомеризационных превращений при межмолекулярной миграции алкильных групп [201] был сделан вывод, что при переалкилировании межмолекулярный перенос заместителя не может протекать в виде карбениевых ионов, которые претерпели бы изомеризацию в более стабильные вторичные или третичные структуры. Мак-Коли и А. Лина впервые высказали предположение о том, что в выбранных условиях (каталитическая система ВРз-НР, температура 20°С) межмолекулярная миграция протекает по бимолекулярному механизму. При этом вторая стадия реакции — взаимодействие с-комплек-са с нейтральной ароматической молекулой — является лимитирующей. [c.171]

    Для определения зависимости относительных скоростей реакции переалкилирования от положения заместителей в ароматическом кольце было изучено превращение о-, м- и -к-алкил-толуолов в присутствии бензола и катализатора А1Вгз в -гексане при температуре 40 °С. Выбор этил-, м-пропил- и -бутил-толуолов обусловлен тем, что межмолекулярная миграция алкильных групп в условиях экспериментов не сопровождается их [c.175]

    Скорости переноса алкильных групп оценивали по отношению к скорости межмолекулярной миграции этильной группы, что позволяло избежать возможных ошибок за счет изменения активности катализатора и условий процесса. Результаты хроматографического анализа состава реакционной смеси на примере реакции переалкилирования н-пропил- и изопропилбензо- [c.180]

    Отсутствие скелетной изомеризации н-алкильных заместителей при межмолекулярном переносе в условиях реакции переалкилирования, наблюдаемое при контакте с AI I3 и ВРз-НР, послужило основанием для вывода, что мигрирующая группа не является свободным карбокатионом, который должен был бы претерпеть перегруппировку с образованием стабильного иона. Именно этот вывод и послужил основой jkiexaHHSMa Мак-Коли и Лина [201]. [c.190]

    Перегруппировки циклоалкилбензолов в условиях реакции переалкилирования [c.203]

    Распределение изотопной метки С, введенной в а-положе-ние алкильной группы, равно 0,30 0,03. На основании экспериментальных данных механизм превращения фенилциклогексана в выбранных условиях реакции переалкилирования можно изобразить следующей схемой  [c.207]

    Таким образом, реакционная способность дифенилалкановых углеводородов, в первую очередь, определяется не их молекулярной массой, а структурой. Полученные нами и литературные данные показывают, что в мягких условиях реакции переалкилирования дифенилалканы могут образовываться в 1гаче-стве промежуточных соединений, о роль этого направленияле является определяющей. [c.217]

    Алкилирование бензола пропиленом в присутствии хлорида алюминия. Технология алкилирования бензола пропиленом в присутствии хлорида алюминия аналогична технологии получения этилбензола (поэтому технологические схемы в данном разделе не рассматриваются). /Хлорид аЛЮМИНИЯ иоаволяет вес-ти процесс переалкилирования в тех же условиях, что и процесс алкилирования, что способствует более полному превращению сырья. В качестве алкилирующего агента, кроме пропилена, используют пропан-пропиленовую фракцию, которую предварительно тщательно очищают от влаги, диоксида углерода и других примесей. [c.247]

    Главными переменными, которые требовались для проектирования реактора, были соотношение бензола и пропилена, температура и время контакта. Поскольку реакции алкилирования протекают быстро, контроль за работой реактора осуществляли по селективности. Изучение реакции и исследования на модели указывали, что при постоянной средней тем,пературе селективность по кумолу возрастала с увеличением соотношения бензол пропилен независимо от времени коитакта. Влияние температуры было несколько более сложным. Поскольку в большей части реакционного объема протекает обратимая и экзотермическая реакция переалкилирования, селективность возрастает при снижении температуры, когда условия переалкилирования близки к равновесным. Однако при малом времени контакта селективность зависит от того,> насколько быстро образуется кумол. В этом случае селективность определяется кинетикой, а не равновесием. Иными словами, при оценке [c.293]

    Полученные данные показьшают, что в присутствии бензолсульфо-кислоты нарушается обычный ход электрофильного замещения ароматического ядра. При алкилировании н-олефинами катализатор бензолсульфокислота способствует образованию, в основном, орто-замещенных алкилфенолов (2- и 2,6-структур). Это означает, что обьганые правила ориентации в реакции алкилирования фенола сохраняются до тех пор, пока процесс протекает при кинетически контролируемых условиях (при низкой температуре и с малыми количествами катализатора). При термодинамически контролируемых условиях реакции, т. е. при высоких температурах, продолжительном времени реакции и больших количествах сильнодействующих катализаторов, имеет место деалки-лирование и переалкилирование, способные привести к необычным продуктам реакции. [c.40]

    Некоторые, /пре/и-бутилбензолы вполне доступны трет-бутш-фенолы, как отмечалось выше, можно легко синтезировать, трет-Бутильную группу можно ввести в углеводороды действием трет-бутанола или /пре/п-бутилхлорида в присутствии кислот Льюиса [52, 58, 591. Блокирующая группа может быть удалена пиролизом или, что удобнее, нагреванием в бензоле с треххлористым алюминием, что ведет к переалкилированию. Для переалкилирования требуются более жесткие условия, чем для реакции Фриделя — Крафтса. Поэтому моно-трй/п-бутилбензол можно ацилировать без отщепления блокирующей группы, тогда как при ацилировании п-ди-трй/п-бутилбензола образуется м-трет-бутилацетофенон [601. трет-Бутил бензолы можно вводить в самые разнообразные реакции. Впрочем, отмечено много случаев отщепления или замещения трет-бутильных групп в реакциях с участием треххлористого алюминия, фтористого водорода, азотной кислоты, брома или хлористого сульфурила (см. 160а]). [c.201]

    К сожалению, механизм этих реакций изучен недостаточно Установленная взаимосвязь распределения электронной плотно сти в молекулах и реакционной способности алкильных радика лов [258, 259]1 в присутствии алюмокобальтмолибденового ката лизатора, а также образования алкоголятных структур на окисно алюминиевых катализаторах [262] не дают полной картины о ха рактере протекающих превращений. По-видимому, в каждом конк ретном случае механизм переалкилирования определяется строе нием исходных алкилфенолов, условиями процесса, а также прн родой катализатора. [c.295]

    Переалкилирование, или межмолекулярный перенос алкильной группы в условиях алкилирования, является быстро протекающей реакцией  [c.876]

    С целью проверки возможности протекания параллельных основному процессу реакций диспропорционирования и переалки-лирования были обработаны фтористым водородом моно-етор-бу-тилхлорбензольная фракция и алкилат из нескольких опытов. Хроматографический анализ продуктов после 3 и 6 ч обработки не показал заметного изменения их состава. Практически не изменился состав обрабатываемых продуктов и после предварительной добавки к ним хлорбензола. Эти результаты позволяют заключить, что реакция алкилирования в принятых условиях не сопровождается процессами диспропорционирования и переалкилирования. [c.49]

    Равновесное распределение продуктов реакций алкилирования, полимеризации и олигомеризации олефинов, изомеризации и дисмутации, переалкилирования полиалкилированной ароматики, перемещения фенильных радикалов вдоль алкильной цепи рассчитывают с использованием экспериментальных значений термодинамических функций — теплот образования соединений из простых веществ, абсолютных величин энтропий и теплоемкостей соединений для стандартных условий. На основе этих функций рассчитывают изменение стандартной энергии Гиббса и величины констант равновесия реакций. С учетом конкретной схемы реакций составляют аналитические выражения закона действующих масс для реальных или идеализированных состояний и рассчитывают равновесное распределение продуктов в реакционной смеси (для газового, жидкофазного или жидкогазофазного агрегатного состояния системы). [c.9]

    Увеличение температуры выше 154° С создает условия для вытеснения из пор катализатора изопропилбензола, что способствует снижению выхода полиизопропилбензолов. Кроме того, при повышении температуры опыта до 170—260° С заметную роль в присутствии катализатора начинает играть процесс переалкилирования бензола полиизопропилбензо-лами. [c.144]

    Реакция переалкилирования алкильных заместителей в условиях процесса ожижения ОМУ была подтверждена при каталитической деструкции угля в присутствии фенола с добавкой в качестве катализаторов ВРз или и-толуолсульфокнслоты [15]. Эта реакция может быть представлена схемой  [c.194]

    Технология жидкофазного алкилирования, разработанная фирмой МопзапШ (США), позволяет ликвидировать недостатки рассмотренного выше процесса. Предложено использовать небольшое количество А1С1 (около 2 г на 1 кг алкилата) без его регенерации. Давление при жидкофазном алкилировании зависит от температуры процесса, так как реакционная смесь должна находиться в жидком состоянии. Несмотря на повышенные температуры (160—200°С при соответствующем давлении), вследствие небольшого количества катализатора степень смолообразования низкая, что очень важно для создания безотходных производств. Однако в этом случае при условиях процесса алкилирования не протекает переалкилирование полиалкилбензолов, поэтому в технологии предусмотрен дополнительный реактор. Если полиалкилбензолы используются как целевые продукты, то необходамость в этой стадии отпадает. [c.288]

    Аналогичную зависимость активности от Га получил Бенеси [70], изучая Переалкилирование толуола до бензола и ксилолов при 400° С в присутствии НН4 (степень обмена 90%). При температуре прогрева 400°С активность цеолитов уже была заметной она возросла вдвое и достигла максимума при Гакт, примерно равной 600° С, а прогрев цеолитов при 700° С привел к их дезактивации. Используя данные ДТА, полученные на этих же образцах, Бенеси сделал вывод, что каталитически активны бренстедовские центры, а льюисовская кислотность, которая характерна для цеолитов, прогретых при 700° С, сама по себе значения для катализа не имеет. Однако после того, как образцы, прогретые при 700° С, выдержали некоторое время в атмосфере паров воды при 400° С, активность их была такой же, как у цеолитов, прогретых при 600° С. Таким образом, дегидроксилирование может быть обратимой реакцией, а часть неактивных льюисовских центров способна превращаться в активные бренстедовские центры. Отметим также, что потерю активности после прогревания при 700° С нельзя связать с необратимым разрушением кристаллической структуры. В одной из своих первых статей Уорд [50] также писал, что активными в крекинге кумола являются не льюисовские, а бренстедовские центры. Однако ни Бенеси, ни Уорд не ответили на вопрос, почему при активации образцов в интервале 400—600° С каталитическая активность возрастает [78, 79], а общая концентрация ОН-групп падает, особенно вблизи 600° С. Иначе говоря, максимумы на кривых зависимостей каталитической активности и концентрации ОН-групп от Гакт не совпадают. Конечно, такое сравнение правомерно только если допустить, что условия термообработки образцов в каталитических и спектроскопических исследованиях были идентичными. [c.25]

    В другой работе, вьшолненной на том же катализаторе, БолтОн и Ланевала [274] обнаружили, что в жидкофазных условиях ксилолы одновременно подвергаются переалкилированию и изомеризации при [c.90]

    Переалкилирование мезитилена толуолом, проведенное при оптимальных условиях, показало, что мезитилён имеет практически равноценную с псевдокумолом реакционную спо- собность. [c.97]

    Значительно легче происходит межмолекулярное перераспределение более длинных алкильных остатков. Реакция переалкилирования использовалась, например, для получения этилбензола кипячением с хлористым алюминием в избытке бензола смеси ди- и триэтилбензолов являющихся побочными продуктами при этилировании бензола на мо-ноэтилбензол [71] (ср. [69, 72]). Осуществлено также этилирование нафталина нагреванием его при 80° с полиэтилбензолами в присутствии хлористого алюминия [73]. Перемещение метильной группы от полиметилбензолов к нафталину в этих условиях почти не происходит [74] (ср. [75]). [c.15]

    Сохранение алкильными группами своего строения при проведении процессов переалкилирования и изомеризации гомологов ароматических соединений в мягких условиях указывает на то, что мигрирующая группа не появляется в реакционной среде в виде кинетически независимой частицы, например, галоидного алкила, олефина или карбониевого иона. Следовательно, межмолекулярное перераспределение алкильных групп происходит путем непосредственной передачи алкильной группы от одной молекулы к другой. Бимолекулярный характер подобных реакций подтверждается результатами, полученными при изучение кинетики диспропорционирования ж-ксилола под влиянием трехфтористого бора в жидком фтористом водороде [118] и перемещения втор-бу-тильной группы от ди-вгор-бутилбензола к бензолу в присутствии хлористого алюминия [87]. [c.29]

    Влияние температуры реакции исследовали на катализаторе КМЦР-Н с массовой долей 10%. Графические материалы (рис. 2) показывают, что с повышением температуры от 80 до 100 °С происходит снижение селективности реакции с 98 до 92 %. Однако значительно возрастает конверсия сырья, одновременно сокращается длительность дозировки ИА. Дальнейшее повышение температуры до 140 °С не оказывает влияния на селективность реакции. Конверсия фенола и ТАФ в этих условиях также не меняется. По-видимому, в этом интервале температур наступает равновесие между реакцией алкилирования и деалкилирования, а также переалкилирования, скорость которых возрастает при более высоких температурах. Реакцию целесообразно вести при 110...120°С. [c.69]


Смотреть страницы где упоминается термин Переалкилирование в условиях: [c.178]    [c.187]    [c.201]    [c.225]    [c.226]    [c.292]    [c.371]    [c.32]    [c.101]    [c.506]   
Введение в электронную теорию органических реакций (1977) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте