Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель в хроматографии структура

    Органические полимеры, не имеющие пористости и внутренней поверхности, доступной для адсорбции из газовой фазы, нельзя использовать для поглощения вредных газов и в газовой хроматографии. Чтобы устранить эти недостатки, были созданы органические пористые адсорбенты с более жестким скелетом и достаточно крупными порами, в которые могут проникать молекулы из газовой фазы. Жесткость сополимера весьма существенна, так как позволяет органическому адсорбенту сохранять пористость в широком интервале температур и снижает растворение в нем молекул, родственных по химической природе звеньям, образующим скелет этих адсорбентов. Для придания жесткости используют реакции сополимеризации со сшивающим мономером. Чтобы увеличить объем и размеры пор, реакцию сополимеризации проводят в присутствии инертного растворителя (порообразователя), растворяющего мономеры, но не растворяющего сополимер. Регулируя количество сшивающего мономера и инертного растворителя, можно получать различные по жесткости и пористости адсорбенты с близ-кой к силикагелю глобулярной структурой скелета (см. рис. 3.3). Поры в этом случае представляют собой зазоры- между глобулами. Эти первичные глобулы химически соединяются друг с другом во вторичные частицы — пористые зерна. При эмульсионной полимеризации получаются сферические зерна. Удельная поверхность пористых сополимеров этого типа порядка 1—10 При избытке сшивающего мономера последний сам образует полимер, ухудшающий свойства пористого сополимера. [c.112]


    Силикагели. Силикагель (ксерогель кремниевой кислоты с хорошо развитой пористой структурой) используется для осушки воздуха и промышленных газов, осушки различных жидкостей, рекуперации паров органических веществ, очистки масел, удаления из нефти смолистых веществ. Применяется в хроматографии, а также как носитель и катализатор для реакций полимеризации, конденсации, окисления и восстановления органических веществ, для разделения радиоактивных изотопов, очистки промышленных сточных вод от ионов различных металлов [29]. Производится промышленностью в виде зерен и шариков в зависимости от пористой структуры может быть двух сортов мелкопористый и крупнопористый. В свою очередь каждый сорт по размерам зерен имеет несколько марок  [c.387]

    В лекции 1 был описан непористый неспецифический адсорбент— графитированная термическая сажа, важный для газовой хроматографии веществ, различающихся по геометрии молекул, в частности, структурных изомеров. Однако гранулы из частиц этого адсорбента непрочны, так что проницаемость колонны при большом перепаде давления газа-носителя может изменяться во времени. Кроме того, энергия неспецифического межмолекулярного взаимодействия молекул с ГТС из-за высокой концентрации атомов (углерода в графитовых слоях настолько велика, что для разделения, например, изомерных терфенилов (см. табл. 1.3), надо повышать температуру колонны с ГТС до 350°С и выше. Вместе с тем, будучи хорошим адсорбентом для разделения молекул с различной геометрической структурой, ГТС менее чувствительна к различиям электронной конфигурации молекул, наличию в них электрических и квадрупольных моментов. Гранулы специфических адсорбентов, состоящих из кристаллов солей, обладающих высокой селективностью по отношению к молекулам, различающимся по электронной конфигурации (см. рис. 2.1), также часто механически непрочны. Гранулы же силикагелей, силохромов и пористых стекол достаточно прочны, но это аморфные адсорбенты, и их поверхность в той или иной степени геометрически и химически неоднородна (см. рис. 3.3, 3.7 и 3.12). Кроме того, промышленные образцы этих адсорбентов часто содержат примеси, образующие при дегидратации поверхности сильные электроноакцепторные центры (см. раздел 3.12). [c.75]

    Силикагель. Обычный выпускаемый промышленностью силикагель получают осаждением его из жидкого стекла при действии минеральных кислот. Подбирая соответствующие условия, можно получить гель с различной структурой пор, функциональными группами и т. д., применяемый для различных целей. Гель активируют при 100—300 С. Набухший в воде гель применяют в распределительной хроматографии. Силикагель часто содержит примеси железа, алюминия, кальция, натрия. [c.350]


    Хроматография в тонких слоях. Одним из недостатков хроматографии на бумаге является зависимость процесса разделения от структуры и свойств бумаги. Эти качества довольно трудно воспроизводимы. Для разделения веществ затрачивается много времени. Метод хроматографии в тонком слое (ХТС), предложенный советскими учеными Н. А. Измайловым и М. С. Шрайбер (17], по технике выполнения являющийся новым вариантом распределительной хроматографии, устраняет многие из этих затруднений. Применение самых разнообразных материалов делает метод поистине универсальным. Вместо волокон целлюлозы в распоряжении исследователя находятся порошки различных сорбентов окись алюминия, силикагель, ионообменные смолы, обеспечивающие высокую скорость фильтрации растворов [18]. [c.80]

    Неподвижные твердые фазы. В газовой адсорбционной хроматографии в качестве НФ чаще всего используют силикагель, оксид алюминия, активные угли и молекулярные сита. Адсорбционные характеристики оксида алюминия, силикагеля и угля в значительной степени зависят от исходного сырья, способов приготовления и предварительной обработки. В современной аналитической ГХ эти сорбенты применяют гораздо реже, чем сорбенты с нанесенной жидкой фазой. Более подробно сведения о силикагеле и оксиде алюминия приведены в разделе, посвященном жидкостной хроматографии. Активные угли — неполярные сорбенты с развитой пористой структурой. Они избирательно поглощают углеводороды, ароматические соединения, спирты, эфиры. [c.620]

    Сорбенты с химически привитыми фазами на основе силикагеля появились позже сорбентов, на которые неподвижная фаза (в виде индивидуальных веществ или, чаще, полимеров различной структуры и полярности) наносилась физически, т.е. аналогично тому, как фазу наносили и продолжают наносить в газожидкостной хроматографии. Нанесенная фаза довольно быстро смывается растворителем (гораздо быстрее, чем она испаряется или изменяется в газожидкостной хроматографии), параметры удерживания постоянно меняются, препаративно собираемые фракции загрязняются фазой. Использование растворителя, насыщенного неподвижной фазой, позволило несколько повысить стабильность таких сорбентов и колонок, однако большинство недостатков при этом осталось. [c.90]

    Важным направлением в улучшении структурных характеристик сорбентов и повышении их верхнего рабочего предела температур является синтез органо-минеральных сорбентов, когда к активным группам на поверхности минеральных адсорбентов типа силикагеля прививают радикальные цепи различных органических соединений. Синтезируемые таким образом сорбенты обладают высокой прочностью, однородной структурой пор и различной специфичностью, обусловленной типом привитых радикалов. Эти сорбенты широко применяются в жидкостной хроматографии и представляют интерес и для других вариантов хроматографии. [c.165]

    Анализ приведенных в разделе данных по разным типам сорбентов для различных вариантов жидкостной хроматографии показывает, что сорбенты синтезируют в основном по сходным схемам, они чаще имеют в своей основе матрицу силикагеля и несколько реже матрицу полимера и обладают широким разнообразием структурных характеристик. В способах их получения и модификации много общего. В некоторых случаях сходные задачи решаются с использованием разных сорбентов например, для разделения биополимерных систем используют сорбенты гелевой структуры и ie , задачи, решавшиеся ранее только методом [c.239]

    Хроматографии на этих сорбентах содержат 2—50% полярного органического растворителя в смеси с менее полярными (углеводороды, галогенуглеводороды). Равновесие между силикагелем и такими растворами устанавливается быстро, и оно довольно устойчиво. Поэтому результаты хроматографии обычно с легкостью воспроизводимы. Разделение на силикагеле более селективно по отношению к пространственной структуре сорба- [c.34]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]


    Площадь, занимаемая привитой группой =51(СбН5)2, в два раза больше площади, занимаемой группой =51(СНзЬ, однако число атомов углерода яа поверхности силикагеля в первом случае в 6 раз больше, чем во втором. В слое привитых углеводородных цепей происходят конформационные изменения. Как было отмечено выше, эти изменения очень существенны при соприкосновении с жидкими средами и зависят от природы последних, что весьма важно при применении в жидкостной хроматографии. Структура привитых длинных алкильных цепей, [c.194]

    Методом тонкослойной хроматографии на силикагеле было достигнуто разделение на ряд дискретных фракций деметаллированных порфиринов гилсонита [841] и нефти [832]. Проведено такн е хроматографическое разделение концентратов ванадилпор-фиринов нефтей, отличающихся групповым составом, литологией и возрастом вмещающих пород [802, 842], что дало возможность выявить общие черты и особенности хроматографического поведения ванадилпорфиринов, выделенных из различных объектов без нарушения нативной структуры. [c.153]

    Уже отмечалось, что состав и строение нефтяных смол и асфальтенов имеют много общего, прежде всего, это сходство элементов структуры углеродного скелета и их элементного состава. В сырых нефтях и в тяжелых остатках от прямой перегонки нефтей значение величин отношения смолы/асфальтены варьирует, как правило, в пределах от 9 1 до 7 3, а в окисленных битумах и тяжелых крекинг-остатках — от 7 3 до 1 1 [6]. Большая физическая и химическая гетерогенность смолисто-асфальтеновых веществ, слабая термическая стабильность и близость структуры и элементного состава их молекул делают крайне трудной задачу их разделения и нахождения четкой границы раздела, если таковая существует. В распределении по молекулярным весам нефтяных асфальтенов и смол есть известное подобие спектру полимергомологов — от олигомеров до высокомолекулярных полимеров. Различие в элементном составе смол и асфальтенов иллюстрируется данными, полученными разными исследователями на обширном материале нефтей, асфальтов и тяжелых нефтяных остатков. Асфальтены, как правило, осаждались н-пентаном и переосаждались из бензольного раствора смолы си-ликагелевые, т. е. выделенные адсорбционной хроматографией на крупнопористом силикагеле. [c.45]

    Для более глубокой дифференциации высокомолекулярных углеводородов исследователи применили комплексную методику, позволяющую разделять сложные углеводородные смеси по типам структур молекул и получать более простые смеси, содержащие группы углеводородов, более близкие по строению и молекулярным весам. Сначала дистиллятные масляные фракции подвергали депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно исследуемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировали, а затем депарафинизировали. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась дальнейшей дифференциации при помощи двух методов адсорбционной хроматографии и комплексообразования с карбамидом. Хроматография на силикагеле позволяет разделить углеводороды на три основные структурные группы (парафиново-циклопарафиновая и две фракции ароматических углеводородов). Комплексообразование с карбамидом позволяет выделить из смеси предельных структур углеводороды с достаточно длинными парафиновыми цепочками, способные образовать с карбамидом кристаллические комплексы. Твердые парафины, выделившиеся из петролатума в первой стадии, т. е. при его депарафинизации избирательно действующим растворителем, и составляющие около 2/з всего петролатума, далее не исследовались. [c.198]

    В жидкостной распределительной хроматографии используют два основных типа носителей пористые и поверхностнопористые. Пористые носители силикагель, диатомиты (хромосорб) и пористые стекла. Они имеют пористую структуру и большую площадь поверхности. Поверхностно-пористые носители состоят из частиц с непористой, непроницаемой сердцевиной и тонкой пористой оболочкой. При разделении на колонках с поверхностно-пористыми носителями даже при высоких скоростях подвижной фазы можно добиться высокой эффектипности колонки. Но эти носители дороги и имеют низкую емкость. [c.333]

    Полистирольные ионообменные смолы для ВЭЖХ зернением 10 мкм и менее обладают селективностью и стабильностью, но сетчатая структура их, характеризующаяся расстоянием между узлами сетки 1,5 нм, что значительно меньше размера пор применяемого для адсорбционной хроматографии силикагеля (10 нм), замедляет массо-обмен и, следовательно, значительно снижает эффективность. Применяемые в ВЭЖХ ионообменные смолы представляют собой в основном сополимеры стирола и дивинилбензола. Обычно добавляют 8—12% последнего. Чем больше содержание ди-винилбензола, тем больше жесткость и прочность полимера, выше емкость и, как правило, селективность и тем меньше набухаемость. [c.32]

    Применяемый для хроматографии оксид алюминия отвечает формула, в которой на две молекулы оксида приходится молекула воды. Его поверхность и структура похожи на силикагелевые, однако не идентичны и обеспечивают в ряде случаев селективность, отличающуюся от селективности силикагеля. Поверхностные гидроксилы оксида алюминия более прочны и полностью удаляются даже при 1000 °С. Обратная гидратация поверхности при комнатной температуре протекает медленно. Ионы алюминия в отличие от ионов кремния способны взаимодействию с многими молекулами разделяемых веществ влоть до необратимой сорбции некоторых молекул) и дают ой вклад в удерживание. [c.90]

    Разработана [84] аддитивная схема для представления структуры полиядерных ароматических соединений и их алкильных производных. Схема применена для расчета удерживания в режиме обращенно-фазовой хроматографии на октаде-цилсиликагелях, а также для хроматографии на обычном силикагеле и силикагеле, модифицированном пирролидинопропиль-ными группами. Расчетные величины к отличались от экспериментальных в среднем на 20%. [c.71]

    Наша модель демонстрирует случай адсорбционной хроматографии на колонке, заполненной силикагелем, сравнительно малых органических молекул. Общепринято, что при хроматографии на силикагеле активными местами , на которых происходит адсорбция, служат силанольные (—SiOH) группы на поверхности силикагеля. Это концевые группы кремнекислородной полимерной структуры (Si02)n, образованной из тетраэдри- [c.29]

    Исследовали также нефти парафинового основания месторождений Грозненское, Самотлор, Мирзаани (соответственно тип А, А, А2 по классификации Ал. А. Петрова). Проведена полная идентификация их углеводородного состава и определены индексы Ковача структур, обнаруженных в нефтях и в модельных углеводородах с температурами кипения в указанных пределах. Нефтяные фракции выделяли ректификацией на колонке эффективностью 70 теоретических тарелок, а затем деароматизировали вытеснительной хроматографией иа силикагеле. Основными аналитическими методами были капиллярная ГЖХ и хромато-масс-спектрометрия. Хроматограмма фракции 150—175 °С нефтей месторождения Грозненское (рис. 8.3) по- [c.196]

    Рис. 109 иллюстрирует историю совершенствования качества пластинок с силикагелем, выпускаемых основной фирмой-поставщиком. Прежде всего удивительно то, что значения Кг даже в наиболее чувствительной области (Кг=0,5 рис. 54) изменялись менее че.м на 0.1 ед. для материалов, изготавливавшихся на протящении 20 лет (в 1986 г. отмечались все те же самые уровни). При подобной оценке, конечно, активность поддерживалась постоянной благодаря сохранению относительной влажности на уровне 40%. Единственный выпадающий за эти границы результат, соответствующий материалам, изготовленным в 1958 г.. обусловлен (вероятно) иной структурой пор. Скорость потока постепенно приближалась к более оптимальной (увеличивалась) в случае пластинок, изготавливаемых без закрепителя (для пластинок с закрепителем такое изменение происходило медленнее и в меньшей степени). Первое улучшение распределения частиц по размерам было отмечено в 1971 г. При уменьшении размера частиц (в 1976-1978 гг.) выявилось значительное повышение эффективности пластинок. Именно тогда появился термин "высокоэффективная тонкослойная хроматография", первоначально применительно к слоям с размером частиц 5 мкм. используемым в центробежной тонкослойной хроматографии (при работе с и-камерами). [c.306]

    Одним из токсинов микобактерий, обусловливающих быстрое развитие патологических явлений при туберкулезе, оканчивающихся смертью, является так называемый корд-фактор . Это соединение было выделено хроматографией на силикагеле и оказалось относительно простым по структуре, а именно димиколатом трегалозы  [c.591]

    К числу неорганических адсорбентов относят активный уголь, силикагель, оксид алюминия, графитированную сажу и молекулярные сита. В газовой хроматографии преимущественно используют широкопористые силикагели, которые получают из обычного силикагеля высокотемпературной обработкой (до 700—950 °С) или гидротермальной обработкой с паром в автоклаве. Найден комплекс приемов, который позволяет получать любую разумную структуру силикагелевых адсорбентов как для газовой, так и для жидкостной хроматографии. Вместе с тем оксид алюминия получают лишь в нескольких модификациях, имеющих-близкую к силикагелю удельную поверхность. Удерживание на силикагелях и на оксиде алюминия зависит от удельной поверхности, степени насыщения поверхности водой, условий предварительной термообработки, а также от свюйств разделяемых соединений, в первую очередь их полярности, наличия водородных связей и др. Селективность оксида алюминия обусловлена присутствием на его поверхности льюисовских свободных кислот, связанных с ионами на поверхности. Для обоих адсорбентов насыщение водой приводит к существенному увеличению удерживания. В некоторых случаях применяют смесь этих насыщенных водой адсорбентов с диато-митовым носителем или стеклянными шариками. При использовании коротких колонок, заполненных частицами силикагеля диаметром 7—10 или 15—35 мкм, удавалось реализовать высокоскоростные режимы с получением более 2000 теоретических тарелок в 1 с. [c.91]

    Гель-хроматография (гель-фильтрация, или ситовая хроматография) — метод разделения, очистки и анализа веществ, основанный на различии в размерах или массе молекул. В качестве стационарной фазы используют различные гели с трехмерной сетчатой структурой декстраны (полисахариды), полиакри ламиды, пористые силикагели, цеолиты и др. При разделении смеси небольшие молекулы диффундируют через поры набухшего в растворителе геля, а крупные молекулы проходят через пространство между частицами геля. При промывании геля растворителем в первую очередь перемещаются крупные молекулы, а затем уже мелкие, т. е. компоненты смеси элюируют в порядке уменьшения их молекулярной массы. Гель действует как молекулярное сито. Аппаратурная простота метода и мягкие условия разделения способствовали особенно широкому применению гель-хроматографии в биохимических исследованиях. Основное назначение гель-хроматографии — разделение высокомолекулярных веществ. С ее помощью выделены и очищены многие ферменты, пептидные гормоны, нуклеиновые кислоты. [c.498]


Смотреть страницы где упоминается термин Силикагель в хроматографии структура: [c.13]    [c.14]    [c.106]    [c.59]    [c.163]    [c.60]    [c.190]    [c.172]    [c.235]    [c.521]    [c.523]    [c.570]    [c.571]    [c.44]    [c.34]    [c.263]    [c.34]    [c.263]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагели структура

Силикагель

Силикагель для хроматографи

Силикагель для хроматографии



© 2025 chem21.info Реклама на сайте