Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинец, определение колориметрическое

    Ионы свинца образуют окрашенные соединения с некоторыми неорганическими реактивами. Так, с сернистым натрием свинец образует сульфид черного цвета, с хромовокислым калием — хромат желтого цвета и т. д. Эти соединения применяются для колориметрического определения небольших количеств свинца. Однако определение усложняется в связи с нерастворимостью указанных солей, вследствие чего необходимо принимать специальные меры для удержания нерастворимого соединения в коллоидной суспензии. [c.260]


    Лучшие результаты колориметрического определения получаются при использовании ряда органических реактивов, из которых наибольшее применение имеет дитизон. Этот реактив образует окрашенные соединения не только с ионами свинца, но реагирует также с ионами многих других металлов, например ртути, серебра, меди, цинка, кадмия и т. д. Однако с различными ионами дитизон реагирует при разных условиях, в частности, большое значение имеет величина pH среды. При подборе соответствующей кислотности раствора можно определить свинец в присутствии некоторых из перечисленных ионов другие необходимо предварительно отделить. [c.260]

    Для количественного определения свинца осадок углекислого свинца при разрушении сплавлением с содой и селитрой и по Фрезениусу и Бабо растворяют в возможно малом количестве уксусной кислоты сернокислый свинец при разрушении серной кислотой растворяют в уксуснокислом аммонии и затем применяют, если можно, весовое определение (стр. 112), чаще же— при малых количествах свинца — колориметрическое определение (стр. 112) или объемное (стр. 112). [c.115]

    Испытуемую посуду наполняют 4 /о уксусной кислотой (уксусом), добавляют 1 /о хлористого натрия и кипятят в течение часа. Жидкость выпаривают в фарфоровой чашке . Остаток растворяют в нескольких каплях воды, испытывают на свинец (стр. 111) и производят при достаточном количестве его колориметрическое или объемное определение. [c.115]

    Свинец высокой чистоты. Колориметрический метод определения ртути [c.582]

    Для определения свинца в питьевых и поверхностных водах предлагается колориметрический метод с дитизоном этим методом можно определять свинец в концентрациях от сотых долей миллиграмма до целых миллиграммов в 1 л. Для всех видов вод, особенно сточных, пригоден также полярографический метод, применимый при концентрациях от сотых долей миллиграмма до сотен миллиграммов свинца ъ л. [c.297]

    Для определения свинца в питьевых и поверхностных водах приводится экстракционный колориметрический метод с дитизоном этим методом можно определять свинец в концентрациях от сотых долей миллиграмма до целых миллиграммов в 1 л воды. [c.140]

    Определение малых количеств молибдена в свинце может быть проведено после предварительного отделения молибдена от свинца соосаждением молибдата свинца с какой-нибудь труднорастворимой солью в качестве коллектора. Этим коллектором может служить, например, присутствующий в свинце мышьяк, образующий труднорастворимый осадок арсената свинца. Если свинец является чистым (марки С-00, С-000) и не содержит больших количеств мышьяка, то в качестве коллектора можно использовать другие труднорастворимые соли свинца. Осаждение малых количеств молибдата свинца проводили фосфатом свинца. Для удержания в растворе висмута и железа использовали комплексон III. Осадок фосфата свинца вместе с молибденом захватывал также мышьяк и сурьму. Для их удаления осадок обрабатывали горячей соляной кислотой и затем проводили упаривание с серной кислотой. При этом мышьяк и большая часть сурьмы отгонялись в виде хлоридов. После отделения сульфата свинца в фильтрате колориметрически определяли молибден по окраске его роданидного комплекса, который извлекали изоамиловым спиртом. При содержании молибдена больше 0,0001 % для колориметрирования брали аликвотную часть с содержанием 0,04—0,1л г молибдена. При [c.275]


    Незначительно отличаются по сходимости от методов ААС спектрофото-метрические и колориметрические методы. Однако они позволяют определять свинец в нефтепродуктах в более узком диапазоне концентраций (10 -Ю г/л). Сходимость рентгеноспектральных методов незначительно отличается от методов ААС при определении высоких концентраций свинца, но несколько хуже как методов ААС, так и спектрофотометрических методов в диапазоне Ю -10 г/л. [c.48]

    Определение с иодидом калия. Малые количества висмута, от 0,05 до 0,5 мг, лучше всего определять- колориметрическим методом, сравнивая желтую или коричневую окраску, полученную в результате обработки разбавленного азотнокислого раствора соли висмута иодидом калия, с окраской стандартного раствора. Определению мешают медь и железо (III), которые реагируют с иодидом калия, выделяя иод, некоторые члены мышьяковой группы, также даюш ие окрашенные растворы с иодидом калия, и, наконец, соли, которые сами сильно окрашены (как, например, нитрат никеля), если они присутствуют в достаточном количестве. Эти веш ества должны быть удалены обш ими, или специальными способами отделения соответственно каждому отдельному случаю Свинец не создает затруднений, если не присутствует в очень больших количествах, потому что желтый иодид свинца можно отфильтровать перед определением висмута. Большие же количества иодида свинца могут увлечь в осадок висмут. [c.277]

    Интересны химические методы, в которых для повышения чувствительности определения примесей в свинце используют концентрирование примесей, исходя из сравнительно высокой навески металла (200— 4ио г) и отделяя свинец от определяемых примесей в виде сульфата свинца. Фильтрат делят на группы и определяют отдельные элементы колориметрическими, полярографическими или весовыми методами [5, 6, 8]. [c.311]

    Берман использовала этот же метод [298] для определения свинца в крови и моче. Применимость метода была подтверждена экспериментами по обнаружению добавленного свинца. Кроме того, сравнивались результаты колориметрического и атомно-абсорбционного анализа нескольких образцов крови, содержащих свинец в широком диапазоне концентраций (в мкг/100 мл) [298]  [c.158]

    В продуктах производства обогатительных фабрик молибден определяют обычно весовым методом, основанным на образовании малорастворимого молибдата свинца. При работе по этому методу необходимо считаться с тем, что в растворе будут содержаться ионы sol (в резз льтате окисления сульфидной серы), которые также оседают в виде свинцовой соли. Поэтому надо строго соблюдать условия, при которых сульфат свинца удерживается в растворе,— создавать избыток ацетатов и хлоридов, повышающих растворимость сульфата свинца. Навеску в этом случае разлагают азотной и соляной кислотой, так как при щелочном сплавлении в раствор перейдет кремневая кислота, которая затем будет мешать ходу анализа и загрязнит осадок молибдата свинца. Если в пробе содержится свинец или большое количество кальция, то после обработки навески азотной и соляной кислотой следует выпарить раствор с серной кислотой для удаления свинца и большей части кальция в виде сульфатов. (При особо точных анализах необходимо проверять получаемые по ходу анализа осадки на содержание в них молибдена, для чего применяется колориметрический метод. Количество молибдена, определенное в осадках, суммируется с основным количеством его, определенным в виде молибдата свинца. [c.89]

    Практически установлено, что колориметрическому определению меди не мешают железо, марганец, и хром, цинк, свинец и др. в любых количествах, а также никель и кобальт при содержании соответственно до 10 и 20 жг в 1 мл. [c.210]

    Определение небольших количеств свинца в присутствии больших количеств железа, алюминия и других элементов затруднительно, поэтому предварительно свинец отделяют от большинства остальных катионов. Лучше всего выделять его на анионите ЭДЭ-Юп из двунормального солянокислого раствора с последующим колориметрическим определением. [c.244]

    Среди колориметрических методов определения свинца наибольшее распространение получил дитизоновый метод. Свинец отделяют от мешающих элементов экстрагированием дитизоном в четыреххлористом углероде или хлороформе в присутствии цитрата и цианида калия при pH 9,5—10 и определяют дитизонат свинца путем колориметрирования по методу смешанной окраски.  [c.261]

    Препятствующие анализу вещества. Железо, бериллий, галлий, медь и многие другие элементы образуют с ализарином окрашенные соединения фосфат и фторид образуют комплексы с алюминием кремневая кислота, -сурьма, висмут, свинец, олово, титан и ртуть образуют в условиях колориметрического определения алюминия белые осадки и поэтому мешают определению. [c.296]


    Свинец из осадка сульфата стронция можно выделить, превратив сульфаты в карбонаты и растворив последние в кислоте. Практически большее значение при колориметрическом определении следов свинца имеет отделение его посредством экстрагирования дитизоном в органическом растворителе (стр. 424) i.  [c.35]

    Колориметрический метод ASTM D 3348 предназначен для анализа в полевых условиях. Он пригоден для определения алкилов свинца всех типов в пределах концентраций РЬ от 2,64 до 26,6 мг/л. При анализе обнаруживается свинец, присутствующий в виде других органических и неорганических соединений. [c.209]

    В Государственной Фармакопее (X изд.) имеется специальная статья по колориметрии и фотометрии. Колориметрически определяют аммиак, алюминий, железо (П1), мышьяк (П1), свинец (II), хлор и питьевой воде и др. Из числа органических веществ можно отметить колориметрические определения в клинических анализах, например при анализе мочи, ацетона, формальдегида, мочевой кислоты, креати-нина, фенолов, витаминов А и С. [c.475]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Для колориметрического определения ртути применяются также дифенилкарбазид и дифенилкарбазон . В обоих случаях получается окрашенное в синий или пурпурный цвет производное дифенилкарбазона, переходящее в коллоидный раствор. Определению мешают цинк, свинец, медь, железо, хром, никель и кобальт, от которых ртуть надо нредвари- [c.255]

    Свинец определяют иодометрическим титрованием, отделяя его от висмута электролитически на аноде в виде РЬОг [25]. Предло.жено также колориметрическое определение свинца с дитизоном после хроматографического отделения на бумаге [26], [c.327]

    Колориметрические определения Ag, Hg, РЬ, 1п, Оа, Зе, Те, Со, Мп и В1 возможны также при соответствующих операциях отделения от мешающих элементов. Серебро и свинец следует определять по реакции с дитизоном [20], индий и галлий после экстракции соответственно с 8-ок-сихинолином [21] и люмогаллионом [22]. В лучах ультрафиолетового света возможно флуоресцентное определение индия и галлия с кверцети-ном [23] соответственно с чувствительностью 1 10 % и 5-10 %, выделив экстракцией вначале галлий из солянокислого раствора, а затем индий из раствора бромидов. Селен и теллур могут быть сконцентрированы в аммиачном растворе на гидроокиси железа и определены по цветным реакциям соответственно с 3,3 -диаминобензидином и бутилродамином Б. Определение кобальта возможно по реакции с нитрозо-К-солью, марганца по каталитической реакции с серебром в присутствии окислителя, а висмута по образованию комплекса с тиомочевиной. Ртуть также может быть определена фотоколориметрическим методом по реакции с дитизоном [20] или с тиураматом меди [24]. В последнем случае определению ртути мешает только серебро. [c.385]

    Уиллис [133] определял свинец в моче наряду с никелем, висмутом и ртутью, экстрагируя его в органический растворитель с использованием ПДКА. При добавлении свинца в образец его удавалось полностью обнаруживать методом атомной абсорбции. Для ряда образцов Уиллис получил хорошее соответствие с данными колориметрического метода. Кроме того, результаты определения свинца в экстрагированных образцах хорошо согласовались с результатами его определения в образцах, полученных методом озоления. [c.158]

    Свинец Отделение для последующего определения с помощью сульфарсазена в водах Колориметрическое определение в сурьмянистой бронзе Ш2ОН НС1, тартрат К — Na Сульфосалициловая кислота, тиомочевина, K4Fe( N)e Дитизон, СС14 Арсазен, бутанол [211] [212] [c.158]

    Свинец выделяют в виде сульфида, добавляя к исследуемой воде суспензию сульфида цинка таким образом свинец отделяют от железа, мешающего дальнейшему определению. Осадок растворяют в хлористоводородной кислоте (добавляя в конце растворения 1—2 капли азотной кислоты) и осаждают свинец в виде РЬСг04 или К2РЬ(Сг04)г- Растворив промытый осадок в хлористоводородной кислоте, определяют содержание хромат-ионов в полученном растворе или колориметрическим методом с дифенилкарбазидом, или иодометрическим титрованием. [c.163]

    Почти все методы, применяемые для определения калия, могут быть использованы и в данном случае. Для определения цезия, в отличие от рубидия, известно лишь несколько специфических методов. Один из них — гравиметрический или колориметрический метод с применением комплекса иодида висмута и калия (К2В1219). Сухой хлорид обрабатывают небольшим количеством уксусной кислоты или воды и добавляют реагент, содержащий 5 г В10з и 17 г иодида калия в 50 мл уксусной кислоты. Отфильтрованный осадок взвешивают в виде иодидного комплекса цезия и висмута (08361219). Свинец, натрий, калий, магний, литий, кальций, железо, алюминий, аммоний, сульфит- или сульфат-ионы на реакцию не влияют [54]. Более точное определение осадка может быть выполнено колориметрически при использовании дитизона [33]. [c.148]

    Осадок сернистых металлов промывают и, растворив в азотной кислоте (1 1), выпаривают с серной кислотой. Свинец обычным способом отфильтровывают и взвешивают в виде PbSO .Медь и кадмий осаждают вместе счастью цинка сероводородом в виде сернистых металлов. Их отфильтровывают, хорошо промывают, обливают на фильтре теплым раствором сернистого натрия, после чего оставшиеся на фильтре сульфиды обрабатывают разбавленной серной кислотой (1 10). При этом сернистые кадмий и цинк переходят в раствор [а сернистая медь остается на фильтре]. При не очень ответственных анализах фильтрат после обработки сернистым натрием можно употребить для определения сурьмы и олова. Лучше,, однако, воспользоваться для этого отдельной навеской, применяя приводимый ниже метод Blumentha Гя. Оставшийся на фильтре осадок растворяют вместе с фильтром в смеси азотной и серной кислот, после чего определяют в этом растворе медь либо колориметрически (см. т. П, ч. 2 вып. 1, стр. 371), либо, если содержание меди велико,—электролитически (см. там же, стр. 57). В сернокислом фильтрате, содержащем кадмий, этот последний отделяют от цинка двукратным осаждением на холоду из раствора,, содержащего 8% по объему серной кислоты определяется кадмий, как это описано при Кадмии (см. т. II, ч. 2, вып. 1, стр. 286), в виде сернокислого кадмия. Фильтрат от сероводородного осадка кипятят, для удаления сероводорода, окисляют бромом, охлаждают, пересыщают аммиаком и вновь нагревают до кипения. Выделившуюся гидроокись железа отфильтровывают, растворяют в соляной кислоте и, восстановив хлористым оловом, титруют марганцовокислым калием. Если железо хотят определить весовым путем в виде окиси, надо растворить Fe(OH)g в соляной кислоте, вторично осадить аммиаком, отфильтровать и прокалить осадок. Однако, если в материале присутствует алюминий, весовой метод неприменим, и железо, выделенное осаждением в виде гидроокиси, следу ет оттитровать [КМпО ]. [c.584]

    Если примеси в ртути содержатся в сравнительно больших количествах, то их определяют химическим анализом. Наиболее надежная и чувствительная методика определения примесей в ртути, основанная на использовании дифенилтиокарбазона (ди-тизона), была разработана Ю. И. Черниховым, ц В. Г. Горюши-ной 2 . Дитизон со многими металлами дает окрашенные в яркие цвета внутрикомплексные соединени я, хорошо растворимые в хлороформе, четыреххлористом углероде и друпих органических растворителях. С помощью дитизона можно определить свинец, висмут, цинк и серебро, если содержание каждого из них в ртути составляет не менее 2 10 % вес. Обязательным условием успешного проведения анализа является чистота исходных веществ дитизона, органических растворителей, реактивов, употребляемых для приготовления стандартных растворов, и дистиллированной воды, которая должна удовлетворять требованиям бидистиллята. В связи с большой чувствительностью реакции взаимодействия дитизона с ионами металлов все работы с ним, а также хранение реактивов и дистиллированной воды необходимо производить в посуде из трудно выщелачиваемого стекла пирекс, а еще лучше— в кварцевой или полиэтиленовой посуде. Все химические вещества, применяемые при анализе, должны быть проверены на содержание в них анализируемых металлов. Колориметрические сосудьв необходимо тщательно промывать сначала дистиллированной водой, а затем раствором дитизона до прекращения изменения окраски дитизона при встряхивании его в сосуде. [c.31]

    При восстановлении малых количеств мышьяка гипофосфитом натрия образуются окрашенные коллоидные растворы — б Большинство элементов, как, например, медь, железо, олово, висмут, алюминий, марганец, цинк, свинец, щелочные и щелочноземельные металлы, не мешают колориметрическому определению мышьяка гипофосфитным методом. Однако ряд элементов в этих же условиях или восстанавливаются до металла (серебро, ртуть и др.) или цр низших степеней окисления (молибден), или образуют окрашенные растворы (кобальт, никель, хром), в результате чего непосредственное колориметрическое определение мышьяка в присутствии таких элементов невозможно. В этом случае для отделения мышьяка от примесей применяют метод отгонки в виде А5С1д. [c.270]

    Другим недостатком этих методов является часто недостаточная устойчивость окрашенных органических продуктов. Мы упомянем здесь лишь несколько методов этого типа. Бензидин дает с перманганатом в кислом растворе быстро изменяющуюся сине-зеленую окраску с иридием (IV) в тех же условиях образуется синяя окраска. о-Толидин в кислом растворе окисляется золотом (III) с образованием желтой окраски многие другие сильные окислители вызывают ту же окраску. Свинец определяют, выделяя его электролизом в виде двуокиси и растворяя последнюю в уксуснокислом растворе тетраметилдиаминодифе-нилметана, дающего синий дифенилметановый краситель. Лейко-основание малахитовой зелени пригодно для определения зодои и иридия. Тетраметил-п-фенилендиамин предложен в качестве реактива для определения осмия. Дифениламин использован для колориметрического определения ванадия (V) " . Фенолфталиь (полученный восстановлением фенолфталеина цинком в щелоч-ном растворе) вместе с перекисью водорода дает розовую окра ску с очень малыми количествами меди. [c.132]

    Висмут в малых количествах (от 0,5 до 1 мг) отделяли от свинца, экстрагируя его хлороформенным раствором дитизона при рн = 2. Реакция при этой кислотности лротекает медленно Если применять раствор дитизона в четыреххлористом углероде, то висмут следует извлекать при pH 2,8—3,0. Извлечение висмута при pH = 3,0 не достаточно полно, однако его остается так мало, что он не мешает при последующем колориметрическом определении свинца При pH 3,6—4,0 свинец мало экстрагируется. Можно точно определить свинец в присутствии 5 мг висмута, если из раствора с относительно большой концентрацией цианидов экстрагировать весь свинец вместе с некоторой частью висмута и затем последний отделить при pH = 3,0 (стр. 436). Иногда отделяют свинец от висмута , встряхивая хлороформенный раствор дитизонатов с фталатным буферным раствором, имеющим pH ==3,4. Свинец переходит в водный раствор, висмут остается в хлороформе. При относительно больших количествах висмута немного его переходит в водный слой, из которого его можно затем извлечь дитизоном. [c.425]

    Сущность работы. Осадок карбоната кальция, выпадающи в результате прибавления в исследуемый раствор сначала хлорид кальция, а затем карбоната натрия, захватывает из этого раствор, ряд катионов, в том числе медь, свинец, серебро, цинк и др., и не которые анионы, например, УОГ, МоО( , МЬО . Этим и поль зуются для концентрирования соответствующих элементов. Мель чайшие частицы карбоната кальция обладают огромной поверхно стью захвата, и поэтому извлечение микроэлементов достигаете быстрее, чем при пользовании другими соосадителями. Осадо карбонатов легко растворяется в кислотах. Присутствие кальци обычно не мешает определению других элементов. Для того чтобь использовать минимальное количество коллектора — карбонат кальция, осаждение проводят в два приема. Сначала в раствор содержащий хлорид кальция, прибавляют половину того количе ства карбоната натрия, которое необходимо для полного осажде ния карбоната кальция. Затем добавляют остальное количеств осадителя (ЫагСОз), при избытке которого образуется быстро осе дающий осадок, и все количество коллектора (СаСОз) выпадае-на дно стакана. В осадке определяют содержание микроэлементов Медь определяют колориметрически в виде диэтилдитпокарбами ната (стр. 338). [c.350]


Смотреть страницы где упоминается термин Свинец, определение колориметрическое: [c.538]    [c.24]    [c.197]    [c.260]    [c.116]    [c.116]    [c.142]    [c.669]    [c.159]    [c.374]    [c.163]    [c.41]   
Количественный микрохимический анализ минералов и руд (1961) -- [ c.261 ]

Количественный анализ (0) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрическое определение



© 2025 chem21.info Реклама на сайте