Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен частичный

    Подогреватели с паровым пространством предназначаются для частичного испарения боковых погонов и остатков с низа ректификационных колонн. Как во всех испарителях, при нормальном режиме работы (В корпусе аппарата поддерживается определенный уровень жидкости, над которым имеется паровое пространство. Греющим теплоносителем в этих теплообменных аппаратах является водяной пар или подлежащие охлаждению горячие нефтепродукты. Греющий теплоноситель всегда проходит по трубкам. [c.195]


    Тепло, выделяющееся при синтезе из окиси углерода и водорода, может быть эффективно снято непосредственным теплообменом между реакционной смесью и маслом, циркулирующим через стационарный слой железного катализатора. В ходе первоначальных исследований по съему тепла маслом [271], проводившихся в Германии фирмой И. Г. Фарбениндустри и в США Горным бюро, были выявлены некоторые трудности при осуществлении такого процесса. Эти трудности связаны со спеканием частиц катализатора, что в свою очередь вызывало неравномерное распределение тока газа и жидкости в слое катализатора, перегревы, повышение сопротивления и перепада давления, разрушение катализатора. Эти осложнения частично были преодолены путем повышения линейной скорости охлаждающего масла, достаточного для обеспечения легкого непрерывного движения каждой гранулы железного катализатора (обычно плавленый и восстановленный магнетит) [7]. [c.528]

    Третий, основной, тепловой режим химических аппаратов — частичный теплообмен (частичный отвод или частичный подвод тепла). В этом режиме некоторая часть тепла реакции отводится (или, в случае эндотермии, подводится), но не в количествах, обеспечивающих полное выравнивание температуры. Данный режим можно считать наиболее общим, а адиабатический и изотермический — его частными случаями. [c.103]

    ИЗ рис. 149, этот аппарат представляет собой двухходовый с плавающей головкой (или и-образными трубками) пучок теплообменных труб, вмонтированных в куб с поперечной перегородкой. Подлежащая испарению жидкость поступает в аппарат снизу и, двигаясь вверх между трубками, нагревается и частично испаряется, а затем перетекает через перегородку и через нижний штуцер выводится из аппарата. Образующиеся пары отводятся через верхний штуцер. Допустимое рабочее давление в корпусе аппарата в зависимости от температуры среды составляет 10—40 ат, в трубах пучка 40— 60 ат, причем чем выше температура, тем ниже допустимое давление. [c.258]

    Ремонт теплообменных аппаратов, печей, сушилок. Ремонт теплообменных аппаратов включает подготовительные работы разборку выявление и устранение дефектов чистку труб и корпуса частичную замену труб смену уплотнений разборных со- [c.355]

    В нефтеперерабатываюшей промышленности наиболее распространен процесс сернокислотного алкилирования в разных вариантах. Тепло реакции может отводиться посредством охлаждения реакционной смеси через теплообменную поверхность или за счет частичного ее испарения. Соответственно имеется два типа реакторов. [c.83]


    Теплообмен в рабочей камере пламенных экзотермических печей. Источником теплоты в этих печах является пламя, продукты горения. Пламя, футеровка н нагреваемые исходные материалы обмениваются излучением. Роль конвекции при высоких температурах обычно невелика. Лучистый поток от пламени, падающий на поверхность футеровки и нагреваемый исходный материал, частично поглощается и частично отражается. Отраженный поток теплоты суммируется с собственным излучением исходного материала и поверхности футеровки. Вследствие частичной прозрачности, характеризуемой степенью черноты, пламя поглощает часть падающего на него потока, а часть пропускает. Таким образом, нагреваемый исходный материал приобретает теплоту за счет суммарной теплоотдачи от раскаленных газов и футеровки. Если нагреваемый исходный материал частично прозрачен для излучения, то в лучистом теплообмене участвуют глубинные слои материала и футеровки ванны печи. В теплообмене участвуют слои газов, находящиеся между пламенем, футеровкой и исходными материалами. [c.63]

    Следующим фактором, влияющим на теплообмен в радиационной секции, является излучение газовой среды, 8г.с. Радиационная секция трубчатых нечей обычно частично заполнена пламенем, которое образует поток газов, несущих раскаленные частички твердого вещества. Эти частички получаются в результате теплового разложения газообразных углеводородов вследствие их недостаточного смешения с воздухом перед нагревом и состоят из сажистого углерода. Их первоначальный размер находится в пределах от 0,006 до 0,061.1. Пламя при сгорании тяжелых жидких [c.65]

    Оба мероприятия эффективны, но в энергетическом отноще-нии недостаточно выгодны, так как вызывают увеличение аэродинамического сопротивления АВО. Если регулирование обеспечивает поддержание температуры /вых в определенном интервале Б результате изменения подачи охлаждающего воздуха, то замерзание теплоносителя может быть исключено применением рециркуляции нагретого воздуха на всасывании вентиляторов, уменьшением расхода охлаждающего воздуха через теплообменные секции, достигаемым частичным выбросом его в атмосферу через специальный воздуховод, оснащенный дроссельной заслонкой. [c.80]

    В этом отношении может показаться, что низкокалорийные газы имеют некоторое преимущество перед ЗПГ. С одной стороны, повышенная сложность установок для производства ЗПГ весьма часто приводит к большим потерям, к тому же синтез метана сопровождается образованием побочных продуктов, таких, как ароматические углеводороды и полукокс. С другой стороны, более высокий температурный уровень процессов получения низкокалорийных газов, если в них не предусмотрено сложное теплообменное оборудование для взаимной передачи тепла от печных продуктов и конечного газа, приводит к снижению коэффициента полезного действия, а образование, полукокса при термическом разложении может быть предотвращено при тщательной проработке конструкции подогревателя, что позволит избежать также дополнительных потерь тепла. Хотя в итоге высокотемпературные реформаторы и установки частичного окисления являются и менее сложными, чем оборудование для получения ЗПГ, требуемые капитальные затраты в обоих случаях одного порядка, особенно если их выразить в удельных капитальных затратах на единицу тепла. В действительности, как по тепловым потерям, так и по капитальным затратам технологические схемы производства низкокалорийных газов обладают незначительным преимуществом по сравнению с оборудованием для производства ЗПГ. [c.219]

    В зависимости от условий протекания процесса различают ре- жимы полной и частичной конденсации пара в трубах. В первом случае, при полной конденсации пара, из противоположного конца трубы вытекает только конденсат. Во втором случае, при частичной конденсации пара, на выходе из трубы течет парожидкостная смесь и теплообмен на всей длине трубы определяется закономерностями двухфазного потока. [c.139]

    Применяемая в химических, нефтехимических и родственных им производствах теплообменная аппаратура разнообразна как по своему функциональному назначению, так и по конструктивному исполнению. В химической технологии нашли широкое применение теплообменники для регенерации тепла жидких и газообразных сред, холодильники, предназначенные для охлажде ния среды каким-либо хладагентом, конденсаторы, работающие под избыточным давлением и в вакууме, и предназначенные для конденсации чистых паров и парогазовых смесей, дефлегматоры, применяемые для частичного выделения жидкой фазы из паровой или парогазовой смеси, испарители с паровым пространством и без него, используемые для испарения среды при ее кипении, и т. д. [c.335]

    В теплообменных трубах камеры охлажденного потока (31) происходят отделение капельной влаги совместно с дисперсной фазой масла и частичная конденсация паров влаги и масла. Жидкая фаза в виде эмульсии (или суспензии) [c.93]


    Достигаемая степень охлаждения зависит от начальной температуры воды, которая в зависимости от местных условий и времени года колеблется от 4 до 25° С. Мало изменяющуюся в течение года температуру (8—15° С) имеет подземная (артезианская) вода. Часто для охлаждения пользуются оборотной водой, т. е. водой, охлажденной в градирне. В этом случае нагретая в теплообменном аппарате вода поступает на охлаждение в градирню, после чего возвращается на охлаждение теплообменного аппарата. При пользовании оборотной водой свежая вода расходуется только на пополнение ее потерь вследствие частичного испарения в градирне. Оборотная вода имеет высокую температуру, достигающую летом 30° С. [c.422]

    В зависимости от способа получения газообразного водорода в нем могут содержаться различные примеси газообразные (Ог, N2, СН4, СО, Аг, СО2) и в виде капель или паров (масло и вода). Очистка водорода является важной составной частью процесса получения жидкого водорода. Все примеси, кроме гелия, становятся твердыми при температуре ожижения водорода. Они могут частично или полностью забивать теплообменную аппаратуру, вентили, задвижки и т. д. и, кроме того, отлагаясь на внутренней поверхности трубок теплообменников, уменьшают коэффициент теплопередачи. [c.54]

    Однако при частичной замене стальных элементов конструкции на алюминиевые возможно образование пар между алюминием и сталью, в которых алюминий будет являться анодом по отношению к стали. Поэтому при использовании в конструкции разнородных метал-ло в необходима ее катодная поляризация. Повышение (Коррозионной стойкости теплообменных аппаратов может быть достигнуто в результате нанесения на их поверхность неметаллических или металлических покрытий. [c.207]

    В зависимости от агрегатного состояния смешиваемых потоков теплообмен может осуществляться между средами, находящимися в парообразном (газообразном), жидком или твердом состоянии. Возможны различные случаи — теплообмен между несколькими газами (парами), газом и жидкостью, газом и твердым телом, жидкостью и жидкостью и т,д. В результате теплообмена может измениться состояние теплообменивающихся сред, например, пары частично или полностью сконденсируются, жидкость частично или полностью испарится и т.д. [c.590]

    К теплообменным аппаратам смешения относятся барометрические конденсаторы вакуумных колонн, предназначенные для конденсации водяных паров с целью уменьшения нагрузки вакуумсоздающего оборудования (вакуум-насосов, эжекторов). Схему включения и принципиальное устройство барометрического конденсатора рассмотрим на примере полочного конденсатора (рис, ХХП-25), В барометрический конденсатор поступает смесь газов и паров, состоящая из воздуха, продуктов разложения нефтяного сырья, водяных паров (которые были поданы в ректификационную колонну для технологических целей) и относительно небольшого количества нефтяных паров. Для конденсации и охлаждения этой смеси подается холодная вода, стекающая по перфорированным полкам при большом числе струй. Воздух в барометрический конденсатор попадает через неплотности аппаратуры и трубопроводов, находящихся под вакуумом, частично [c.590]

    Теплообмен в чистых жидкостях. Ранее отмечалось, что в барботажных колоннах реакционная теплота может отводиться или за счет частичного испарения жидкости, или через стенки тепло-66 [c.66]

    Неравномерность подвода тепла к параллельным каналам. Предшествующее обсуждение касалось преимущественно течений в одиночных каналах. В случае применения этих соотношений к теплообменной матрице с множеством параллельных каналов необходимо учитывать возможную разницу в подводе тепла между параллельными каналами, соединенными общими коллекторами. О влиянии такой неравномерности подвода тепла можно составить ясное представление, анализируя график на рис. 5.24, который иллюстрирует существующие условия в современном прямоточном парогенераторе, рассчитанном на давление 112 атм. Использована исходная кривая для отношения удельных объемов, равного И, т. е. для (у" — о ) и = 10 (см. рис. 5.21), когда подогрев эквивалентен 10% тепла испарения. График построен таким образом на исходной кривой с рис. 5.21 взяли точку с относительным расходом 1,0 и начали скользить вдоль кривой для 100%-ного содержания жидкости при этом на каждом расстоянии расход изменялся в число раз, равное изменению интенсивности подвода тепла относительно исходной кривой. Анализируя эти кривые, можно прийти к заключению, что при наличии неравномерности подвода тепла к каналам, работающим параллельно с одинаковыми потерями давления, статическая неустойчивость течения не должна возникать. Но некоторые каналы будут давать избыточное количество перегретого пара, в то время как другие будут подавать смесь пара и воды. Несмотря на то, что течение будет устойчивым, будет происходить перегрев стенок некоторых каналов частично ввиду повышенной температуры пара и частично ввиду более низкого местного коэффициента теплоотдачи. Поскольку избыточно перегретый пар генерируется в каналах с большим тепловым потоком, разность температур стенки канала и пара будет более высокой в горячих каналах. Два этих эффекта в совокупности могут привести к перегреву отдельных каналов до 100—150° С. [c.114]

    Характеристики теплоотдачи и аэродинамическое сопротивление. Для сравнения характеристик теплоотдачи матриц различной геометрии была проведена большая работа, в результате которой характеристики теплоотдачи и аэродинамического сопротивления представлены в относительном виде. К сожалению, подобные сравнения носят довольно беспорядочный характер, а выводы редко являются окончательными. В общем случае рост турбулентности потока вследствие волнистости ребер, установки оребрения жалюзийного типа или прерывистых ребер (см. рис. 2.7—2.9 и 2.11 и 2.13) увеличивает коэффициент теплоотдачи при заданном расходе газа, однако при этом возрастает также и мощность на прокачку газа. Фактически, как правило, увеличение мощности на прокачку газа больше дополнительно снимаемого тепла, поскольку возрастание турбулентности лишь частично стимулирует теплоотдачу, а в основном рождаются неэффективные вихри. Если располагаемая величина затрат мощности на прокачку фиксирована, а объем матрицы выдерживается минимальным, то характеристики, близкие к оптимальным, обеспечивает матрица с аэродинамически гладкими сплющенными трубами и плоскими пластинчатыми ребрами (см. рис. 11.1 и правую часть рис. 11.3). Если же определяющим фактором является вес или стоимость теплообменной матрицы, то удобно применять умеренно турбулизирующие поток устройства для увеличения коэффициента теплоотдачи с газовой стороны и уменьшения тем самым величины требуемой теплообменной поверхности. [c.209]

    Из газового потока при изменении направления движения на 180 или 90 происходит частичная сепарация твердой и жидкой фазы, улучшаются условия и для диффузии тяжелых углеводородных соединений к катализаторной поверхности перегородок. Степень очистки вентиляционных выбросов достигает 90%, однако с ростом концентрации возрастает и процент степени очистки, и в этом случае вместо сетчатых катализаторных перегородок (5) можно устанавливать пластинчатые теплообменные элементы. В эти теплообменные элементы можно подавать теплоноситель-хладагент для рекуперации тепла процесса окисления и поддержания оптимального температурного режима работы катализатора, нанесенного на его внешнюю поверхность. [c.305]

    Более заметное термодинамическое воздействие испытывают нефти при движении по подземным трубам скважин. В процессе добычи в скважине, по мере удаления от забоя и приближения к устью, происходит охлаждение нефти и нарушение ее агрегативной устойчивости. Основной причиной снижения температуры нефти является теплообмен между стенкой трубы и более холодной окружающей ее породой. Менее существенно, но влияет на снижение температуры нефти также ее частичное разгазирование в результате снижения давления в системе по мере приближения к устью скважины. Было установлено /55/, что доля снижения температуры в скважинах из-за разгазирования в промысловых условиях составляет 23-37 % от общего изменения температуры в скважине. Разгазирование изменяет состав нефти, что также сказывается на растворимости в ней твердых компонентов. [c.120]

    Кожулотрубчатые теплообменные аппараты с температурным компенсатором. В этих аппаратах для частичной компенсации температурных напряжений используют специальные гибкие элементы (расширители, компенсаторы), расположенные на корпусе. [c.570]

    Выше упоминался теплообмен между 1 ходящим и выходящим потоками. Такой теплообмен щироко используют в промышленных реакторах для того, чтобы перогвести их работу полностью или частично на автотермический режим и, следовательно, снизить количество энергии, потребляемой из других источников. Например, при синтезе аммиака холодный исходный газ пропускают через трубки, находящиеся в слое катализатора. При этом его температура повышается настолько, что при прохождении газа через катализатор скорость реакции оказывается достаточной для осуществления экономичного процесса. [c.165]

    В холодный период года возможно переохлаждение и замерзание конденсата на выходе из теплообменных секций и в застойных зонах. При невозможности обеспечения на АВО экономичного и эффективного регулирования в практике обычно используют специальные щиты для уменьшения расхода воздуха на тех теплообменных секциях, где отмечается тенденция к замерзанию теплоносителя. Хорошие результаты дает частичное жалюзирование поверхностей со смещением зоны активной конденсации в сторону выхода продукта, тем самым сокращается путь конденсата и уменьшается возможность его переохлаждения. [c.109]

    На блоках риформинга с непрерывной регенерацией катализатора установки предварительной гидроочистки работают при более высоких объемных скоростях (6-8 ч 1) на более эффективном катализаторе (8-12). Между установками каталитического риформинга, работающими под низким давлением, и гидроочистки необходимо установить дожимные компрессоры для повышения общего и парциального давлений и циркуляции ВСГ. Дело в том, что прямогонные и особенно вторичные бензины растворяк1т кислород при контакте с атмосферой в негерметичных резервуарах. При поступлении бензинов с растворенным кислородом воздуха на горячую поверхность легированных теплообменников бензины окисляются с образованием оксикислот и смол. Частичная циркуляция ВСГ на блоке гидроочистки увеличивает содержание в нем сероводорода, который, окислясь до ЗОг, уничтожает пероксидные соединения бензина и предотвращает осмоление теплообменной аппаратуры, и печей. [c.183]

    После реактора П1 ступени 4 газопродуктовая смесь охлаждается в теплообменнике 11, холодильниках 19, 24 и направляется в сепаратор 28, откуда ВСГ поступает на прием компрессора Зй, а. катализат с растворенными газами забирается насосом и через теплообменник подается в колонну стабилизации 15. Стабилизационная колонна обогревается путем циркуляции риформата через печь 8-. Углеводородные газы с верха колонны через холодильники-конденсаторы 20 и 25 поступают в емкость 30, Сжиженный газ из 30 частично возвращается на орошение колонны, балансовый избыток выводится на газофракционированиеГНеконденсирующиеся газы выводятся в топливную сеть. Стабильный риформат охла.ждается в теплообмен- нике 12, холодильниках 21, 26 и выводится в товарный парк. Все трубчатые печи установки скомпонованы в единый блок с котлом-утилизатором. [c.134]

    Теплообмен излучением. Под теплообменом излучением понимают процесс переноса тепла, обусловленный превращеннем энергии движения молекул тела в лучистую энергию. Количество излучаемой энергии определяется температурой тел.а, состоянием его поверхности, свойствами тела. Излучаемая нагретым телом энергия передается другим телам. При этом часть лучистой энергии частично отражается от поверхности тела, ее воспринимающего, частично поглош,ается телом, а частично проходит сквозь тело. Поглощенная лучистая энергия превращается вновь во внутреннюю энергию, т. е. дет на гювышение температуры тела. [c.150]

    Аппарат состоит из корпуса (8) со штуцерами (7, 36 и 33), трубными решетками (10 и 6), в которых закреплена вихревая поперечно-оребренная труба нагретого потока (5) с ВЗУ (34) (имеющим диафрагменное отверстие — на рисунке не показано), соединяющим ВТ с трубой охлажденного потока II. Межтрубное пространство корпуса оснащено перегородками (9), к корпусу (8) на фланцах присоединены снизу — камера нагретого потока (4) с каплеотбойным устройством (3) на конце ВТ и штуцером (45), сверху подсоединена камера охлажденного потока (31) с трубными перегородками (18 и 13) по торцам камеры, в которых закреплены поперечно-оребренные трубы (32) с завихрителями (19) на входных концах, в нижней части камеры установлена дополнительная трубная перегородка (16), в которой кроме теплообменных труб (32) закреплен конец ВТ охлажденного потока (II), труба имеет внутри сепарационно-плавильной камеры разрыв (15). Камера (31) в межтрубном пространстве имеет перегородку типа диск-кольцо (30) и на корпусе — штуцер (17). Сверху камеры охлажденного потока установлена крышка (29) со штуцером (20), внизу камеры охлажденного потока находится распределительная камера, образуемая перегородкой (13), трубной решеткой (10) и корпусом (8), в камере установлена сепарационная тарелка (25) (см. выноску А), имеющая ниппели (24), которые входят в выходные концы теплообменных труб (32) с небольшим кольцевым зазором тарелка (25) у корпуса (8) имеет отверстия (26). Через все трубные перегородки (18, 13, 10 и 6) и камеру нагретого потока (4) пропущена труба (27), имеющая на уровне перегородок и низа камеры (4) инжекционные устройства (2), представленные на выноске А и состоящие из диффузорно-конфузорного элемента (23), щелей (22) на трубе и сопла (21). Труба (27) для удобства монтажа и эксплуатации может быть установлена и снаружи аппарата с соответствующими выводами из аппарата. Штуцер (17) трубопроводом (14) соединен со штуцером (7). Для отбора очищенного и осушенного газа различного уровня давления предусмотрены штуцер (45), соединенный через инжекционное устройство (43) и вентиль (38) с выходом штуцера (36) трубки (37) для вывода всего потока через вентиль (42) или раздельно охлажденного через вентиль (35), а нагретого — через вентиль (42). По схеме весь поток соединен через вентиль (41) инжекционного устройства (40) с подпиткой исходного газа через вентиль (39) с компрессором К. Возможен вывод и частично осушенного газа после теплообменных труб (32) через вентиль (33). [c.93]

    Во многих реально существующих теплообмен 1П1ках действительное течение оказывается частично перемешанным, хотя при наличии высоких ребер на трубах и при тесной упаковке труб эти ребра будут играть роль устройств, расслаивающих течение, и течение по своему характеру приблизится к неперемешанному. [c.57]

    Достоинством воздуха как охлаждающего агента, является его доступность. Он практически не приводит к зафязнению наружной поверхности охлаждения. К недостаткам этого агента по сравнению с водой можно отнести сравнительно низкий коэффициент теплоотдачи со стороны воздуха, который можно скомпенсировать значительным оребрением наружной поверхности теплообменных труб сравнительно низкая теплоемкость [1,0 кДж/(кг К) , вследствие чего массовый расход воздуха в 4 раза превышает расход воды существенные колебания начальной температуры воздуха, обусловливаемые геофафическим местом расположения установки, временем года, а также временем суток. В стандартных аппаратах воздушного охлаждения предусматривается возможность частичного (на несколь- [c.597]

    Коэффициенты теплоотдачи при кипенни и испарении существенно зависят от вида поверхности и структуры двухг1)азного потока, а также и от других факторов, влияющих на конвективный теплообмен. Скорость потока н его структура в большой степени определяются конструкцией аппарата и расположением патрубков. Кроме того, тепловой поток с поверхности не может превышать определенных значепий при приемлемых разностях температур поверхности и 1ас1) щения. Любая попытка превысить эти максимальные значения за счет увеличения температуры поверхиости приведет к частичному или полному образованию на поверхности паровой пленки и резкому снижению теплового потока. Коэффициенты теплоотдачи, приведенные в таблице, применимы только для очень приближенных оценок в случае использования прямых труб или труб с невысокими ребрами без специального увеличения числа центров парообразования. АТ н, max равно максимально допустимому перепаду температур поверхности и насыщения. В таблице не учитываются различия между тинами парогенераторов. [c.14]

    Еоли расчетная разность температур кожуха и труб превышает указанную, используют теплообменные аппараты с частичной (тип К или ПК) или полной (тип У или П) компенсацией температурных напряжений. [c.11]

    Кожухотрубчатые теплообменные аппараты с витыми трубками используют в нефтегазопереработке для теплообмена между средами, одна из которых находится под высоким давлением. На рис. XXII-8 показан аппарат, предназначенный для охлаждения и частичной конденсации природного газа. Теплообменник представляет собой цельносварную конструкцию, состоящую из кожуха 1, трубных решеток 2, в которых закреплены медные или стальные трубки 3, спирально накрученные на сердечник 4. Сердечник выполняет роль катушки для навивки труб и одновременно используется как несущая деталь, разгружающая корпус и трубные решетки. Природный газ под давлением до 5 МПа и с температурой 4-70 °С движется внутри трубок, а метановая фракция при температуре — 42 °С и давлении 4,2 МПа подается в межтрубное пространство. [c.572]

    Выше отмечалось, что реакция алкилирования протекает со значительным положительным тепловым эффектом. Тепло реакции отво-дитсядвумя споссбами 1) охлаждением реакционной смеси через теплообменную поверхность 2) охлаждением смеси частичным ее испарением. Соответственно имеется два типа реакторов. [c.335]

    Необходимо отметить, что гидроочистка продуктов, содержащих значительные количества непредельных углеводородов, например таких, как фракции бензина термического крекинга или коксования, сопровождается значительными тепловыделениями (до 100 ккал/ч). В результате в теплообменной и нагревательной аппаратуре происходит частичная полимеризация непредельных углеводородов и на катализаторе отлагается кокс. Поэтому в ряде случаев первую ступень гидроочистки непредельных бензинов целесообразно проводить в смеси с пряыогоннымн фракциями или раз- [c.81]

    Зигель и Норрис [37] исследовали теплообмен посредством естественной конвекции в частично замкнутых пространствах между вертикальными параллельными пластинами, а Глоб и Дропкин [38] — в жидкостях, заключенных между двумя горизонтальными пластинами, подогреваемых снизу. Обзор проблем, связанных с естественной конвекцией в горизонтальных слоях теплоносителя, подогреваемого снизу, приводится Острахом [39]. На основании этих и аналогичных теоретических и экспериментальных работ становится ясно, что число Грасгофа является важным параметром, связывающим тепловой поток с размерами системы и свойствами теплоносителя. Этот параметр определяется следующим образом  [c.65]

    Общий подход к проектированию радиаторов типа NaK — воздух для опытных систем с реактором, предназначенным для авиации, весьма близок к принципу проектирования теплообменника типа расплавленная соль — NaK, рассмотренному в предшествующем разделе. Специфические проблемы, характерные для радиатора типа NaK — воздух, частично обусловлены значительно большими разностями температур между двумя теплоносителями, особенно на входе воздуха, и частично большим различием в значениях коэффициентов теплоотдачи, что требует развития теплообменной поверхности с воздушной стороны. Было проведено сравнение характеристик многих типов теплообменных матриц, которые могли быть использованы в данных целях. Результаты этого сравнения довольно сложно привести в настоящей главе. Был рассмотрен широкий диапазон диаметров труб и их шагов, шагов ребер и в каждом случае оценивались характеристики матрицы. Основными критериями при оценке являлись вес, объем, число соединений труб с коллектором, перепады давлений как со стороны NaK, так и с воздушной стороны, необходимые для обеспечения достаточно эффективного теплообмена при заданных скоростях течения обоих рабочих тел. Здесь достаточно сказать, что из рассматривавшихся четырех основных конфигураций матриц была выбрана представленная па рис. 14.12 комбинация круглых труб с плоскими ребрами. Эта матрица дает наилучшие характеристики агрегата в целом. Кроме того, она и в других от1юшениях (именно, в смысле эффективности теплообмена, технологичности li изготовлении, веса и способности противостоять термическим напряжегшям) [c.281]

    Когда температура охлаждаемой среды превышает температуру кипения воды при атлюсферном давлении, охлаждение проводят при частичном испарении воды, что позволяет снизить расход воды иа охлаждение. Такое испарительное охлаждение является по существу ие только теплообменным, но и массообменным процессом. [c.324]


Смотреть страницы где упоминается термин Теплообмен частичный: [c.84]    [c.167]    [c.211]    [c.112]    [c.611]    [c.567]    [c.198]    [c.136]   
Введение в моделирование химико технологических процессов Издание 2 (1982) -- [ c.192 ]




ПОИСК







© 2025 chem21.info Реклама на сайте