Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромат натрия как реагент

    Медь предварительно экстрагируется из водных растворов хромата натрия и калия ацетилацетоном, который в данном случае одновременно играет роль и комплексообразующего реагента и растворителя. При pH 3 процент экстракции равен 90% .. Методика экстракции заключается в следующем к рас- [c.120]

    Принципиальная схема производства перхлората аммония обменной реакцией между перхлоратом натрия, аммиаком и соляной кислотой приведена на рис. 8-13 [5]. При проведении процесса особые требования предъявляются к чистоте исходных реагентов и растворов во избежание накопления загрязнений в производственном цикле. Растворы перхлората натрия, поступающие на обменное разложение, подвергаются тщательной очистке от примеси хроматов, тяжелых металлов и хлоратов. [c.451]


    Анализ спиртов основан на количественном превращении их в летучие, плохо растворимые в воде алкил-нитриты и принят в судебно-химической практике СССР в качестве официального. Реакция проводится в стеклянных флаконах (типа пенициллиновых). 0,25 мл 30%-ного водного раствора нитрита натрия вводят в смесь 0,5 мл 50%-ного раствора трихлоруксусной кислоты и 0,5 мл исследуемого раствора, находящуюся в герметически закрытом сосуде. Через 1—2 мин после смешения реагентов, когда образовавшиеся эфиры азотистой кислоты практически полностью выделятся из концентрированного водного раствора трихлорацетата натрия, газовая фаза из реакционного сосуда вводится в хромато- [c.136]

    Карбонильные производные. Окисление первичных и вторичных спиртов приводит соответственно к альдегидам и кетонам. Классическим способом проведения этой реакции является окисление при помощи хромовых производных, из которых наиболее часто используют хромовую кислоту или би-хроматы калия или натрия в присутствии серной кислоты. В таблице представлены различные комплексы хромовой кислоты, используемые в качестве селективных реагентов. [c.356]

    Состав осадков основного хромата цинка, полученных при использовании бихромата натрия в качестве реагента [c.180]

    Термостойкость неминерализованных буровых растворов определяется не только типом применяемых для обработки химических реагентов понизителей водоотдачи или вязкости и составом твердой фазы, но и в ряде случаев.от наличия в системе специальных добавок, которые сами по себе, т. е. без реагентов-понизителей водоотдачи или вязкости, не оказывают сколько-либо заметного влияния на вязкостные и фильтрационные свойства буровых растворов. К таким добавкам в основном относятся хроматы и би-хроматы натрия и калия. (Хромовые соли калия по стоимости значительно выше, а по действию аналогичны натриевым солям.) Применение метода раздельного введения хромовых солей в буровой практике Советского Союза началось в начале 60-х годов по предложению Э. Г. Кистера и быстро получило широкое распространение. Наиболее важные химические свойства хроматов — сильная окислительная способность с восстановлением шестива-лентного хрома до трехвалентного и склонность к интенсивному комплексообразованию. Окислительные свойства хроматов зависят от pH среды, наличия восстановителя и температуры. Особенно, как указывает Э. Г. Кистер, в присутствии сильных восстановителей хроматы могут окисляться в нейтральной и даже слабощелочной среде. При нагревании восстановление хроматов усиливается и проявляется даже при высоких значениях pH. Заметно ускоряется этот процесс при 80 С, а при 130—150 С достигает максимума (кривая зависимости выполаживается). [c.176]


    В конце 50-х годов в штате Техас (США) стали популярны растворы, содержащие 1—2% бентонита, 9—12% соли, 0—25% нефти, 0,3% крахмала и 0,15—0,30% смолы гуар, от О до 0,07% антисептиков, 0,15% хроматов натрия и 2,5% эмульгатора от объема добавленной нефти [68]. Как щелочной компонент для доведения pH раствора до 8 зачастую применялась известь. Водорастворимая смола гуар (реагент ло-лос — глава IV) являлась одновременно загущающей добавкой и реагентом, усиливающим действие крахмала. Хроматы в этой рецептуре применялись как антикоррозионное средство. Эмульгатором служил полиоксиэтилированный нонилфенол (реагент DME). Раствор указанного состава имел эффективную вязкость около 5—12 спз, 0СТ близкое к нулю, водоотдачу не более 10 мл. С его помощью механические скорости возрастали на 30—41%, колеблясь в пределах 2,1—9,1 м/ч. Проходки на долото повысились на 24-50%. [c.328]

    Бихромат натрия ЫагСг407-2Н2О — красновато-оранжевые кристаллы. Токсичен при попадании в пищеварительные и дыхательные пути оказывает сильное раздражающее действие на слизистые оболочки. Получается из хромитовых руд, а также действием серной кислоты на хромат натрия. В щелочных растворах бихромат натрия превращается в хромат. Применяется как компонент хромлигносульфонатных и хром-лигнитных композиций для повышения термостабильности и для предотвращения коррозии в сильно минерализованных буровых растворах. Концентрации от 0,3 до 76 кг/м . В последние годы потребление бихромата натрия снизилось из-за внедрения более эффективных ингибиторов коррозии и повышенного внимания к токсичности химических реагентов. Потребление в 1978 г. составило 2000 т. [c.496]

    Впрыскивание реагента. Из емкости 14 впрыскивается водный раствор гидро-эксида натрия, объем которого равен объему анионита. При этом происходит десорбция адсорбированных на анионите ионов двухромовой кислоты и образуется раствор Хромата натрия. [c.93]

    Пользуясь таблицей произведения растворимости, определить, какими из нижеследующих реагентов хромат натрия Na2 r04, сульфид натрия NajS, иодид натрия Nal, гидроксид натрия NaOH—можно полнее осадить ионы серебра из раствора нитрата серебра. [c.135]

    Перед осаждением основного хромата цинка из бихромата натрия последний переводили в хромат натрия путем потенциометрического титрования раствором NaOH. Состав осадков основного хромата щинка, полученных яри использовании в качестве исходного хромсодержашего реагента бихромата натрия, приведен в табл. 8. [c.180]

    Составные части шихты и кислород газовой фазы образуют гетерогенную систему. Скорость реакции в такой системе зависит от развития межфазной поверхности. Поэтому большое значение имеет тонкость помола хромита. То обстоятельство, что сода находится в жидкой фазе, значительно ускоряет процесс, — в этих условиях частицы хромита смачиваются расплавом, содержащим соду, и реакционная поверхность увеличивается во много раз. Правда, при наличии жидкой фазы, обволакивающей твердую частицу, газообразный компонент должен диффундировать через пленку жидкости. Тем не менее наличие ограниченного количества жидкой фазы сильно ускоряет процесс. При большом же количестве жидкой фазы происходит спекание шихты, налипание ее на стенки печи, что мешает ее продвижению, затрудняет доступ кислорода к реагирующим частицам руды из-за слипания их в крупные комья. В результате этого процесс сильно замедляется, и выход хромата понижается При относительно низких температурах, когда количество расплава в шихте невелико, происходит, по-видимому, непосредственное окисление окиси хрома газообразным кислородом выше же 900° окисление идет с участием расплава, в котором возрастает содержание реакционно-способных частиц — ионов кислорода, образующихся в результате диссоциации карбоната и хромата натрия и при посредстве промежуточных веществ — феррата (IV) и, вероятно, перекиси натрия. При большем содержании окиси железа в шихте ее положительное влияние, как передатчика кислорода через феррат(IV) натрия уменьшается и не компенсирует ухудшение процесса вследствие уменьшения концентрации основных реагентов — СггОз и МагСОз при этом затрудняется и образование феррата натрия [c.580]

    Таким образом, промывочные жидкости, обработанные гумат-ными реагентами, в результате добавления к ним хроматов или бихроматов натрия или калия не только п1шобретают термостойкость, но и более положительно влияют на устойчивость стенок скважин, сложенных глинистыми породами. Однако гуматно-хромнатриевые промывочные жидкости к системам, оказывающим крепящее действие, не относятся. [c.53]

    Исследованиями В. Д. Городнова и Т. В. Изумрудовой установлено, что активация сульфатного щелока достигается введением в него солей хромовых кислот при температуре 90—95° С. При этом получаемые препараты обладают более выраженной стабилизирующей способностью и термостойкостью, чем сульфатный щелок. Получение препаратов ХСЩ осуществляется следующим образом. В нагретый сульфатный щелок при перемешивании вводится 2—4% хромата или бнхромата натрия или калия. Реакция продолжается 1,2—2,0 ч и сопровождается загущением смеси. При достижении вязкости смеси, равной 100—120 сПз, она сливается в П0ДД0Н1.Г слоем толщиной 10—15 см. При атмосферных условиях через 6—10 ч препарат затвердевает и уже через 16—20 ч подвержен диспергированию до порошкообразного состояния, не слеживающегося при хранении. Препараты с 2% бихромата калия названы ХСЩ-2, с 3% — ХСЩ-3 и с 4% — ХСЩ-4. Большие добавки бихромата (до 10%) мало улучшают качество полученного реагента, повышая его стоимость. Данные о влиянии полученных препаратов ХСЩ на свойства промывочных жидкостей приведены в табл. 72. [c.160]


    Исследованиями Э. Г. Кистера и Д. Е. Злотника показано, что добавки гипана к неминерализованной промывочной жидкости повышают ее термоустойчивость примерно до 250° С. Однако добавки гипана вызывают значительное загустевание промывочной жидкости. Для предотвращения загустевания при низких температурах па забое скважины наряду со снижением содержания твердой (особенно глинистой) фазы часто необходимо применение реагентов-понизителей вязкости. Весьма эффективны в этих случаях лигниновые препараты — нитролигнин, сунил, игетан. При температуре забоя скважины более 80° С загустевание промывочной жидкости, стабилизированной гипаном, легко устраняется добавлением небольших количеств хроматов или бихроматов натрия или калия. [c.162]

    В качестве проявителей обычно используют групповые реагенты — иодид, хромат, гексациано-(П1)феррат калия, сульфид натрия, дитизон, ализарин-С, арсеназо и другие вещества, образующие с Определенными группами ионов окрашенные в различные цвета соединения. В некоторых случаях целесообразно применять смесь проявителей или обрабатывать осадочную хроматограмму последоватеяьно несколькими проявителями. [c.232]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Защита охладительных систем двигателей внутреннего сгорания (дизели, автомобили) сопряжена со значительными трудностями по следующим причинам системы содержат ряд разнородных в электрохимическом отношении металлов и сплавов (сталь, цинк, латунь, припой, чугун, алюминий) имеют много щелевых зазоров и застойных мест работают при высоких температурах и подвергаются часто эрозионному воздействию и кавитации. Все эти факторы сильно затрудняют подбор ингибиторов. Не представляет труда, как было показано выше, защитить от коррозии сталь или чугун, а также биметаллические системы сталь — медь, однако при наличии в системе алюминия, эксплуатация которого возможна лишь в узком интервале pH, применение щелочных реагентов, хорошо защищающих черные металлы, исключается. Наличие латуни также вносит свои трудности, поскольку медь со многими органическими соединениями, в особенности с аминами, образует легко растворимые комплексные соединения. Особенно трудно защитить от коррозии припой (Pb/Sn — 70/30) так, нитрит натрия, который является хорошим ингибитором для стали, разрушает припой, т. е. самостоятельно применяться не может. Положение осложняется еще и тем, что наличие в системе разнородных в электрохимическом отношении металлов приводит к катодной поляризации одних металлов и анодной поляризации других. Поэтому при определенном общем потенциале, который устанавливается в "системе или на отдельных электродах, некоторые ингибиторы, которые обычно в присутствии одного металла не восстанавливаются, могут восстанавливаться, теряя свои защитные свойства. Этот процесс, например для хроматов, усиливается при наличии в воде органических соединений (уплотнителей органического происхож- [c.269]

    Неорганические соединения, применяемые для обработки буровых растворов, в зависимости от их природы и назначения можно разделить на четыре группы. К первой относятся щелочные реагенты многофункционального действия — едкий натр и кальцинирований сода, имеющие наибольшее распространение. Вторая группа неорганические реагенты полимерного характера— силикаты натрия, хроматы и изополихроматы, конденсированные фосфаты и соединения, близкие к ним. Третья группа включает в себя реагенты вспомогательного назначения известь и другие содержащие ее продукты, хлористый кальций, гипс и некоторые другие. Эти вещества являются более или менее активными коагуляторами глинистых суспензий и применяются Для ингибирования [c.97]

    Применение хроматов (главным образом бихромата натрия) составляет в СССР около 2 тыс. т и имеет тенденцию к дальнейшему росту. Хроматы используют как для раздельной обработки буровых растворов, так и для производства хромлигносульфонатов. Хроматы применяются и при невысоких забойных температурах, зачастую до 50° С. При этом в некоторых случаях вместо разжижающего они оказывают загущающее действие, обусловленное коагулирующим влиянием соединений шестивалентного хрома. Подобное действие может быть и при высоких забойных температурах в случае введения избытка хроматов, приводящего к глубокому окислению защитных реагентов и коагуляции избытком добавки, оотавшейся в анионной форме. [c.110]

    НАТРИЯ ХРОМАТ БЕЗВОДНЫЙ, Na, iOi. Мол. вес 162,00. Имеется патент llhia применение этого реагента в смеси уксусной кислоты и уксуеиого ангидрида для окисления Д -стероидов в [c.425]

    При введении хромат-ионов извлекается хромовокислый диантипирилметан (по-видимому, в виде бихромата). Можно было предполагать, что наличие в хлороформном слое ионов диантипирилметания должно уменьшить диссоциацию хромовокислой соли реагента и тем самым способствовать более полному извлечению хрома. Мы попробовали создать условия, при которых в хлороформном слое оказалось бы значительное количество ионов диантипирилметания. Для этого в сернокислый раствор были введены ионы хлора в виде хлорида натрия. Введение последнего привело к тому, что образовавшаяся соляная кислота дала с диантипирилметаном хорошо растворяющуюся в хлороформе соль и тем самым способствовала экстракции хрома (рис. 3, кривая 2). Введение ионов хлора сдвинуло максимум извлечения в сторону меньших кислотностей, что также находится в соответствии с высказанной точкой зрения. Определение малых количеств хрома заканчивается колориметрированием хлороформного слоя. При больших ко.личествах рекомендуется предварительное проведение реэкстракции хромат-ионов разбавленным раствором щелочи. [c.139]

    Кислород из газометра под небольшим давлением по трубке 1 поступает в предварительный обогреватель 2, где происходит сгорание следов содержащихся в нем примесей органических веществ, затем он проходит через широкую трубку 3 с твердым едким кали для поглоще ния воды и двуокиси углерода, после чего для окончательной очистки и кондиционирования его пропускают через регулятор давления 4 и небольшой поглотительный аппарат 5. В последнем находится слой де-гидрита (тригидрат перхлората магния), поглощающий воду, слой аска-рита (едкий натр на асбесте), поглощающий двуокись углерода, и вновь слой дегидрита, чтобы поддерживать выходящий газ в тех же условиях, что и входящий. Затем кислород под небольшим давлением поступает в трубку для сожжения 6 и проходит через нее с определенной скоростью, регулируемой с помощью аспиратора 12. Печь для сожжения 6, как и предварительный обогреватель 2, нагревается при помощи электрических обмоток, объединенных в секции. Часть трубки для сожжения, обогреваемая в печи 8, заполнена в основном окисью меди, перед которой помещен слой хромата свинца для поглощения окислов, серы. За слоем окиси меди находится слой двуокиси свинца для связывания окислов азота. Этот реагент должен находиться при определенной температуре, отличающейся от температуры печи, что достигается-помещением этой части трубки для сожжения в жидкостной нагреватель 9, заполненный жидкостью с подходящей температу рой кипения (цимол СюНн). У выхода из трубки для сожжения помещают слой серебряной сетки или проволоки (ваты) для поглощения галоидов. [c.19]

    В настоящем исследовании. исходными реагентами ДЛ Я получения основных хроматов щинка служили хромат калия, хлорид цинка и едкий натр. [c.175]

    Была также лэучена возможность использовашия маточных раютворав в цикле и применения для. получения основного хромата цинка в качестве исходного реагента бихромата натрия. [c.175]

    Щелочной хромат, образующийся в процессе спекания или сплавления, восстанавливают до хрома(И1) при pH 4—5 при помощи сульфита натрия, добавляют ЭДТА, кипятят раствор с избытком реагента не менее 20 мин. Образующийся комплекс очень устойчив, растворы подчиняются закону Ламберта—Бера до концентраций по крайней мере 12 мг Сг в 100 мл или 120 мкг/мл (рис. 36). [c.189]

    Ре ", Zn , N1 +, Со " " и другие, при определенных pH раствора образуют с 8-оксихинолином хорошо фильтрующиеся кристаллические осадки, при растворении которых в кислотах (например, соляной кислоте) выделяются стехиометрическне количества 8-оксихинолина. Последний, естественно, легко можно титровать электрогенерированным бромом [566—569]. Если принять во внимание, что 1 ммоль двухвалентного металла в осадке оксихинолината требует 8 мэкв брома, а 1 ммоль трехвалентного металла—12 мэкв брома, то открываются широкие возможности определения милли- и микрограммовых количеств различных катионов, образующих внутрикомплекс-ные соединения с указанным реагентом. Такой способ сводится к осаждению катиона избытком 8-оксихинолина, растворению отмытого от свободного реагента осадка в кислоте и последующему кулонометрическому титрованию выделившегося реагента электрогенерированным бромом. Можно применять также стандартный раствор 8-оксихинолина и титровать остаточный реагент после отделения осадка. Описанными способами определяют микро- и ультрамикроколичества кобальта [570] и ниобия [571], а также алюминий в хромате калия, сурьме [467], селене [572], ацетате натрия и вольфрамовой присадке [573] и бериллий в металлическом галлии [574]. [c.68]

    В настоящем исследовании исходными реагентами ДЛ(Я по-лучеиия основных хроматов щинка служили хромат алия, хлорид цинка и еозкий натр. [c.175]

    Была также изучена возможность использования маточных раютворов в цикле и применения для получения осн 0 ного хромата цижа в качестве ааходного реагента бихромата натрия. [c.175]

    Защита металлов от коррозии с помощью фосфатов обеспечивается за счет образования на поверхности металла пленки, состоящей из оксидов железа, фосфата железа, фосфата кальция и др. Наибольшее применение получил гексаметафосфат натрия. При введении его в воду образуются малорастворимые соединения метафосфата кальция или метафосфата магния, которые отлагаются на поверхности омываемого водой металла и образуют пленку, изолирующую металл от воды. Для образования метафосфатной пленки следует принимать концентрацию гексаметафосфата натрия в оборотной воде в течение 2—3 суток 200 мг/л (по техническому продукту) с последующим снижением ее до 15—30 мг/л. Доза фосфатного реагента в расчете на добавочную воду должна приниматься как частное от деления указанных концентраций на коэффициент упаривания. Полифосфаты в отличие от хроматов благоприятствуют развитию биологических обрастаний. Кроме того, замедление коррозии полифосфатами не так значительно, как хроматами. Поэтому все чаще применяются те и другие в комбинации. Недостатком полифосфатных ингибиторов является их склонность превращаться в ортофосфаты, которые взаимодействуют с кальцием и выводятся из воды. Это в свою очередь снижает концентрацию Р2О5 и вызывает образование шлама или накипи, стимулирующих развитие сильной коррозии металлов. Однако полифосфаты не имеют недостатка, который характерен для хроматов они не способны стимулировать питтинговую коррозию. [c.89]

    Определению мешают элементы, имеющие собственную окраску хроматы, Си, Со и др. К и ЫН4, образующие труднорастворимые фосфоровольфраматы или фосфорованадаты, Т , 2г, В1, 5Ь и 8п, которые дают труднорастворимые фосфаты или основные соли. Влияние молибдена, образующего с реагентом соединение, окрашенное в желтый цвет, сказывается при соотношении Мо V больше 200 1. Йодиды, роданиды и другие ионы, восстанавливающие фосфоровольфрамовую кислоту, также мешают определению. При определении V в присутствии больших количеств Сг [38] фосфорованадиевое соединение осаждают солями аммония, причем хром остается в растворе. Отфильтрованный осадок растворяют в едком натре при подкислении раствора восстанавливается окраска комплексного соединения ванадия. [c.231]

    Вода на нефтеперерабатывающих заводах расходуется на производственные, хозяйственно-питьевые и противопожарные нужды. Наибольшее количество воды потребляют технологические установки. Источником водоснабжения служат естественные водоемы (реки, озера), а в некоторых случаях — моря и подземные воды. Воду очищают от механических и химических примесей различными способами. Взвешенные частицы удаляют фильтрованием через дробленый гравий, кварцевый песок, антрацит и т. п. Мельчайшие органические частицы, загрязняющие поверхности теплообменников, а в паровых котлах вызывающие вспенивание котловой воды, удаляют на 50—80% при помощи коагуляторов АЬ(804)3 или Ре304. Химическую очистку воды для снижения ее жесткости проводят добавлением специальных реагентов. При этом содержащиеся в воде ионы кальция и магния переходят в нерастворимые соединения, выпадающие в осадок. Иногда из воды удаляют кислород (например, на установках каталитического крекинга). Во избежание коррозии в охлаждающую воду добавляют ингибиторы коррозии. Для стальных труб эффективны хроматы, для труб из адмиралтейского сплава — сульфат цинка вместе с гексаметафосфатом натрия. [c.313]

    Фторуглероды. Полностью фторированные углеводороды чрезвычайно устойчивы по отношению к большинству реагентов. Единственным известным веществом, реагирующим с ними при обычных температурах, является фтор, который превращает их в четырехфтористый углерод. Металлический натрий или калий реагирует с фторуглеродами при температуре выше 400°. Фторуглероды термически весьма устойчивы и не изменяются при температурах 400—500°. Азотная кислота (96%), дымящая серная кислота, подкисленный хромат и растворы перманганата на них не действуют. Бром и иод также не реагирукй-, под действием водорода (100 ат, 450°) часть фтора превращается в фтористый водород. Разбавленные и концентрированные щелочи при температурах ниже 100° не действуют на фторуглероды. Жидкие насыщенные фторуглероды нерастворимы в воде, спиртах и углеводородах, в хлорированных углеводородах они заметно растворяются, а при повышенных температурах смешиваются с ними во всех отношениях. Фторуглероды смешиваются во всех отношениях и с этиловым эфиром и с частично фторированными углеводородами, например с бензотрифторидом СеНд-СРз. Более подробные сведения о получении и других свойствах этих интересных соединений читатель может почерпнуть из сообщений по фторуглеродам [103]. [c.357]


Смотреть страницы где упоминается термин Хромат натрия как реагент: [c.580]    [c.8]    [c.180]    [c.180]    [c.530]    [c.162]    [c.175]    [c.176]    [c.176]    [c.200]    [c.176]    [c.142]    [c.358]   
Определение концентрации водородных ионов и электротитрование (1947) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий реагент

Хромато

Хроматы



© 2025 chem21.info Реклама на сайте