Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Сероводород, удаление из газов сера, удаление из газов

    Сероводород и диоксид серы. Эти газы легко растворимы в водной среде и являются относительно мягкими восстановителями. Их широко используют для восстановления в кислых растворах железа (III) до железа (II) с последующим титрованием последнего стандартными растворами окислителей. Помимо этого, сероводород и диоксид серы восстанавливают ванадий(V) до ванадия (IV), а также более сильные окислители —перманганат, церий (IV) и бихромат. С титаном (IV) и хромом (III) они не взаимодействуют. Если раствор кислый, то для удаления избытка обоих газов его достаточно лишь прокипятить. Недостатками этих восстановителей является то, что они токсичны, восстановление диоксидом серы протекает сравнительно медленно, а при использовании сероводорода образуется коллоидная сера, которая может реагировать с сильными окислителями. [c.317]


    С комическим днищем. Абсорбер снабжен штуцерами для подачи щелоков сернистого бария, воды, пара и газа, а также для слива растворов и удаления газов. Раствор BaS подают в абсорберы. В первый абсорбер компрессор нагнетает углекислый газ. Выделяющийся сероводород вместе с непрореагировавшим ООг поступает во второй абсорбер, затем в третий и четвертый. Газы из последнего абсорбера, содержащие сероводо род, используют для пол "чения серы или ее соединений. [c.218]

    Как указывалось выше, при обычных рабочих температурах окись железа не взаимодействует с такими органическими сернистыми соединениями, как сероокись углерода, сероуглерод, меркаптаны и тиофен. В газах, получаемых газификацией сернистых топлив, все эти соединения присутствуют в концентрациях, изменяющихся от нескольких миллиграммов до 1,15 г нм . Поскольку содержание органических сернистых соединений в каменноугольных газах всегда значительно ниже, чем содержание сероводорода, а также вследствие менее резкого запаха и меньшей токсичности этих соединений, удаления органической серы, если газ предназначается только для бытовых нужд, обычно не требуется. Практически все законодательные нормы и ограничения в отношении содержания серы в газе относятся к присутствующему сероводороду предельное содержание органической серы, как правило, не устанавливается. [c.198]

    Термодинамический анализ позволил выявить влияние на конверсию Нг5 состава кислого газа. В табл. 97 даны составы газа на выходе из печи для промышленного кислого газа (базовый вариант) и газа, содержащего повышенные количества одной из примесей. Наименее вредной примесью является метан, но любая примесь уменьшает конверсию сероводорода в серу. Расчеты показали также, что равновесное содержание OS и С 2 значительно ниже, чем наблюдаемое в экспериментах [0,5—2% (мол.) на сухой газ после удаления серы]. Это делает целесообразным кинетическое совершенствование процесса. [c.354]

    Очистка прочими реагентами. Раствор плумбита натрия Pb(0Na)2 в избытке щелочи и в смеси с тонко измельченной элементарной серой раньше широко применялся под названием докторского раствора для очистки легких нефтепродуктов — бензина, керосина. Сейчас плумбитная очистка применяется редко. Этот процесс служит для превращения активных сернистых соединений в менее активные. То же назначение имеют гипохлориты натрия или кальция и некоторые другие реагенты. Следует также упомянуть о хлористом цинке, иногда применяемом для очистки бензина и керосина прямой перегонки и крекинга, о тринатрийфосфате, трикалийфосфате, применяемыми для удаления сероводорода из газов и бензина. [c.291]


    В нефтезаводских и природных газах наряду с сероводородом в небольших количествах содержатся также меркаптаны, тиофены и другие соединения серы. Если газ предназначается только для бытовых нужд, то удаление вышеуказанной органической серы не требуется. Однако если газ применяется для каталитических процессов синтеза, удаление всех сернистых соединений из газа является обязательным. Удаление органических сернокислых соединений из газов осуществляют каталитическими методами при высоких температурах. [c.211]

    Для тонкой очистки газов от сероводорода используется также очистка аммиачной водой. При обработке газа 1,5—6%-ным раствором аммиака при 0,8—1,0 МПа остаточное содержание сероводорода составляет 0,5— 3 г/м . Преимуществом процесса является возможность совмещать тонкую очистку газа от сероводорода и органических соединений серы с одновременным удалением двуокиси углерода. Десорбцию сероводорода из адсорбента проводят при повышенных температурах. Газообразный сероводород можно использовать в производстве серной кислоты. [c.43]

    Пробу для газохроматографического анализа отбирали в стеклянные шприцы емкостью 100 ли. Отобранным газом продували дозировочный объем крана-дозатора 4 (при определении двуокиси серы и постоянных газов). При определении сероводорода и двуокиси углерода пробу газа вводят медицинским шприцем через испаритель 5. При отборе промышленных газовых смесей необходимо также учитывать возможное взаимодействие сероводорода и двуокиси серы в присутствии паров воды. В этом случае следует отбирать две параллельные пробы, в одной из которых удален сероводород [2]. [c.125]

    Равномерный ток сероводорода также может быть получен в результате нагревания смеси 3 вес. ч. порошкообразной серы, 1 вес. ч. измельченного парафина и 2 вес. ч. тщательно растертого асбеста. При удалении источника нагревания образование газа прекращается. [c.306]

    Вместе с сероводородом из потока газа может быть удалена также двуокись углерода изменяя продолжительность адсорбционного процесса, можно получить любую. заданную степень извлечения СО 2- В процессе совместной адсорбции газа от двуокиси углерода и сероводорода в первый период происходит полное удаление обоих компонентов, затем СО а вытесняется сероводородом. Содержание СО., в выходящем потоке газа резко возрастает, причем вследствие вытеснения оно превосходит содержание СО в исходном газе. В то же время количественно сорбируется сероводород. На основе десорбции газов осуществлено производство серы и твердой двуокиси углерода. [c.112]

    Каталитический риформинг на алюмоплатиновом катализаторе проводится при температуре 480—520° С и давлении 20—40 ат. Этот способ переработки, где катализатором является платина, называют также платформингом. Процесс ведут в присутствии циркулирующего газа, содержащего много водорода (75—90%). Этот газ, образующийся при риформинге, способствует протекающим реакциям образования высокооктанового бензина и обеспечивает гидрирование сернистых соединений. Сера при этом переходит в сероводород, который непрерывно удаляется из циркулирующей смеси газов и паров. Удаление серы в виде сероводорода необходимо не [c.280]

    Очистка. В этом процессе происходит удаление из ОКГ высококипящих примесей, оксидов азота и сероводорода. Такие вещества как вода, бензол, нафталин, оксид углерода (IV) при низких температурах могут кристаллизоваться на стенках аппаратуры, ухудшая теплообмен. Оксиды азота способны образовывать взрывоопасные смеси. Удаление из газа сероводорода, помимо предотвращения коррозии аппаратуры, вызвано также целесообразностью его последующего использования для производства элементарной серы и серной кислоты, так как в ОКГ переходит до 30% серы, содержащейся в коксуемой угольной шихте. [c.207]

    Сернистыми соединениями обычно интересуются главным образом с точки зрения необходимости их удаления для повышения качества нефтепродуктов. В последние годы важное промышленное значение приобрело получение серы из сероводорода, присутствующего в природных газах и газах нефтепереработки. Для этой цели используют методы, разработанные коксохимической промышленностью еще в XIX столетии. В нефтяной промышленности этот процесс впервые применили в Иране перед второй мировой войной. Сейчас его используют во всем мире отчасти в связи с нехваткой серы, а отчасти с целью избежать загрязнения атмосферы сероводородом. В промышленном масштабе сернистые соединения получают также при очистке светлых нефтепродуктов, смазочных масел и т. п. В результате обработки серной кислотой в жестких условиях получаются сульфоновые кислоты, которые представляют интерес в связи с их поверхностноактивными свойствами. Эти сульфоновые кислоты используют уже давно, но состав их пока неизвестен. [c.24]


    При определенных температурах наблюдается резкое повышение реакционной способности медных катализаторов прн газификации угольных коксов в сухом воздухе [35]. Ведутся разработки процессов газификации углей в расплавах солей и металлов, играющих роль как катализаторов, так и носителей. В расплав соды подают уголь и кислород (или воздух), а также пар. Сера и компоненты золы переходят в расплав, поэтому часть его выводят из цикла, охлаждают водой сода регенерируется и возвращается в цикл. Сероводород перерабатывается в элементную серу на установке Клауса. Удаление золы, отпаривание сероводорода и регенерация карбоната натрия — хорошо отработанные технологические операции. Преимуществом процесса является возможность переработки любого сырья, отсутствие стадий его подготовки (в частности, измельчения), полная очистка газа от сероводорода и паров смолы, ускорение химических превращений под воздействием соды. Составы газа при парокислородном и воздушном дутье приведены ниже (%)  [c.250]

    Элементарную серу получают из самородных руд, а также из газов, содержащих сернистый ангидрид или сероводород газовая сера). Элементарная сера является одним из лучших видов сырья для производства серной кислоты. При ее сжигании образуется газ с большим содержанием ЗОг и кислорода, что особенно важно в производстве контактной серной кислоты. После сжигания серы не остается огарка, удаление которого при получении серной кислоты из колчедана связано с большими затратами. В самородной сере присутствует лишь незначительное количество мышьяка, благодаря чему существенно упрощается схема контактных сернокислотных систем, поскольку отпадает необходимость во многих специальных аппаратах, необходимых для очистки от мышьяка газов обжига колчедана. При крупных масштабах производства природной серы она является, кроме того, дешевым сырьем, находящим разнообразное применение. [c.50]

    Элементную серу получают из самородных руд, а также из газов, содержащих диоксид серы или сероводород (газовая сера). Элементная сера — один из лучших видов сырья для производства серной кислоты. При ее сжигании образуется газ с большим содержанием 50г и кислорода, не остается огарка, удаление которого связано с большими затратами. В самородной сере присутствует лишь незначительное количество мышьяка, что существенно упрощает схему контактных сернокислотных систем, поскольку отпадает необходимость специальной очистки газов от мышьяка. [c.45]

    Одновременно с сероводородом может быть удалена из потока газа также двуокись углерода. Так как цеолиты сорбируют преимущественно сероводород, то, изменяя продолжительность адсорбционного процесса, можно получить любую заданную степень извлечения двуокиси углерода. На рис. 28 приведена кривая адсорбционного равновесия системы НгЗ—СОг, иллюстрирующая высокую избирательность цеолитов. При молярном соотношении в газовой фазе Нг СОг = 1 1 адсорбированная фаза имеет состав 90% мол. НаЗ и 10% мол. СОг, что соответствует коэффициенту разделяющей способности, равному 9. В процессе одновременной очистки газа от СОг и сероводорода в первый период происходит полное удаление обоих компонентов затем двуокись углерода начинает вытесняться сероводородом. Ее содержание в выходящем из адсорбера потоке газа резко возрастает, причем вследствие вытеснения содержание двуокиси углерода в выходящем газе даже превосходит ее содержание в исходном газе. В то же время сероводород количественно сорбируется вплоть до проскока. На базе газов десорбции может быть осуществлено производство серы и твердой двуокиси углерода. [c.59]

    Раствор МЭА, насыщенный сероводородом, из абсорберов для очистки газов поступает в дегазатор, где при снижении давления пз раствора МЭА выделяются растворенные газообразные углеводороды и бензин. Выделившийся бензин направляется в стабилизационную колонну. Дегазированный насыщенный раствор МЭА, предварительно нагретый в теплообменниках, поступает в отгонную колонну, температурный режим в которой поддерживается циркулирующим через термосифонный паровой рибойлер раствором МЭА. Пары воды и сероводорода, выходящие из колонны, охлаждаются в воздушном конденсаторе-холодильнике, доохлаждаются в водяном холодильнике, после чего разделяются в сепараторе, где также предусмотрен отстой бензина и его ВЫВОДЕ стабилизационную колонну. Сероводород из сепаратора направляется на производство серной кислоты илн элементарной серы. Из нижней части колонны выводится регенерированный раствор МЭА, который после последовательного охлаждения в теплообменниках, воздушном и водяном холодильниках вновь возвращается в цикл. Для удаления механических примесей из насыщенного раствора МЭА предусмотрено фильтрование части раствора. [c.56]

    Производство определения серы протекает следующим образом. 10 г железа в виде не слишком крупных стружек кладут в колбу для растворения, после чего собирают аппарат промывная склянка содержит 160 мл воды, поглотительный сосуд — около 30— 35 мл раствора. Затем наливают в воронку 50 мл соляной кислоты (плотн. 1,19) и, открывая кран, сначала дают стечь вниз половине ее если реакция протекает не слишком бурно, скоро спускают и остальное. Это повторяют еще раз, так что в общем берут 100 мл соляной кислоты. Газообразование регулируют таким образом, чтобы в. секунду проходило 3—4 пузырька газа это можно легко осуществить, нагревая, колбу регулируемой бунзеновской горелкой со светящимся пламенем. Важно следить за тем, чтобы во время процесса растворения колба возможно дольше оставалась холодной благодаря этому кислота остается крепкой до самого конца растворения. Если спустя некоторое время газообразование замедлилось, пламя увеличивают все больше и больше, так чтобы в конце растворения жидкость почти кипела. Затем открывают кран воронки, чтобы воспрепятствовать засасыванию жидкости (при внезапном охлаждении движением воздуха) и продолжают кипятить еще 8—10-минут. Далее выключают колбу для растворения, для чего подставляют горелку под промывную склянку и тотчас же закрывают трехходовой кран. Промывная жидкость вскоре закипает ей дают кипеть около 5 минут. При этом нагревается также и поглощающая жидкость. В ней сгущаются. 15—20 г водяного пара, содержащего совсем немного хлористого водорода, который не оказывает вредного действия. Когда уксуснокислый раствор нагрелся почти до кипения, поглощение можно считать оконченным, т. е. тогда весь сероводород удален из промывной колбы. [c.184]

    На хорошо активированных молекулярных ситах газы выходят из колонки при комнатной температуре в следующем порядке водород, кислород (аргон), азот, метан, окись углерода при обычных условиях кислород и аргон элюируются совместно. Для их разделения необходимы колонки длиной 4,5-9,0 м. Молекулярные сита необратимо сорбируют двуокись углерода, а также сероводород, двуокись серы, хлористый водород и другие агрессивные газы. Сита 5А используют при повышенных температурах для селективного удаления неразветвпенных парафинов и олефинов из их смеси с разветвленными углеводородами. [c.63]

    Понятие десульфурации (обессеривания) газов включает очистку газов от веществ весьма различных классов, что обусловлено чрезвычайным многообразием химических соединений серы. Наряду с дрюксидом серы в состав примесей могут вхо-.аить сероводород, органические соединения серы, сероуглерод. Часто приходится удалять смеси этих веществ. Источниками диоксида серы являются теплоцентрали и котельные жилых зданий, а также промышленные предприятия (электростанции, химические заводы), причем на долю последних приходится около половины нз примерно 4 млн. т диоксида серы, ел<е-годио выделяющегося в ФРГ. Выбросы диоксида серы мелкими предприятиями и автотранспортными средствами можно предотвратить лишь при использовании котельного топлива и горючего, свободных от серы. Тем не менее, к промышленным процессам, выделяющим большие количества соединений серы, предъявляются все более строгие требования по удалению 502. [c.103]

    Аэрирование воды применяется не только для окисления некоторых ее примесей, но и для удаления растворенных в воде газов — двуокиси углерода, сероводорода и двуокиси серы. Удалению этих газов способствует повышение температуры воды, развитие поверхности соприкосновения воды с воздухом и разрежение воздуха над водой. Аэрирование осуществляется при орошении водой градирен (стр. 137), а также путем распыления воды под давлением или при продувании воздуха через воду (барботаж). Перечисленные газы могут быгь удалены при помощи химических поглотителей (пропускание воды через слой дробленого известняка или доломита или взаимодействие с Са (ОН) 2 —для связывания СО2 через слой железных опилок — для связывания кислорода). На электростанциях удаление кислорода (дезаэрация) осуществляется большей частью путем ввода в питательную воду котлов сернистокислого натрия или гидразина. [c.135]

    Факт ингибирования реакции серы сероводородом ыл установлен еще при исследовании процессов гидрообессеривания нефтяных дистиллятов [54]. В частности, показано, что при содержании сероводорода в молярной с.меси реактантов до 0,3% константа скорости обессеривания дизельной фракции снижается примерно на 5%. При гидрообессеривании вакуумного газойля скорость реакции удаления-серы снижается в два раза при содержании до 10% сероводорода в циркулирующем ВСГ. Если бы в газе содержалось 0,5% сероводорода, то уменьшение константы скорости также составило бы 5%. Эти данные свидетельствуют о количественном сходстве результатов и возможности переноса их на любые виды сернистого нефтяного сырья. Ввиду того, что в продуктах реакции, по. мере прохождения реакционной смеси через слой катализатора, содержание сероводорода возрастает, его целесообразно удалять из зоны реакции для повьш1ения активности катализатора. Такой прием реализован в процессе гидрообессеривания остатков Gulf HDS (модель IV). Этот процесс осуществляется в четырех последовательных реакторах с.промежуточной сепарацией газов после первого и второго реакторов, что обеспечивает возмо жность получещш продукта с содержанием серы 0,1-0,3%. [c.76]

    Аммиак, амины и пиридиновые осноБания. При коксовании угля азот частично (50—80%) образует основные соединения. Так, типичное распределение таких соединений в сыром городском газе составляет (в %) 1,1 NH3, 0,1—0,25 H N, 0,004 пиридиновых оснований, следы оксида азота (II), а также около 1% несвязанного азота. Как и соединения серы (с. 144), присутствующие в газе соединения азота токсичны и коррозионно-активны, поэтому были предприняты попытки разработать процессы одновременного удаления сероводорода и аммиака с рекуперацией сульфата аммония и элементарной серы. Коль и Ризенфельд [455] подчеркивают, что некоторые из таких процессов нашли лишь ограниченное применение в промышленности. [c.150]

    В последние десятилетия появились новые способы очистки топливных фракций, существенно улучшающие качество товарных продуктов (гидроочистка, депарафинизация). Оказалось, что под давлением водорода в присутствии катализатора при повышенных температурах почти все сернистые соединения удается перевести в сероводород, который вместе с газами легко удаляется из топливных дистиллятов. Этот процесс, названный гидрообессеривани-ем, позволяет получать малосернистые топлива практически из любого сырья. Важным достоинством процесса является значительное снижение загрязнения окружающей атмосферы (содержания окислов серы в отработавших и дымовых газах). Процесс депарафинизации позволяет резко улучшить низкотемпературные свойства топлив (в первую очередь дизельных) в результате удаления парафиновых углеводородов нормального строения. Наиболее распространен в настоящее время процесс депарафинизации с применением карбамида (карбамидная депарафинизация). Перспективна также адсорбционная депарафинизация дистиллятов на цеолитах. [c.23]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    Варочный котел. Аппарат, показанный на рис. 70, служит для получения тиосульфата натрия. Он представляет собой стальной котел, снабженный механической мешалкой /, делающей 30об/мин., и паровым змеевиком 2 для нагрева раствора. В крышке аппарата имеется люк, через который загружают серу, наблюдают за процессом и производят чистку и ремонт внутри аппарата, а также вытяжная труба для удаления вредных газов (сероводорода), образующихся при варке и усреднении (нейтрализации). Внизу, у днища, имеется штуцер, снабженный краном для спуска раствора из варочного котла. [c.233]

    Газовая сера называется также коллоидной или флотационной. Она представляет собой высокодисперсный порошок серого или желтоватого цвета, содержащий до 30% влаги. Размер частиц 1—10 л легко смачивается водой и дает устойчивую суспензию. Пасту газовой серы, получаемую как отход газовой промышленности при очистке коксового и генераторного газа от сероводорода, промывают водой и 1%-ным раствором сульфитцел-люлозного экстракта для удаления примесей мышьяка, роданистых солей и гипосульфита, имеющих фитоцидные свойства. В пересчете на сухое вещество паста должна содержать по техническим требованиям (в процентах)  [c.143]

    Печи Клауса используются в основном для удаления серы из природного или синтетического газа, при этом содержащийся в таких газах сероводород дожигается до диоксида серы. Отходящий воздух этих печей, которые обеспечивают 95 %-ное превращение, содержит еще около 1 % (об.) H2S и 0,5 % (об.) SO2, а также следы сероокиси углерода, сероуглерод и аэрозоль серы. Первые из названных выше соединений серы могут превратиться в элементарную серу на поверхностно-активных материалах в процессе симметричного пропорционирования. Эта реакция впервые использовалась в промышленных масштабах в процессе Сульфрин [19] (рпс. 6.19). Накопившуюся на пропитанном активном угле элементарную серу можно десорбировать инертным газом при 450 °С. Поэтому в процессе прежде всего используется макропористый активный уголь. В процессе реакции появляется опасность образования сульфидов, присутствие которых на поверхности угля приводит к накоплению серы около 20% (масс.), не поддающейся десорбции, хотя сами сульфиды не оказывают сильного вредного действия. Чтобы предотвратить образование поверхностных сульфидов, [c.110]

    Очистка топлив от сернистых и других токсичных соединений перед сжиганием в энергетических устройствах и автотранспорте служит особым направлением охраны биосферы. Важное мероприятие для уменьшения выбросов диоксида серы и других токсичных соединений — это понижение их содержания в исходном топливе —жрщком и твердом. В некоторых нефтепродуктах содержание серы особенно велико имеются виды котельного мазута, содержащие до 6% серы. Наилучший метод обессерива-ния нефтепродуктов —это их гидрирование с образованием сероводорода с участием катализаторов. Одновременно с гидрообессерива-нием происходит гидрооблагораживание, т. е. насыщение непредельных углеводородов водородом, а также удаление азота и кислорода в виде NH3 и Н2О, которые, как и HjS, легко вымываются из топлива. Таким путем при сжигании тяжелых фракций сернистых нефтей практически исключается образование диоксида серы и оксидов азота в выхлопных газах. [c.158]


Смотреть страницы где упоминается термин также Сероводород, удаление из газов сера, удаление из газов: [c.319]    [c.285]    [c.468]    [c.318]    [c.219]    [c.169]    [c.318]    [c.56]    [c.326]    [c.35]    [c.174]    [c.460]    [c.191]    [c.248]    [c.100]    [c.429]   
Технология связанного азота (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сера газов

Сероводород в газах

Сероводород удаление из газов



© 2025 chem21.info Реклама на сайте