Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень полимеризации и вязкость раствора

    Большое практическое значение имеют и другие свойства нитроцеллюлозы растворимость и набухание в различных растворителях, степень полимеризации (вязкость растворов), термическая стойкость. [c.650]

    Вязкость растворителя существенно влияет на свободнорадикальные реакции, скорость которых лимитируется диффузией. Это относится прежде всего к рекомбинации и диспропорциониро-ванию радикалов. Так, скорость рекомбинации грет-бутильных радикалов пропорциональна вязкости растворителя г в степени 0,8. Макрорадикалы диффундируют гораздо медленнее, чем обычные радикалы, вследствие чего даже в не очень вязких средах диффузия может оказаться процессом, лимитирующим реакцию между двумя макрорадикалами. Поскольку, например, при полимеризации вязкость раствора растет по мере превращения мономера в полимер, то при этом наблюдается уменьшение константы скорости обрыва цепей. В качестве примера можно привести данные по фотополимеризации метилметакрилата при 32 °С [22, с. 405]  [c.33]


    Для определения степени полимеризации используют раствор, оставшийся в мерной колбе. Измеряют вязкость и рассчитывают среднюю степень полимеризации целлюлозы по методике, описанной выше (см. стр. 291). [c.314]

    Полимеризация изопрена с титановыми катализаторами проводится в изопентане или другом алифатическом растворителе. В изопентане вязкость растворов полимера минимальна. Этот показатель имеет важное значение для технологического оформления всех стадий производства полиизопрена. От вязкости исходного раствора каучука в большой степени зависит отвод тепла, выделяющегося при полимеризации изопрена, энергия, затрачиваемая на перемешивание и транспортирование раствора полимера, скорость и полнота процессов дезактивации и стабилизации, размеры и форма крошки каучука и производительность водной дегазации. При проведении полимеризации в изопентане поддерживается концентрация мономера 12—15%- [c.220]

    Рассчитать средневязкостную молекулярную массу и степень полимеризации изотактического полипропилена (раствор в декалине) при 135 °С, если получены следующие значения приведенной логарифмической вязкости  [c.71]

    Рассчитать средневязкостную молекулярную массу и степень полимеризации поливинилового спирта, если для его растворов в воде при 25 °С получены следующие значения удельной вязкости  [c.72]

    Увеличение степени полимеризации макрорадикала приводит к увеличению размеров статистического клубка и в результате - к возрастанию вязкости раствора [см. уравнения (2.42) и (2.43)]. Это приводит к усилению "эффекта клетки", что проявляется в замедлении процессов диффузии макрорадикалов. [c.233]

    Изучение вязкости разбавленных растворов полимеров может дать косвенную информацию о молярной массе полимеров. В уравнении Эйнштейна (XVI.2.3), описывающем зависимость вязкости от концентрации, оказалось что для растворов ВМС коэффициент к этого уравнения зависит от степени полимеризации ВМС. Вязкость растворов ВМС одного полимер-гомологического ряда с различной относительной молярной массой в одном и том же растворителе различна, т. е. удельная [c.442]

    Важной характеристикой гидродинамического поведения растворов является их вязкость. В частности, характеристическая вязкость раствора линейного полимера связана с размерами, формой его макромолекул в растворе и степенью полимеризации (см. III.4), [c.119]

    Влияние молекулярного веса полимера. В последние годы работами Ферри и Бикки с сотр. было показано, что зависимость логарифма вязкости для концентрирован и растворов полимеров от логарифма степени полимеризации Р выражается, так же как и для самих полимеров, двумя пересекающимися прямыми (см. рис, 112). Тангенс угла наклона при Р > Р рит во всех случаях равен 3,4. [c.420]


    Производство. Химически очищенную целлюлозу обрабатывают раствором каустической соды для получения щелочной целлюлозы. На этом этапе технологического процесса может произойти некоторое снижение молекулярной массы. Подбор источника целлюлозы позволяет в какой-то мере регулировать степень полимеризации. Например, хлопковый пух образует КМЦ высокой вязкости, древесная масса — КМЦ средней вязкости, а щелочная целлюлоза — КМЦ низкой вязкости. [c.474]

    Степень полимеризации - число звеньев глюкозы в макромолекуле целлюлозы она находится,в пределах от 200 до ШОО. Чем выше степень полимеризации, тем больше вязкость раствора КМЦ. [c.97]

    При определении молекулярного веса и степени полимеризации по вязкости растворов полисахаридов необходимо учитывать разветвленность их макромолекул. Химические методы определения степени разветвления этих макромолекул были рассмотрены выше. [c.146]

    Химические превращения полимеров, протекающие с заменой одних функциональных групп другими, называются реакциями по л им ер-аналогов ых превращений. Зги реакции не сопровождаются сколько-нибудь значительным изменением степени полимеризации исходного полимера, протекают в соответствии с общими положениями органической химии о реакционной способности различных классов органических веществ. Однако существенное различие реакций полимеров от обычных реакций низкомолекулярных соединений, например этерификации, омыления, хлорирования, нитрования и др., заключается в условиях их проведения. Высокая вязкость расплавов и растворов полимеров затрудняет протекание химических, превращений и замена одной функциональной группы или активного атома другой группой или атомом происходит не полностью, остаются непрореагировавшие звенья. Таким образом, получается смешанный полимер или сополимер, состоящий из звеньев исходного и нового полимера. Если при синтезе низкомолекулярного соединения можно отделить полученное вещество от исходного и определить его выход, то при химических превращениях макромолекул это сделать невозможно. Определяют не выход, а степень превращения в процентах. [c.7]

    При полимеризации многих мономеров наблюдается гель-эффект ускорение полимеризации с увеличением вязкости раствора. Теория этого эффекта и относящиеся к нему экспериментальные данные обстоятельно рассмотрены в литературе. Гель-эффект проявляется в том, что, начиная с некоторой глубины превращения, происходит ускорение полимеризации и увеличение степени полимеризации. Вызвано это тем, что увеличение вязкости среды затрудняет обрыв цепей по реакции между двумя макрорадикалами. Снижение константы скорости обрыва приводит к росту концентрации макрорадикалов и более быстрой полимеризации. При этом, естественно, возрастает степень полимеризации. Гель-эффект зависит от мономера, скорости инициирования (чем она меньше, тем сильнее проявляется гель-эффект) и температуры (с ростом температуры гель-эффект ослабевает). [c.364]

    После того как мономер замерзнет, ампулу откачивают на водоструйном насосе, содержимое размораживают и в ампулу подают азот. Эту операцию повторяют 2 раза и ампулу запаивают под азотом. Приготовленные образцы полимеризуют при 80, 100, 110, 120 и 180°С, для чего ампулы погружают в термостат или баню с соответствующей температурой (меры предосторожности ввиду возможного взрыва ампул их нагревание проводят за экраном). Через 6 ч ампулы быстро охлаждают, опуская их в холодную воду (надеть защитные очки) и вскрывают. Содержимое каждой ампулы растворяют в 20—30 мл бензола и к раствору из капельной воронки постепенно добавляют 200—300 мл метилового спирта для осаждения образовавшегося полистирола. Осадок отфильтровывают и высушивают до постоянной массы в вакуумном сушильном шкафу при 50 °С. Строят график зависимости выхода полимера (в %) от температуры полимеризации. С помощью вискозиметра Оствальда (диаметр капилляра 0,3 мм) определяют характеристические вязкости полученных образцов в бензольном растворе при 20 С (см. раздел 2.3.2.1), рассчитывают средние степени полимеризации и строят график их зависимости от температуры полимеризации. [c.121]

    Кроме содержания азота, большое практическое значение имеют н арутие свойства нитроцеллюлозы растворимость н набухание в различных растворителях степень полимеризации (вязкость растворов) термическая стоГжость, [c.349]

    Основными факторамц влияющими на вязкость таких растворов, являются степень полимеризации, концентрация раствора, температура, характер растворителя и, в случае ионных полимеров, значение pH среды. [c.118]

    При изучении вязкости растворов поли-а-хлорвинилуксусной кислоты (полученной при облучении СН2=СНСНС1С00Н ультрафиолетовыми лучами при комнатной температуре) установлено, что градиент скорости не влияет на значение вязкости. С увеличением степени полимеризации вязкость [т ] растет очень медленно. В уравнении [т)]=Ш а = 0,12 и й = 4,5 [1532]. [c.399]


    Грален вычислял скорость седиментации и диффузии для нулевой концентрации 5о и Во по простой линейной функциональной зависимости между количествами и концентрацией. Позднее Юлландер 1127] предложил упрощенные методы определения 5. Значения степени полимеризации, полученные Граленом для медноаммичного раствора, больше тех, которые были получены другими авторами, и значительно больше значений, вычисленных по вязкости с помощью константы Кремера (табл. 16). Сравнивая значения степени полимеризации, указанные в табл. 16 и 17, можно видеть, что при нитрации в обычных условиях происходит значительная деполимеризация целлюлозы и степень полимеризации медноаммиачного раствора целлюлозы, измерявшаяся в ультрацентрифуге, является, как теперь полагают некоторые исследователи, завышенной. [c.215]

    При полимеризации на литийалкилах в неполярных средах температура реакции хотя и влияет на структуру полибутаднена [38], но в пределах 40—80 °С это влияние незначительно (увеличение содержания 1,2-звеньев на 1 —1,5%), поэтому процесс синтеза можно проводить при повышенных температурах до 70—80 °С, что также способствует снижению вязкости раствора и улучшению теплообмена. Несомненно, в большей степени на образование 1,2-звеньев влияют микропримеси, содержащиеся в товарном бутадиене, и применяемый растворитель. [c.276]

    Примерно аналогичен механизм повышения вязкости полимерных растворов с ростом степени гидролиза полимера (рис. 56). В табл. 29 приведено влияние гидролиза полиакриламида, полученного методом радиационной полимеризации, на вязкость 0,5 /о-ного раствора его в дистиллированной воде. Надо отметить, что низкое значение вязкости раствора аммиачного ПАА объясняется большим содержанием соли (NH4)iS04, что присуще этому реагенту даже при высокой степени гидролиза. [c.115]

    Если смещение цепи происходит не в состоянии статического равновесия и не путем одного всплеска тепловой флуктуации, то перемещение цепи не будет обратимым вдоль линии наименьших значений энергии и потребует больших затрат энергии, чем в предыдущих случаях. Чувствительная к скорости энергия, затраченная на единицу расстояния вынужденного перемещения сегмента цепи, эквивалентна силе сдвигового трения ц. Широко исследовалась и обсуждалась в литературе [25] реакция цепей на усилия сдвига в растворе. Было выдвинуто большое число различных молекулярных теорий вязкоупругого поведения полимерных цепей в растворе. С помощью подобных теорий рассчитывается связь между молекулярной массой М (или степенью полимеризации Р), вязкостью раствора "Пз, внутренней вязкостью [ п]=Ит(т1 — т15)/ст15, коэффициентом молекулярного трения и средним квадратом расстояния [c.143]

    Будучи гибкой, полимерная цепь непрерывно флуктуирует, приобретая всевозможные конформации. Множественность конформаций непосредственно связана с вязкоупругими свойствами полимеров и во многом определяет их высокоэластичпость. Молекулярная масса, характеризуемая степенью полимеризации, влияет на текучесть полимерных расплавов и растворов, а также на деформируемость и прочность полимерных тел. С ростом степени полимеризации механическая прочность и вязкость полимеров увеличиваются. С вязкостью полимерных веществ связаны релаксационные процессы, протекающие при различных механических воздействиях. Очевидно, что чем выше молекулярная масса, тем больше время, необходимое для устаповлеиия равновестюго состояния нри механическом воздействии на него. [c.48]

    Рассмотрим действие давления на полимеризацию метилметакрилата СН2ССН3СООСН3 полиметилмета-крилат широко применяется в различных отраслях промышленности. При исследовании этой реакции в интервале давлений до 500 МПа и температур от 50 до 200 °С было показано, что рост давления ускоряет процесс полимеризации и увеличивает степень полимеризации продукта. Повышение температуры и увеличение концентрации катализатора, как всегда, ускоряют полимеризацию, но и снижают относительную молекулярную массу полимера. Данные работы, подтверждаюш,ие этот вывод, приведены в табл. 25. Степень полимеризации, а значит, и относительная молекулярная масса полимера оценивались по вязкости раствора продукта реакции в определенной массе растворителя. Чем крупнее молекулы продукта, тем выше вязкость раствора. Оценка степени полимеризации определяется по калибровочному графику, связывающему вязкость раствора с относительной молекулярной массой растворенного полимера. [c.197]

    Сравнивая выход полимера и степень полимеризации при давлении 304 МПа и двух разных температурах, видим, что при более высокой температуре выход больше, но относительная молекулярная масса продукта (вязкость раствора) меньше, чем при более низкой температуре. Повышение давления благоприятно и для выхода, и для получения высокополимеризованного продукта. [c.197]

    Вязкость растворов нитроцеллюлозы также и.чеет большое практическое значение, так как влияет иа механические свойства изделий. Обычно прочность изделии повышается с увеличением степени полн.меризацни нитроцеллюлозы. Вязкость растворов нитроцеллюло.ш в первую очередь зависит от степени полимеризации исходной целлюлозы, а также условий этерифнкацни, стабилизации и наличия в растворах минеральных солей, которые нитроцеллюлоза легко поглощает. [c.349]

    Другим замедлителем реакции является карбоксиметил-целлюлоза (КМЦ)—продукт обработки целлюлозы моно-хлоруксусной кислотой или монохлор ацетатом натрия, представляет собой порошок белого или кремового цвета, сравнительно медленно растворяющийся в холодной воде. Отечественная промышленность выпускает КМЦ трех марок, которые различаются степенью полимеризации (СП) и вязкостью их растворов. [c.31]

    Л етод определения стенени полимеризации поликапроамида основан па сушествовании зависимости, близкой к линейкой, между относите ьной вязкостью и средней степенью полимернзацни поликапроамида. Молекулярную массу поликапроамида прибли-жеино определяют графоаналитически, зная удельную вязкость раствора. [c.271]

    Уравнение Штаудингера применимо для растворов полимеров с жесткими и относительно короткими молекулами. Для макромолекул другой формы это уравнение нуждалось в поправке. Марком и Хоувинком [17] предложено уравнение зависимости характеристической вязкости от степени полимеризации  [c.143]

    Сравнение приведенных данных показывает, что макромолекулы ксилоуронидов и глюкоманнанов, содержащихся в целлюлозе, в процессе варки подвергаются значительному разрушению. Это можно наблюдать по резкому снижению средней вязкости полисахаридов в растворе куприэтилендиамина и изменению их состава. Так, арабрксилоуронид из древесины западной тсуги полностью потерял арабинозу и часть 4-0-метилглюкуроновой кислоты. Изменился также и его угол вращения для желтого поляризованного луча. Ксилоуронид из древесины западной красной ольхи по составу не изменился, но средняя степень полимеризации его резко уменьшилась. [c.356]

    Степень полимеризации устанавливают определением удельной вязкости 1%-ного раствора сополимера в ди-метилформамиде при 25°. Удельная вязкость вещества равна 0,5 (примечание 11). Полученный сополимер необходимо хранить в сухой атмосфере, чтобы предотвратить Гидролиз ангидридных групп. Для сополимеризации друлих олбфинов с малеиновым ангидридом (примечание 12) описанная выше методика может быть использована с небольшими изменениями. [c.49]

    Добавление воды к смесям ВА с метанолом или метилацетатом вначале способствует увеличению вязкости раствора полимера, а после достижения определенной концентрации (>30% от массы растворителя) вызывает появление гетерофазности системы вследствие ухудшения растворимости ПВА в реакционной среде. В этих условиях активные концы макроцепей оказываются окклюдированными в клубке полимерной молекулы, что, как и в случае описанного выше гель-эффекта, приводит к уменьшению значения ко и увеличению скорости полимеризации и доли высокомолекулярных фракций [26, а. с. СССР 275290]. Введением в реакционную смесь 20—30% воды (от массы растворителя) удается повысить степень полимеризации ПВА и продуктов его омыления, однако с увеличением содержания воды усиливается реакция передачи цепи на полимер, приводящая к образованию ответвлений как по основной цепи, так и по ацетатным группам [c.19]

    Данная теория, однако, не могла объяснить некоторые особенности поведения целлюлозы, например, обязательную стадию набухания перед растворением. Было непонятно, почему вообще возможно набухание, то есть какими силами удерживаются мицеллы при проникновении растворителя в целлюлозное волокно и почему оно не распадается сразу на отдельные мицеллы. Определенная на основании результатов рентгенографических измерений длина мицелл составляла примерно 50...60 нм, что соответствовало степени полимеризации молекул всего лищь около 100. Однако работы Штаудингера по вязкости растворов целлюлозы вскоре показали, что целлюлоза представляет собой типичный полимер и ее СП в действительности намного вьпле. Первоначальная мицеллярная теория подвергалась критике, и понятие мицеллы в результате работ отечественных исследователей (Роговин, Н. Никитин, Шарков и др.) и зарубежных (Фрей-Висслинг, Ренби, Престон и др.) бьшо пересмотрено. Марк и Мейер изменили свои взгляды на кристаллическую структуру целлюлозы, а результаты рентгенографических измерений получили иную трактовку. Была предложена новая мицеллярная теория строения целлюлозы - теория аморфно-кристаллического строения. [c.236]

    Другой метод Хило и соавторов [51] заключался в осаждении силикатов из раствора в виде солей серебра. Начиная с соотношений 5102 Na20 1 и 2, степень полимеризации кремнезема в соли серебра изменялась обратно пропорционально величине концентрации кремнезема и содержанию средней соли. Этим было подтверждено, что соль серебра, содержащая один атом серебра на одни атом кремния, представляла собой линейный полимер, хотя и не было проведено каких-либо измерений вязкости или молекулярных масс. [c.182]

    Очевидно, что мономер в воде при его содержании в несколько процентов не должен давать вклада в величину вязкости, большего, например, чем относительно большая по размеру молекула глицерина. Вероятно, что ниже определенного размера, скорее всего в пределах 1 —1,5 нм, полимерные образования ведут себя не как частицы, а скорее как олигомеры. Так, Айлер [116] обнаружил, что вязкость раствора поликремневой кислоты, полученного из силиката натрия с отношением 3,25, при содержании 6,34 % SiOo и при pH 1,7 составляла 1,11 относительно раствора сульфата натрия. Вязкость возрастала до 1,15 по мере того, как степень полимеризации (определяемая криоскоппческим методом) повышалась от 4 до 23, причем последнее значение соответствовало частицам безводного SIO2 размером 1,25 нм. Как видно из рпс. 3.35 (кривая 2), при содержании SiO 6,34 г/100 мл золя рассчитанные значения (сплош- [c.329]

    Трехгорлую колбу, емкостью 250 мл, снабженную мешалкой, термометром я вводом для азота, откачивают и започняют азотом (операцию повторяют 3 раза). Затем в токе азота в колбу В)Водят 0,122 г (0,45 ммоля) персульфата калия и 0,05 г ЫаНгРО , 1 г олеата или лаурилсульфата натрия и 100 мл прокипяченной в токе азота воды. После растворения в колбу при постоянном перемешивании вводят 50 мл очищенного от ингибитора стирола. Образовавшуюся эмульсию перемешивают с постоянной скоростью в слабом токе азота в течение 6 ч при 60 °С. Затем реакционную смесь охлаждают, пипеткой отбирают 30 мл полистирольного латекса и переносят в химический стакан. Добавлением равного объема концентрированного раствора сульфата алюминия осаждают полимер (если необходимо, смесь кипятят). Вторую пробу (также 30 мл) осаждают добавлением 300 мл метилового спирта. Латекс, оставшийся в колбе, коагулируют добавлением к нему концентрированной соляной кислоты. Полученные образцы полимеров промывают водой и метанолом, отфильтровывают на стеклянном фильтре и высушивают до постоянной массы в вакуумном сушильном шкафу при 50 С. Определяют суммарный выход полимера и характеристическую вязкость (степень полимеризации) одного из образцов. Полученные результаты сопоставляют с данными полимеризации в массе (см. опыты 3-01 и 3-02) и в растворе (опыт 3-13). [c.122]


Смотреть страницы где упоминается термин Степень полимеризации и вязкость раствора: [c.217]    [c.307]    [c.210]    [c.86]    [c.161]    [c.161]    [c.166]    [c.185]    [c.146]    [c.184]    [c.321]    [c.85]    [c.176]    [c.298]   
Синтактические полиамидные волокна технология и химия (1966) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость от степени полимеризации

Вязкость растворов ВМС

Полимеризация в растворе

Полимеризация степень полимеризации

Степени вязкости

Степень полимеризации

Степень раствора



© 2025 chem21.info Реклама на сайте