Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Преимущественные дефекты

    Остановимся несколько подробней [95] на оценке величин энтальпии и энтропии, полученных при окислении металлов Со и Ni, в случае, когда преимущественными дефектами являются катионные вакансии. В табл. IV. 2 [95] сопоставлены обобщенные данные для термодинамических функций, установленные по результатам исследования процессов диффузии и окисления, измерения электрического сопротивления, гравиметрических измерений и на основе теоретических соображений [95]. [c.86]


    Эти дефекты образуются преимущественно в тех случаях, когда деформирование производится в холодном состоянии или с нагревом в интервале температур, обусловливающем пониженные пластические свойства этой зоны. [c.42]

    Ультразвуковой метод. Ультразвуковой импульсный метод позволяет выявлять внутренние скрытые дефекты и трещины, преимущественно в труднодоступных местах деталей из магнитных и немагнитных упругих материалов. Для контроля дефектного изделия необходимо тщательное изучение его чертежа. Имея данные о материале, способах изготовления детали и тер- [c.480]

    Фосфатные покрытия сами по себе не обеспечивают надежной коррозионной защиты. Их используют преимущественно как основу под окраску, которая обеспечивает хорошее сцепление краски со сталью и уменьшает коррозионные разрушения в местах царапин или других дефектов. Иногда фосфатные покрытия пропитывают маслами или воском — это обеспечивает более высокую степень защиты от коррозии, особенно если в них ввести ингибиторы коррозии. [c.246]

    Данные результаты указывают, что дефектами являются микропустоты, образующиеся преимущественно на границах между ламеллами, ориентированными перпендикулярно направлению нагружения. Подобные же дефекты получены при однородном деформировании в процессе статического нагружения [c.301]

    Механизм коррозии металлов в морской воде электрохимический, преимущественно с кислородной деполяризацией. Процесс коррозии при этом разделяется на поверхности металла протекает катодный, а в порах, трещинах и других дефектах окисной пленки - анодный  [c.42]

    Развитие физики твердого тела сделало возможным рассчитать прочность кристалла, исходя из прочности межатомных связей [25, с. 13]. При этом структура кристалла считалась идеальной (монокристалл). Однако оказалось, что реальная прочность намного ниже теоретической, ибо материалы всегда содержат дефекты, или они появляются под действием тепловых флуктуаций и напряжений в процессе нагружения. Эти дефекты являются концентраторами напряжений и вследствие этого преимущественными местами разрыва связей. Величина напряжения на дефектах может во много раз превосходить номинальное напряжение, что и объясняет низкие значения реальной прочности. [c.201]

    Метод декорирования основан на образовании очень маленьких частиц в активных центрах твердых тел. Обычно при нагреве кристалла до определенной температуры вдоль дислокационных линий появляются частицы, которые можно наблюдать либо в проходящем, либо в рассеянном свете. Декорирование дислокаций возможно из-за более быстрой диффузии частиц вдоль дислокационных линий, преимущественного зарождения частиц на дислокациях, способности дислокаций служить источниками вакансий. Декорирующими частицами не всегда являются частицы примеси. Известны два способа декорирования деф тн ой структуры кристаллов. В одном случае исходный образец помещали в кварцевую ампулу, в которой создавали вакуум 0,66 Па. Затем ее запаивали, нагревали до температуры 350°С и выдерживали 1 ч. Во втором случае дефекты в кристалле декорировались после облучения образцов рентгеновским излучением. Вдоль дислокационных линий появлялись микроскопические поры. [c.160]


    Экспериментальные работы позволили установить, на каких дефектах преимущественно зарождаются частицы конденсата в условиях вакуумного декорирования. Путем сравнения исследуемых образцов с эталонами отмечено, что происходит образование частиц золота на атомах примесей, вакансиях, центрах окрашивания, а также на поверхностных дефектах деформационного происхождения и дефектах роста. Выявить весь спектр точечных дефектов можно с помощью методики многократного декорирования. Она состоит в том, что вначале конденсируется одна порция вещества. Затем проводится повторное декорирование, но уже при более высокой температуре. В процессе многократного декорирования выявляются как сильные центры зарождения частиц, так и более слабые. Эта методика пригодна для наблюдения миграции точечных дефектов и их скоплений. [c.161]

    Дефекты по Френкелю — не единственный тип дефектов в ионных кристаллах. В. Шоттки (1935), показал, что в реальном кристалле могут отсутствовать межузельные ионы и в то же время часть узлов решетки оказывается незанятой. Так как в целом должен соблюдаться баланс электрических зарядов, то каждой катионной вакансии соответствует анионная вакансия. Комбинацию катионной и анионной вакансии в ионном кристалле называют дефектом по Шоттки. Процесс протекания тока в таком кристалле можно рассматривать как последовательное осуществление перехода ионов кристаллической решетки в соседнюю вакансию. Подвижности катионных и анионных вакансий в общем случае различны, что и определяет преимущественную катионную или анионную проводимость. Типичный пример соединений с дефектами по Шоттки — галогениды щелочных металлов. [c.96]

    Установлено, что фактическое участие в каталитическом процессе принимают только или преимущественно особые активные микроструктуры — активные центры, составляющие небольшую часть общей поверхности катализатора. Ими могут быть ионы аномальной валентности атомы, расположенные на ребрах или вершинах граней кристалла дефекты, искажающие идеальную структуру кристалла другие места адсорбции и т. д. [c.765]

    Чем меньше работа образования зародыша, тем вероятнее его возникновение. С этим связано преимущественное появление устойчивых зародышей на имеющихся в растворе посторонних частицах, пылинках, особенно имеющих электростатический заряд, на поверхностях твердых тел (стенках кристаллизатора) и их дефектах. [c.240]

    Несколько экспериментов дало прямые доказательства, что скрытое изображение представляет собой металлическое серебро в галогенидных зернах, но во много раз меньших концентрациях, чем в отпечатанном виде. С помощью методики, способной регистрировать изменения оптической плотности порядка 10 , можно обнаружить оптическое поглощение за счет появления серебра в областях скрытого изображения даже на пороге предельно малых экспозиций. Существует также заметное сходство влияния окружающих факторов (например, электрических полей или кристаллических дефектов см. ниже) на локализацию отпечатавшихся серебряных частиц и центров проявления. Поэтому наше обсуждение первичных фотохимических процессов будет касаться преимущественно образования серебра в результате экспонирования и последующего проявления. При этом предполагается, что процессы образования скрытого изображения фотохимически идентичны упомянутым процессам, но дают во много раз меньшее количество металлического серебра. Однако есть и различия. Важным свойством процесса образования скрытого изображения является падение чувствительности эмульсии при очень низких интенсивностях света (нарушение закона обратной пропорциональности чувствительности и экспозиции), которое свидетельствует о существовании многоквантового процесса. Доказано, что обычно одиночный атом серебра в галогенидной решетке нестабилен, его время жизни составляет лишь несколько секунд. Для получения стабильной системы требуются по крайней мере два атома, если только нет заранее введенного стабилизирующего центра. [c.246]

    Такие неполярные вещества, как парафин, полиэтилен, фторопласт и другие, также приобретают в растворах поверхностный заряд за счет образования окисных групп (обычно по местам дефектов структуры) или преимущественной первичной адсорбции Н+, ОН" или других ионов из раствора. [c.184]

    Дефекты поверхности (царапины, язвины, изломы и т. п.) обычно служат участками преимущественного начального кристаллообразования. По наблюдениям М. Фольмера и И. Странского, кристаллы растут первоначально на недостроенных участках кристаллической решетки. Наиболее быстро растущие грани кристаллов вырождаются в ребра и вершины. При благоприятных условиях роста кристаллы получаются тем большими по величине, чем дольше длится процесс электролиза. Если прервать электролиз и возобновить его через некоторое время, то первоначально возникнут мельчайшие кристаллы, из которых только постепенно со временем разрастутся большие. Возможно также обратное растворение мелких кристаллов и рост за их счет крупных. В целом эти процессы протекают сопряженно и обычно приводят к укрупнению структуры. [c.390]


    Из анализа этих решений (см. гл. III, стр. 56) можно сделать вывод [39], что при высоких значениях Т преимущественными дефектами в oOi+j являются катионные вакансии, большинство из которых однократно ионизованы в области Лз и дважды ионизованы в области В. Фишер и Таннхаузер [38, 39] получили явный вид для выражений (IV. 3) и (IV. 4)  [c.80]

    Некоторые емкости под давлением разрушались по хрупкому механизму, в других случаях отмечались разрушения трубопроводов. Разрушения, названные Тилшем "ударной хрупкостью", происходят в хрупких материалах, которые имеют трещины, царапины, зарубки. Такое разрушение моясет произойти из-за наличия дефекта сварки прн приложении нагрузки ниже предела текучести. Тилш приводит девять конкретных случаев хрупкого разрушения емкостей в химической и нефтехимической промышленности. Температуру фазового перехода он определяет следующим образом "Температура фазового перехода стали - это температура, выше которой сталь ведет себя как преимущественно пластичный материал, а ниже которой - как преимущественно хрупкий материал". Как отмечено тем же автором, температуру фазового перехода сталей трудно точно определить и различные методы ее определения дают разные результаты. Данный вывод отражен в табл. 6.3, в которой автором настоящей книги сделан перевод значений Тилша в единицы СИ. [c.95]

    ИНГИБИТОРЫ. СООТНОШЕНИЕ СУЛЬФАТА И ЩЕЛОЧИ. Ингибирующее действие таннинов, которые при высоких температурах предотвращают КРН в котлах, нельзя объяснить конкурентной адсорбцией с ОН . Подобные процессы невозможны ввиду слабой связи органических молекул с поверхностью металла. Высказывалось предположение, что таннины связывают растворенный кислород. Однако такое действие не должно было бы обязательно приводить к предупреждению КРН, так как нет твердых доказательств отсутствия разрушений этого типа в растворах NaOH, свободных от растворенного кислорода. Можно предположить, что в результате взаимодействия таннинов с NaOH образуются соединения, которые обладают буферными свойствами и действуют аналогично иону Р0 . Они могут также отчасти экранировать дефекты поверхности в зоне сварного шва, в которых в противном случае может задерживаться котловая вода и pH ее со временем повышается. Помимо этого, при применении таннинов вещества, образующие накипь, преимущественно возникают в толще котловой воды, а не на поверхности котла. Этим предупреждается образование узких зазоров на границе со слоем накипи. [c.291]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Наводороживание стенок аппаратов с образованием расслоений размером до нескольких сот квадратных сантиметров происходит за период от нескольких недель до шести лет, причем процесс наводороживания протекает более интенсивно в периоды, когда климатические условия способствуют увеличению конденсации влаги. При одинаковых химическом составе, структуре и механических свойствах металла аппаратуры водородное расслоение локализуется в местах концентрации растягивающих напряжений и повышенной агрессивности среды. Отмечается [18] преимущественное образование пузырей в неси лошностях металла (вытянутые вдоль проката строчечные включения, газовые раковины, микро- и макропустоты) и других дефектах, возникающих при прокатке стали. Зачастую пузыри, вызываемые водородным расслоением металла, образуются не только на внутренней, но и на наружной поверхности аппаратов, изготовленных из стали марки Ст 3. В подавляющем большинстве случаев пузыри наблюдаются в нижней части аппаратов, где скапливается основная часть конденсационной воды [11]. [c.17]

    По современным представлениям [41-44], базирующимся в значительной мере на работах А. Ф. Иоффе, Н. П. Давиденкова и Я. Б. Фридмана, переход металла в хрупкое состояние наблюдается, когда разрушающее напряжение (сопротивление отрыву) становится равным пределу текучести. На микроскопическом уровне хрупкое разрушение происходит путем скола по плоскостям преимущественной ориентации решетки металла [45]. Важная роль при этом принадлежит механизмам ограничения пластического деформирования. Эти механизмы могут иметь различную природ , причем домиктфовакие любого из них определяется совок> пно стью большого числа факторов (температурой, скоростью деформирования, химическим воздействием и т. д). Общепризнанно, что на степень стеснения пластических деформаций оказывают влияние наличие в металле дефектов, конструктивных концентраторов напряжений, повышение плотности дислокаций, мелкодисперсные выделения [46]. [c.25]

    В данной монографии мы рассмотрим физическую природу образования дефекта на примере линейных термопластов и эластомеров (табл. 1.1). Известно, что эти материалы имеют широкий диапазон свойств, хотя и состоят из подобных молекул. Их молекулы преимущественно линейные, гибкие имеют высокоанизотропные (невытянутые) цепи с молекулярными массами 20000—1 000000 и более. На рис. 1.9 представлена цепная молекула полиамида-6 (ПА-6) в невытянутом состоянии с произвольным выделением сегментов, а на обведенной вставке показано ее основное звено. Относительные положения атомов и часть объема, занятая ими в цепи, иллюстрируются с помощью модели Стюарта для сегмента полиамида (рис. 1.10). Действительный размер распрямленного сегмента —1,97 нм. Если бы к такому сегменту можно было приложить напряжение вдоль оси цепи, то изгиб и растяжение основных связей обеспечивали бы в результате жесткость цепи 200 ГПа [15], в то время как межмолекулярное взаимодействие сегментов вследствие более слабых вандерваальсовых сил обеспечивает жесткость только 3—8 ГПа в направлении, перпендикулярном оси цепи. Характерные свойства твердых полимеров, а именно анизотропия макроскопических свойств, микронеоднородность и нелинейность, а также сильная временная зависимость [c.12]

    Образующаяся на поверхности углеродных волокон оболочка из кокса наблюдается при травлении, например, хромовой кислотой [10-28]. Это связано с остаточными напряжениями, которые возникают при формировании кокса и охлаждении после карбонизации. Вид дефектов в коксе зависит от прочности связи кокса с волокном. Чем она выше, тем меньше относительная деформация до разрушения КМУУ. При малых деформациях концентрация трещин, располагающихся преимущественно перпендикулярно оси волокна, увеличивается. В результате исчезает параллельная ориентация граничных слоев кокса вдоль оси волокна [10-28, 29, 30]. [c.651]

    При окислении металлов большое значение играет процесс диффузии реагентов. В начальный момент реакции на поверхности металла образуется слой его окисленной формы. Если дефектов в кристаллической решетке оксида металла мало, то реакция протекает очень медленно (например, алюминий, покрытый плотной и малодефектной пленкой АЬОз). Если же в кристаллической решетке оксида преобладает тот или иной тип дефекта (например, вакансии по металлу — катионные вакансии, вакансии по кислороду — анионные вакансии и др.), то характер поведения образца металла при окислении будет отличаться. Если преимущественным типом дефектов является наличие катионных вакансий, то для дальнейшего осуществления процесса окисления должна происходить диффузия ионов металла из металлической кристаллической решетки к поверхности окисленной фазы (рис. 11.6, а). При этом молекулярный кислород [c.326]

    Изменение электрокаталитических свойств металлов при переходе к их дисперсным формам, очевидно,, определяется суммарным влиянием большого числа факторов преимущественным выходом тех или иных граней, большим числом биографических дефектов кристаллической решетки,, особенностями пористой структуры, адсорбцией микропримесей и т. д. Выявить парциальное действие тех или иных факторов пока не удается. Работ по исследованию влияния дефектов структуры кристаллической решетки на электрокаталитические процессы проводится мало, и выводы этих работ довольно противоречивы. Однако в пределах тех изменений дефектности поверхности гладких электродов, которые вызывают такие операции, как химическое травление, механическое полирование, наклеп, высокотемпературный отжиг и т. п., существенных изменений скоростей электрокаталитических процессов с участием органических веществ на металлах группы платины не установлено. Очевидно, после этих операций с электродом доля дефектных мест остается весьма ма-ло1(, к тому же их влияние в сильной мере снижается за счет г рочыой хемосорбции органических молекул. [c.296]

    Велосиметрический метод применяют для выявления дефектов (преимущественно расслоений и непроклеев) в неметаллических покрытиях и слоистых пластинках, а также контроля соединений в ОК с неметаллическими и металлическими слоями. При наличии двустороннего доступа целесообразно использовать второй и четвертый варианты метода. При доступе с одной стороны ОК используют первый и третий варианты. Этим вариантам свойственна мертвая зона. Она прилегает к поверхности, противоположной поверхности ввода упругих колебаний, и составляет 20... 40% толщины ОК. Двусторонние варианты мертвой зоны не имеют. [c.230]

    Характерным примером вакансий по анионам могут быть многие соединения типа МпОг. Отклонение от стехиометрии обычно связывается с наличием кислородных вакансий. Например, у 2г0г максимальное отклонение от стехиометрии соответствует температуре 1900°С, ири этом состав приближается к /.гОи , а при температуре 1000°С — кгОг д (й = 0,1). В обоих случаях легко установить тип дефектов, изучая завнснмость электрической 1троводимостп от давления кислорода. Так, ирн 1000 °С электрическая проводимость вызывается преимущественно электронами или дырками. [c.97]

    Существование двусторонних фаз возможно потому, что в зависимости от внешних условий наблюдается преимущественная генерация вакансий, антиструктурных дефектов или междоузель-ных атомов либо одной, либо другой подрешетки. Здесь речь идет о так называемых собственных, а не примесных дефектах, которые обусловлены различным положением атомов компонентов. [c.59]

    Развитие электрономикроскопической техники за последнее время показало, что такие квазикристаллические образования, называемые периодическими коллоидными структурами, широко распространены в природе и технике. Не имея возможности в рамках настоящего курса остановиться подробно на свойствах этих интересных и важных в практическом отношении систем, отсылаем читателя к монографии Ефремова [16]. На фотографиях, взятых из этой книги (рис. ПО и 111), мы видим квазикристал-лическое строение структурированных систем, наличие дальнего порядка и дефектов, характерных для реальных кристаллов. ПКС образуются преимущественно за счет фиксации частиц во втором минимуме. Расчет, проведенный Ефремовым и Нерпиным для моделей коллективного взаимодействия, показал, что симметричное расположение частиц как раз отвечает минимуму потенциальной энергии системы. [c.284]

    На фотографиях, взятых из этой книги (рис. XIV. 9, XIV. 10), видно квазикри-сталлическое строение структурированных систем, наличие дальнего порядка и дефектов, характерных для реальных кристаллов. ПКС образуются преимущественно за счет фиксации частиц во втором минимуме. Расчет, проведенный Ефремовым и Нерпиным для моделей коллективного взаимодействия, показал, что симметричное расположение частиц как раз отвечает минимуму свободной энергии системы. [c.277]

    Другая особенность влияния реальной структуры твердого тела на интенсивность адсорбционного влияния среды связана с тем, что дефекты структуры обладают избыточной свободной энергией, прояв-ляюш,ейся, например, в виде энергии границ зерен поликристалла Огз (см. 2 гл. I). Наличие такого связанного с дефектами структуры запаса энергии в деформируемом твердом теле приводит к тому, что в присутствии адсорбционно-активной среды трещинам разрушения оказывается термодинамически более выгодным развиваться вдоль подобных дефектов, и если в обычных условиях поликристаллический материал может разрушаться по телу зерен, то в присутствии активных расплавов происходит преимущественное распространение трещин по границам зерен. В качестве предельного случая такого облегченного распространения трещин по границам зерен может рассматриваться выполнение условия Гиббса — Смита (см. 3 гл. П1) — условия термодинамической выгодности образования жидкой прослойки вдоль границы зерна  [c.340]

    Большинство природных и используемых в технике искусственных твердых веществ находится в по-ликристаллическом состоянии, т. е. структура их представляет собой совокупность беспорядочно ориентированных мелких кристаллов (зерен), размер которых зависит от условий кристаллизации. В по-ликристаллическом состоянии анизотропия проявляется только при преимущественной ориентации отдельных зерен. При росте кристаллов вследствие изменения условий кристаллизации и наличия примесей возможны нарушения кристаллической решетки — дефекты в кристаллах. [c.31]


Смотреть страницы где упоминается термин Преимущественные дефекты: [c.148]    [c.48]    [c.61]    [c.61]    [c.7]    [c.7]    [c.190]    [c.373]    [c.323]    [c.213]    [c.203]    [c.369]    [c.363]    [c.250]    [c.94]    [c.335]   
Химия и технология ферритов (1983) -- [ c.37 ]




ПОИСК







© 2025 chem21.info Реклама на сайте