Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликристаллические материалы

    Особое место среди неметаллических неорганических материалов занимает керамика. Керамическими материалами называют любые поликристаллические материалы, получаемые спеканием неметаллических порошков природного или искусственного происхождения. Существует прогноз, что грядущий XXI в. будет веком керамики. Перспективность керамики как материала будущего обусловлена его многофункциональностью, доступностью сырья, относительно низкими энергетическими затратами при получении, большой безопасностью и экологическими преимуществами керамического производства. [c.177]


    Для контроля структуры материалов в большинстве случаев используют влияние структуры и фазового состава на затухание илн скорость распространения ультразвуковых колебаний в металлах и сплавах. Предпосылкой возможности ультразвукового структурного анализа металлов явились теоретические и экспериментальные исследования процессов поглощения и рассеяния ультразвука в поликристаллических материалах, проведенные отечественными и зарубежными учеными [68, 70, 81, 148 и др. . Установленные закономерности влияния структуры и химического состава на затухание ультразвуковых колебаний в металлах и сплавах позволили разработать методики производственного контроля и создать специальную аппаратуру. Опыт показывает, что для изучения особенностей структуры металла по затуханию УЗК не всегда необходимо определять коэффициент затухания по известной методике, рассмотренной в начале настоящей главы. Например, для оценки общей неоднородности структуры сварного шва достаточно проследить характер изменения амплитуды сигнала по длине шва на некоторой заданной частоте ультразвуковых колебаний без вычисления коэффициента затухания (рис. 40). [c.67]

    На кинетику процесса большое влияние оказывает структура углеродного материала частицы твердого топлива. Наиболее распространенные в природе виды чистого углерода алмаз и графит. Алмаз — типичное кристаллическое образование с четким размещением атомов в кристаллической решетке. Графит — аморфное углеродное образование, имеющее структуру, состоящую из хаотически распо ложенных кристаллитов. Графит является поликристаллическим материалом — его поверхность образована различными кристаллографическими поверхностями. Размеры кристаллитов в графите колеблются в широких пределах от десяти до десятков тысяч ангстрем. [c.140]

    Таким образом, на основании исследований различных авторов нельзя прийти к определенному выводу относительно однородности или неоднородности тех или иных поверхностей. Вполне возможно, что некоторые из исследованных поверхностей были однородны по отношению к изученному типу хемосорбции. Если энергия активации поверхностной миграции невелика, то та небольшая степень неоднородности, которую можно ожидать на поликристаллических материалах, может приводить к выравниванию состава адсорбированной смеси. Поэтому также вполне понятно, что опыты с одним адсорбатом (азотом) могут приводить к выводу об однородности поверхности, в то время как опыты с другим адсорбатом (окись углерода) как будто доказывают существование определенной степени неоднородности, как это и наблюдалось в опытах Эммета и Куммера. [c.130]


    При изучении структуры поликристаллических материалов необходимо учитывать большой комплекс факторов, включающих тип межатомных связей, размеры кристаллитов, наличие нескомпенсированных связей, в том числе на гранях кристаллитов, структуру тонких пленок на поверхности частиц, структуру межкристаллитных и внутрикристаллитных пор. Исследования последних лет показывают, что практически для всех видов материалов от анизотропного до изотропного важнейшей структурной единицей в микромасштабе (менее 200 нм) является пачка углеродных слоев. Структура пачек определяет взаимодействие между ними, оказывая влияние на ряд структурно-чувствительных показателей. [c.24]

    Для исследования поликристаллических материалов, к которым относятся практически все кристаллизующиеся полимеры, используется метод Дебая-Шеррера (метод порошка). Если на поли-кристаллический образец падает пучок монохроматического рентгеновского излучения, то в образце всегда найдутся кристаллы, которые будут находиться в условиях, когда выполняется формула Вульфа-Брэгга. Так как эти кристаллы ориентированы в образце хаотически, то при отражении от каждой системы параллельных плоскостей внутри таких кристаллов возникнет конус дифрагированных рентгеновских лучей. Ось этого конуса совпадает с направлением первичного пучка лучей. Поставив за образцом перпендикулярно лучу кассету с плоской фотопленкой, получают на пленке систему колец. [c.171]

    В результате адсорбции ПАВ по местам дефектов кристаллической решетки (микротрещин, зародышевых трещин, границ зерен в поликристаллических материалах) облегчаются деформация и разрушение любых твердых материалов. Адсорбция ПАВ уменьшает поверхностную энергию и тем самым облегчает образование новых поверхностей при разрушении материалов. [c.315]

    Ниже Тс кристаллический полимер, как правило, представляет собой более хрупкий материал, чем аналогичный полимер в аморфном стеклообразном состоянии. При температурах, превышающих Гс, аморфные области частично кристаллического полимера находятся в высокоэластическом состоянии. Поэтому в области между Тпл и Гс такие полимеры значительно более эластичны по сравнению с обычными поликристаллическими материалами (например, [c.158]

    В поликристаллических материалах полоса скольжения ограничена одним зерном. Предполагают, что она ведет себя, по крайней мере временно, как изолированная аморфная область. Поэтому на том этапе деформации, когда возникают полосы скольжения, можно считать, что материал растягиваемого образца состоит из смеси двух фаз одной, имеющей аморфную , и другой, имеющей чисто упругую природу. [c.177]

    Коэффициент линейного расширении поликристаллических материалов определяется технологией их получения. В первую очередь он зависит от вида исходного сырья. Из хорошо графитирующихся с высокой пикнометрической плотностью прокаленных нефтяных коксов получается графит с низким коэффициентом линейного расширения. [c.100]

    Рассмотренные механизмы разрушения поликристаллических материалов дают основное представление о современном понимании многих явлений, происходящих при хрупком разрушении реальных деталей машин и конструкций. Указанные явления могут быть положены в основу развития физических теорий надежности деталей машин и конструкций, заложенных в формуле (3). [c.28]

    При Я с й ультразвук поглощается в каждом зерне, как в одном большом кристалле, и затухание определяется в основном поглощением. В гетерогенных поликристаллических материалах, например в чугуне или стали, затухание практически определяется рассеянием ультразвука на границах зерен и структурных составляющих. Влияние структуры металла на затухание ультразвуковых колебаний используют для исследования структурных факторов поликристаллических металлов. [c.10]

    Количественный рентгенофазовый анализ, в задачу которого входит определение количественного содержания отдельных фаз в многофазовых поликристаллических материалах, основан на зависимости интенсивности дифракционных максимумов (отражений) от содержания определяемой фазы. С увеличением содержания той или иной фазы интенсивность ее отражений увеличивается. Однако для многофазовых препаратов зависимость между интенсивностью и содержанием данной фазы неоднозначна, поскольку величина интенсивности отражения определяемой фазы зависит не только от ее содержания, но и от показателя ослабления i, характеризующего степень ослабления рентгеновского пучка при прохождении через данное вещество. Указанный показатель ослабления исследуемого вещества зависит от показателей ослабления и содержания всех фаз, входящих в его состав. Таким образом, любой метод количественного анализа должен тем или иным способом учитывать или исключать влияние изменения показателя ослабления при изменении состава препаратов, нарушающего прямую пропорциональность между содержанием данной фазы и нитснсив-ностью ее дифракционного отражения. [c.89]


    Удельное электросопротивление металлов р существенным образом зависит от концентрации дефектов кристаллического строения. Хорошо известно, что на величину р влияют точечные дефекты и дислокации. Однако влияние границ зерен на величину электросопротивления поликристаллических материалов исследовано весьма слабо. Подобные результаты могут быть получены исследованием зависимостей величины электросопротивления р от среднего размера зерен ё. В обычных поликристаллах с размером зерен в десятки и сотни микрометров эффект, связанный с границами зерен, мало существен в связи с невысокой протяженностью границ зерен в структуре. С другой, стороны, в случае наноструктурных металлов размер зерен становится соизмеримым с величиной свободного пробега электронов проводимости. В связи с этим проблема электросопротивления наноструктурных металлов приобретает большой интерес как с физической, так и с практической точек зрения. [c.162]

    Дифракционные картины поликристаллических материалов представляют собой концентрические кольца. Для аморфных материалов наблюдаются лишь [c.327]

    Рассказ о современных материалах и о роли химии в их разработке и получении можно существенно расширить и дополнить, если рассматривать и классифицировать их по структурному признаку. В твердофазном материаловедении понятие структуры — собирательное название характеристик материалов. Оно может означать как пространственное взаимное расположение атомов или ионов относительно друг друга (кристаллическая или рентгенографическая структура), так и взаимное расположение структурных элементов и фаз в поликристаллическом материале (микроструктура или керамическая структура). Иногда еще говорят о тонкой (реальной) кристаллической структуре, или субструктуре, имея в виду поверхностные и объемные несовершенства типа областей когерентного рассеяния, остаточных микроискажений и дефектов упаковки. Обычно твердые тела делят на две большие группы — кристаллические и некристаллические (аморфные или стеклообразные). Первые характеризуются наличием дальнего порядка в расположении атомов, ионов или молекул, а вторые — отсутствием такового. Согласно современной терминологии стеклом называют все аморфные тела, полученные путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания, обладающие в результате постоянного увеличения вязкости механическими свойствами твердых тел. При этом процесс перехода из жидкого в стеклообразное состояние обратим. Промежуточную группу образуют стеклокристаллические материалы, многие из которых уже рассматривались. Это ситаллы, в том числе и шлакоситалл. В группу некристаллических материалов, помимо хорошо всем известных стекол, в последнее время входят аморфные металлы и сплавы переходных металлов с неметаллами. Аморфные металлы можно получать различными методами, но среди них лишь способ быстрой закалки из жидкого состояния имеет пока практическое значение, В настоящее время применяют два основных метода 1) расплющивание капель 2) быстрая закалка расплава на вращающемся металлическом диске или барабане, охлаждаемом до очень низких температур (чаще всего до температуры жидкого азота—196 " С). Аморфные металлические материалы, полученные в виде ленты, называют металлическими стеклами. Для изготовления массовых изделий из аморфных металлов чаще всего применяют метод ударного сжатия при прессовании аморфных порошков. Среди металлических стекол, находящих практическое применение, в первую очередь интересны материалы, сочетающие свойства сверхпроводников с удовлетворительными механическими свойствами, в частности высокой прочностью и определенной степенью деформируемости. Интересно, что и в этой области используют приемы частичной кристаллизации металлических стекол. По сути дела так получают стеклокристаллические материалы с требуемыми меха- [c.157]

    Безусловно, что группа кристаллических материалов является наиболее обширной. Среди них имеет смысл выделить монокристаллы, поликристаллические материалы, ультрадисперсные кристаллические порошки и пленки. Формально сюда же можно отнести материалы на основе жидких кристаллов, полученные относительно недавно, но уже нашедшие широкое применение. [c.158]

    Некоторые драгоценные камни не являются монокристаллами, среди них наибольшую ценность представляет опал, характеристики которого приведены в гл. 6. В поликристаллических материалах внутренние границы между слагающими их очень мелкими кристаллитами рассеивают свет таким образом, что вещество становится полупрозрачным или даже непрозрачным. Вот почему прозрачный кристалл кварца, раздробленный молотком на мельчайшие кусочки, превращается в довольно тусклый белый порошок. В качестве еще одного примера можно привести мел, представляющий собой непрозрачную форму карбоната кальция. Он совершенно прозрачен, если образует монокристаллы, которые геологи называют кальцитом. Стекло также прозрачно и широко используется для изготовления недорогих украшений. Стекла отличаются от монокристаллов тем, что в них отсутствует правильное расположение атомов и наш атомный микроскоп обнаружил бы довольно хаотическую структуру, без выдержанной упорядоченности, свойственной кристаллическим материалам. Отсутствие упорядоченного строения неизбежно приводит к тому, что стекла лишены внутреннего отражения, присущего кристаллическим драгоценным камням, и потому их нельзя сравнивать с монокристаллами. [c.14]

    Для описания направлений ориентации кристаллитов можно использовать ориентацию элементарной ячейки. Обратная полюсная фигура дает вероятность нахождения данной ориентации образца в положении, параллельном ориентации кристалла (элементарной ячейки). Получив дифрактометрические данные для нескольких рефлексов, и объединив соответствующие полюсные фигуры, можно построить полную функцию распределения ориентации кристаллитов в однофазном поликристаллическом материале. [c.50]

    Применяемые в технике материалы обычно представляют собой поликристаллические материалы. Если твердое тело содержит более одного кристалла, то возникают области несогласованности в местах соприкосновения соседних кристаллов. Каждый отдельный кристалл принято называть зерном, а область несогласованности— границей зерен. Прямое наблюдение материалов в виде специально изготовленных из них препаратов — аншлифов с помощью металлографической микроскопии позволяет фиксировать непосредственно наличие границ зерен в различных материалах. На рис. ПО приведена микрофотография портландцементного клинкера, иллюстрирующая природу различных фаз, из которых состоит этот материал, и наличие границ зерен. В физико-химическом аспекте важно отметить, что атомы на границе зерен имеют повышенную энергию по сравнению с атомами внутри зерна, и как следствие этого большую реакционную способность. В связи с этим важное значение приобретает площадь границ зерен, приходящаяся на единицу объема. Существуют статистические подходы, позволяющие при наличии сведений о микроструктуре образца оценить площадь зерен, приходящихся на единицу объема 5 (мУм ). Не приводя вывода и строгого доказательства, отметим лишь, что [c.381]

    Для вычисления Рд в поликристаллических материалах нет необходимости определять критический параметр микроструктуры 6. Это связано с тем, что корреляцию разрывной прочности обычно можно получить путем сравнения с коэффициентом затухания, измеренным на высшей частоте области рэлеевского рассеяния, например на частоте 100 МГц. [c.753]

    Металлов в некоторой мере может ассимилировать, йй-пример, я-электроны и создавать тем самым специфическую адсорбцию дополнительно к электростатической. Поверхность металлов и особенно сталей неоднородна как по химическому составу, так и по наличию на ней различных дефектов, свойственных поликристаллическим материалам, границ зерен, вакансий, дислокаций и др. Эта неоднородность создает энергетическую дифферен-цированность поверхности и в результате различные по адсорбционной активности участки. Поэтому на одних ее частях могут прочно блокироваться хемосорбирован-ные частицы ингибитора, на других он удерживается силами физической адсорбции, а третьи могут оставаться свободными от ингибитора. [c.92]

    I. Каков элементарный акт упорядочения. Т еории кристаллизации поликристаллических материалов в большей своей части базируются на постулировании флуктуационного преодоления энергетического барьера при образовании зародышей новой фазы (центров кристаллизации или конденсации), го есть образовании устойчивой поверхности и дальнейших эле.ментарных актах присоединения и роста этой фазы [10]. [c.16]

    Аппарат ДРМк-2,0. Специализированный многоканальный рентгеновский дифрактометр, предназначенный для массового фазового анализа многокомпонентных поликристаллических материалов. Наличие 5 каналов позволяет по сравнению с одноканальным прибором в 5 раз сократить время анализа другой тип подобного аппарата (автоматический дифрактометр типа ДАРП-2,0) — проводить одновременный фазовый анализ в поликристаллических материалах до 10 фаз. [c.76]

    Исследование поликристаллических материалов методом порошка в подавляющем большинстве случаев не дает достаточных данных для расшифровки тонкой структуры кристаллических веществ, хотя в некоторых редких случаях по порошкограмме удается даже расшифровать атомную структуру вещества. Задача инди-цирования рентгенограмм по методу порошка при неизвестных параметрах решетки однозначно решается только для кристаллов с высокой симметрией. Применение метода порошка для этой цели при низкой сингонии кристалла возможно в отдельных частных случаях при малых параметрах ячейки. Вместе с тем исследование поликристаллических материалов позволяет успешно решать целый ряд разнообразных задач. В табл. 11 приведены данные для выбора метода и соответственно схем съемки в зависимости от задачи рентгенографического анализа, параметров, анализируемых на рентгенограмме, и требований к характеру рентгенограмм. [c.83]

    Возрождение интереса к данной проблеме стало возможным в 1920 - 1930-е гг., когда техника физического эксперимента достигла уровня, обеспечивавшего корректное измерение малых нелинейных акустических эффектов. Стимулом к дальнейшей разработке соответствующих теоретических представлений оказался интерес к определению упругих констант высших порядков для кристаллов и поликристаллических материалов. Классический пример анализа проблемы, не утративший своего значения до сегодняшнего дня, содержится в трудах Ф. Мурнагана [283], который развил Лагранжеву модель с целью прогнозирования взаимодействия напряжений с конечными деформациями и доказал принципиальную возможность расчета изменений скорости упругой волны по известным значениям напряжений и упругих модулей второго и третьего порядка. Первые попытки экспериментального определения упругих модулей материала при статическом нагружении образцов были осуществлены в 1938 г. Ф. Бирчем [152]. [c.17]

    Адсорбция примесей на границах зерен поликристаллических материалов может вызвать резкое изменение их свойств, и прежде всего механических (с этим, в частности, связана так называемая красноломкость сталей, которая вызывается адсорбцией серы, а также меди на границах зерен). Для заищты от этих вредных явлений необходима очистка материала от опасных примесей возможен также иной, адсорбционный путь—введение более поверхностно-активных добавок, не вызывающих подобных эффектов, но способных вытеснить вредные примеси с границ зерен (либо добавок, связывающих такие примеси). [c.115]

    Физико-химические пути создания метастабильностн исходной системы связаны обычно с изменением температуры или реже давления в системе, а также с остава растворителя. Возникновение пересыщения (переохлаждения) в водных парах лежит в основе метеорологических явлений (образование облаков). С процессами образования диспе1хшых систем при изменении температуры связано получение ва х поликристаллических материалов в металлургии при этом задача управления дисперсностью образующихся сплавов часто является центральной в проблеме создания высокопрочных конструкционных материалов современной техники. [c.165]

    В фазовых контактах [15] сцепление частиц обусловлено близкодействующими силами когезии, реализуемьши на площади, значительно превышающей по своим линейным размерам элементарную ячейку, т. е. сцепление осуществляется по крайней мере 10 — 10 межатомными связями. В этом случае контактная поверхность может бьггь подобна участку границы зерна в поликристаллическом материале, и переход, из объема одной частицы в объем другой осуществляется непре рывно внутри одной фазы (см. рис. Х1-16, в), что и дает основание для используемого термина. Минимальное значение прочности таких контактов можно оценить как [c.379]

    За небольшим исключением поликристаллические материалы металлургического происхождения С обычной дислокационной структурой имеют относительно низкий уровень (гр 1 %) демпфирования и потому не могут быть использованы для защиты от шумов и вибраций. Однако, используя специальные приемы достигнутые в микрометаллургии, можно создать такие структуры в микрокристаллах, демпфирующая способность которых будет на 2—3 порядка выше. Так, например, уровень внутреннего трения в НК меди при 300 К может меняться от 5-10 (г з = 0,3% плотность дислокаций мала) до 5-10" (г = 30%). В последнем случае НК содержит большое количество смешанных 60-град дислокаций с вектором Бюргерса Ь = а/2 [101], расположенных вдоль оси роста высокий уровень демпфирования этих НК сохраняется до —1100 К- [c.505]

    Поверхность металлов и особенно сталей неоднородна как по химическому составу, так и по наличию на ней различных дефектов, свойственных поликристаллическим материалам границ зерен, вакансий, дислокаций и др. Эта неоднородность создает энергетическую диффе-ренцированность поверхности и в результате различные по адсорбционной активности участки. Поэтому одни ее части могут прочно блокировать хемосорбированные частицы ингибитора, на других он удерживается силами физической адсорбции, а третьи могут оставаться свободными от ингибитора. Значительной неравномерностью поверхности отличаются, например, нормализованные стали, границы раздела фаз которых обладают повышенной адсорбционной способностью вследствие повышенной свободной энергии. Вероятно, у нормализованных сталей молекулами ингибитора заполняются сначала наиболее активные центры поверхности, а потом наименее активные. У закаленных сталей все центры характеризуются сравнительно одинаковой и повышенной энергией, их заполнение молекулами ингибитора осуществляется практически одновременно и почти в 2 раза быстрее, чем у нормализованных сталей. [c.146]

    Известно, что уменьшение степени дисперсности можно вызвать нагреванием. Наиболее изучено это явление для случая рекристаллизации поликристаллических материалов. Законы ее сформулированы еще Г. Тамманом (Таттап, 1929). Остановимся на тех из них, которые представляют интерес для графитации. [c.204]

    Коэффициенты линейного расширения поликристаллических углеродных материалов всегда ниже таковых для монокристаллов вследствие их аккоКлодации пустотами, порами, трещинами и т.д. (см. рис. 43). Коэффициент линейного расширения поликристаллических материалов очень быстро увеличивается при повышении температуры измерения в интервале — 100 -5-0 °С, затем его рост замедляется. При этом для всех практически важных графитовых материалов температурные коэффициенты одинаковы и равны 0,2 10" /100 °С - в интервале 20-400 °С, 0,2 10" /500°С выше 1000 °С. Это позволяет, основываясь на эмпирически найденных значениях а для какого-либо температурного интервала, рассчитать его для другого интервала температур. Однако, как отмечается 8 работе [38], такой пересчет справедлив лишь до 2200 °С, поскольку выше этой температуры для всех исследованных марок расширение графита не полностью обратимо, причем остаточное удлинение тем выше, чем больше анизотропия теплового расширения. [c.99]

    При проведении теоретических расчетов анизотропии модуля Юнга считается, что упругие свойства поликристаллических материалов определяются константами упругости монокристаллов и преимущественными ориентировками зерен в пространстве [299, 301-305, 307]. При этом обычно пренебрегают взаимодействием между соседними зернами и пользуются различными аппроксимациями. Наиболее близкой к эксперименту является аппроксимация Хилла, который предложил брать среднее от аппроксимаций Фойгта (одинаковая деформация всех зерен) и Ройсса (одинаковое напряжение во всех зернах). Бунге в работе [292] рассчитал зависимость величины модуля Юнга от ориентации в плоскости прокатки для холоднокатаной Си. При этом полученная зависимость аналогична по форме экспериментальным данным и ощибка не превышает 7%. Аналогичные исследования были выполнены для Fe промышленной чистоты и Nb [293], стали [294], Си [295]. [c.175]

    Сверхпластичность материалов — это явление чрезвычайно высокой пластичности, составляющей сотни и тысячи процентов удлинения при растяжении (наиболее жесткой схеме механических испытаний) и наблюдающееся в поликристаллических материалах с размером зерен (кристаллитов) обычно менее Юмкм при их деформации в определенном температурно-скоростном интервале, как правило, Т = 0,5-0,6 Тпл (Тпл — температура плавления), и скоростях деформации Ю -Ю с 1 [335, 348]. [c.202]

    Особое место среди неметаллических неорганических материалов занимает керамика. Керамическими материалами называют любые поликристаллические материалы, получаемые спеканием неметаллических порошков природного или искусственного происхождения. Совсем недавно средства массовой информации (телевидение, центральная печать, радио) почти одновременно распространили прогноз, в соответствии с которым XXI в. знаменует начало керамической эры. Что же лежит в основе подобного прогноза Можно выделить несколько причин, среди которых наиболее существенны, с нашей точки зрения, следующие 1) возможность на основе керамических материалов создавать принципиально новые материалы с необычными свойствами (например, пластичную керамику) 2) возможность создания на основе керамических материалов принципиально новых типов приборов и машин (иапрнмер, электрохимических датчиков, химических источников тока, электролизеров с керамическими электролитами)  [c.150]

    В Советском Союзе искусственные алмазы были получены кол- лективом сотрудников Академии наук СССР под руководством академика Л. Ф. Верещагина. Синтезированные в Институте высоких давлений АН СССР поликристаллические материалы баллас и карбонадо во многих отношениях не уступают природным. Значительную роль в разработке методов синтеза алмазов и в развитии промышленности синтетических алмазов сыграл коллектив Института сверхтвердых материалов Академии наук Украинской ССР, руководимый В. Н. Бакулем. [c.53]

    Здесь г - расстояние между диполями, jXz компонента магнитного момента/i/, параллельнаяВо, 0-угол между магнитным полем Во и вектором г, который соединяет оба диполя. Как видно из уравнения (1.31), диполь-дипольное взаимодействие убывает достаточно быстро, как третья степень расстояния между двумя магнитными диполями. Кроме того, эта величина анизотропна и при os 1/3 обращается в нуль. Соответствующий угол в, значение которого равно примерно 55°, называют магическим углом. При других значениях угла в в твердых телах, как в монокристаллах, так и в поликристаллических материалах, наблюдается расщепление резонансных линий. Однако поскольку кроме взаимодействия с ближайшими соседними ядрами существует еще и более слабое взаимодействие с другими ядрами в данной молекуле, а также взаимодействие ядер, относящихся к различным молекулам, в общем случае в поликристаллических или аморфных телах наблюдается не расщепление, а лишь уширение линий поглощения. Как следует из уравнения (1.31), наличие зависимости величины диполь-ди-польного взаимодействия от расстояния между спинами позволяет определять расстояние между двумя ядрами, что особенно важно для ядер Н, так как при установлении структуры молекул с помощью рентгеноструктурного анализа точность определения этого параметра невелика. [c.29]

    Когда поликристаллические материалы изготовляют из тонких порошков, степень вторичной рекристаллизации зависит от размера частиц исходного материала. При использовании грубозернистого материала происходит значительно меньший относительный рост зерен. Причиной этого является специфика скоростей образования центров кристаллизации и роста кристаллов. В тонкоизмель-ченных материалах, как правило, имеется небольшое число частиц, размер которых значительно больше, чем средний размер частиц. Такие частицы могут действовать как зародыши вторичной рекристаллизации, поскольку в системе уже имеются условия, при которых бмакс>бср И рост зерен происходит со скоростью, пропорциональной величине 1/бср. При увеличении же размера частиц исходного материала вероятность присутствия зерен с размером, значительно большим, чем средний, сильно уменьшается, в связи с чем образование центров кристаллизации и вторичная рекристаллизация очень затрудняются, причем скорость роста зерен, пропорциональная 1/бср, также оказывается меньшей. [c.387]

    В Германии имеется, по-видимому, наилучшим образом скоординированная и наиболее эффективная на Западе программа развития и автоматизации средств неразрушающей диагностики. Практически все исследования по акустоупругости сосредоточены в ведущем центре из) е-ния проблем неразрушающего контроля -в институте Фраунгофера (г. Саарбрюк-кен). Здесь под руководством Е. Шнейдера и К. Геббельса изучается влияние микроструктуры вещества на характер типичных зависимостей акустоупругости. Большое внимание уделяется исследованию частотной зависимости скорости распространения и поглощения ультразвука в деформированных поликристаллических материалах [195, 218, 286, 322 - 325]. Некоторые прикладные и смежные с акустоупру-гостью проблемы решаются в лабораториях известной приборостроительной фирмы Крауткремера, однако, публикации носят скорее рекламный, чем научный характер. Возможности акустических методов диагностики напряжений в сравнении с другими методами рассматриваются в работах [c.26]


Смотреть страницы где упоминается термин Поликристаллические материалы: [c.76]    [c.318]    [c.721]    [c.753]   
Искусственные драгоценные камни (1986) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Поликристаллический



© 2025 chem21.info Реклама на сайте