Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Визуальные кривые

    Охлаждение растворов производили смесью этилового спирта сухой углекислоты до —70° или в жидком азоте до более низких температур. Температуры начала кристаллизации снимались визуально, а для очень вязких и непрозрачных смесей (полигликоли) температуры ликвидуса определялись по снятым визуально кривым нагревания и охлаждения, приче.м ряд опытов показал приемлемое совпадение температур ликвидуса, определенных визуально и по кривым нагревания. Скорость [c.284]


    Визуально на этом графике обнаруживаются три характерные особенности первая — затянутый начальный рост с последующим резким подъемом, что можно объяснить как сложностью самой системы, так и постепенным вовлечением в ее развитие сил и средств вторая — ступенчатый характер кривой, что позволяет предполо ть развитие системы через эволюцию своих подсистем третья — резкий рост со сглаженными ступеньками на финишном участке кривой — окончательное формирование ГА-тех-ники как системы и ее дальнейшее развитие как единого целого. [c.40]

    Существуют две основные методики термического анализа 1) визуальный метод и 2) метод кривых время—температура. [c.378]

    Было установлено, что резкое изменение наклона кривых на рис. 5.15 связано с присутствием или отсутствием водяной пыли в газовой фазе. По мере того, как происходило увеличение расхода газа от низких значений без какого-либо существенного содержания водяной пыли в газовом потоке, увеличивалась высота волн в пленке жидкости даже в том случае, когда расход жидкости оставался постоянным. Как можно видеть из рис. 5.16, такое увеличение высоты волны (и соответствующее увеличение фактора трения) продолжается до тех пор, пока от волн не начнут отрываться капли, после этого высота волн начинает понижаться по мере того, как возрастающие касательные силы вырывают больше и больше капель жидкости с гребней волн. Влияние кажущегося числа Рейнольдса жидкости иа величину кажущегося числа Рейнольдса газа, при котором совершается такой переход, отображено на рис. 5.17 (условия такие же, как и использованные для построения рис. 5.15). Нанесенные точки включают результаты как визуальных наблюдений начала образования водяной пыли, так и наблюдений, отвечающих перемене режима течения, которую можно определить по пикам кривых на рис. 5.15. [c.102]

    При опускании сферы через нефть и спуске ее ниже границы раздела каждый раз захватывается различное количество нефти. Этим, по-видимому, и объясняется различие в наклоне кривых а. Однако эффект от длительного старения границ раздела (кривые б) значительно перекрывает разброс в наклоне кри вых а. Это можно объяснить тем, что на межфазной поверхности образуется практически неподвижный структурированный слой, и течение нефти происходит в промежутке между твердой поверхностью и структурированным слоем. Неподвижность границы раздела нефть — вода наблюдалась визуально. [c.55]


    По сути дела в методе фотометрического интерполирования искомая величина 1д(/дг//,) определяется расстоянием (по оси 1 т) между характеристическими кривыми, построенными для линии определяемого элемента и линии элемента сравнения (рис. 3.24,6), с тем лишь отличием, что всю эту процедуру выполняют визуально, не прибегая к построению самих кривых. [c.120]

    При подборе чувствительности прибора исходят из того, что высота полярографической волны должна быть не менее 25 мм, а начальный участок полярографической кривой не должен быть слишком наклонным. Чувствительность прибора подбирают визуально либо проводя съемку полярограммы. [c.164]

    Визуально сравнивают осадки олова толщиной 10 мкм, полученные из электролитов № 1 и № 2 при комнатной температуре и плотности тока 200—300 А/м , и объясняют различия, основываясь на поляризационных кривых. [c.30]

    Стеклянный электролизер небольшого размера с медным анодом, горизонтально расположенным катодом из медной проволоки диаметром 1—2 мм и электролитическим ключом устанавливают на предметный столик длиннофокусного микроскопа типа МБС и снимают гальваностатическую поляризационную кривую, одновременно отмечая визуально наблюдаемые изменения вида осадка и рост дендритов (увеличение около Х20). [c.136]

    В кислотно-основном титровании при визуальном определении точки эквивалентности применяют индикаторы, окраска которых в растворе зависит от pH. Необходимо знать, как меняется pH в процессе титрования для этого строят кривые титрования. [c.60]

    Случайная индикаторная ошибка. Если систематическая индикаторная ошибка равна нулю, т. е. достигнуто совпадение значений показателей титрования и индикатора, то всегда остается случайная индикаторная ошибка, связанная с тем, что при визуальном определении точки перехода окраски индикатора из-за физиологических особенностей зрения значение ее можно определить только с колебаниями 0,4 единицы. Рис. Д.59 иллюстрирует влияние этой ошибки. Абсолютное значение случайной ошибки АС зависит от скачка ёрН/ёС на кривой титрования в точке эквивалентности. Считая отрезок между рН1 и рНа на кривой рис. Д.59 линейным, получим следующую зависимость [c.153]

    В спектрофотометрии устраняются субъективные ошибки, зависящие от наблюдателя, измерение проводится объективно и точно. Спектрофотометры дают возможность записать ход кривой титрования и найти точку эквивалентности. Надежные результаты получаются и в случае визуально трудно различаемой окраски. Возможность фотометрической индикации точки эквивалентности не только в видимой части спектра существенно расширяет границы применимости метода. [c.360]

    Полярографическая установка служит для получения поляро-грамм, т. е. кривых зависимости силы тока, протекающего через раствор, от потенциала, приложенного к рабочему электроду. Прибор состоит из трех основных узлов электролитической ячейки с рабочим электродом и электродом сравнения, источника напряжения для поляризации рабочего электрода и устройства для регистрации тока. Регистрация может быть визуальной, фотографической и автоматической. Принципиальная схема полярографической установки с ртутным капающим электродом представлена на рис. 22.2. В качестве неполяризующегося электрода сравнения используется слой ртути на дне ячейки. Применяются также и другие электроды сравнения каломельный, ртутно-сульфатный, хлорсеребряный и др. Рабочим электродом может быть также твердый микроэлектрод, изготавливаемый из платины, золота, графита, стеклоуглерода и других материалов. [c.271]

    Более удобен метод термического анализ.а, который является частным случаем физико-химического анализа. В основе термического анализа лежит экспериментальное установление температур фазовых превращений, наблюдающихся при медленном изменении температуры изучаемой системы. Наступление того или иного фазового превращения отмечается либо визуально, что возможно для прозрачных растворов и при не слишком высоких температурах, либо путем изучения площадок и перегибов на кривых зависимости температуры от времени. Последний способ более универсален и получил широкое распространение, особенно после работ Н. С. Курнакова. [c.155]

    Электролитическая ячейка, блок питания и блок-регистратор вольтамперной кривой — основные узлы полярографа. В поляро-графах различных типов плавно изменяющееся с определенной скоростью (до нескольких сотых вольта в 1 с) напряжение подается на ячейку от механического делителя напряжения. Возникающий в ячейке ток после соответствующих преобразований регистрирует специальное устройство. В полярографах современных моделей [ППТ-1, ПУ-1, ЬР-7, Ш-7е (ЧССР), ОН-101, ОН-102, ОН-104, ОН-105 (ВНР)] имеется записывающее устройство— в ходе анализа полярограмма записывается пером на диаграммной ленте, которая перемещается вертикально синхронно с подаваемым напряжением. Отклонение пера по горизонтали пропорционально току ячейки. В полярографах старых конструкций (ЬР-60 и др.) регистрация тока была визуальной или фотографической. [c.147]


    При визуальной расшифровке электронограмм некогерентное рассея-ние можно не учитывать — человеческий глаз хорошо чувствует нарушения плавного спада интенсивности почернения фотопластинки и легко замечает максимумы и минимумы, соответствующие кривой когерентного рассеяния. [c.295]

    Ход кривых титрования бывает различным. Если активность титруемого вещества (или показатель концентрации его ионов) рассматривать как функцию степени оттитровывания, то весьма целесообразной оказывается логарифмическая кривая, особенно при объяснении визуальной индикации конечной точки титрования при помощи окрашенных индикаторов. Изменение физико-химических свойств в системе титруемое вещество — реагент [c.63]

    При титровании по методу осаждения показатель титрования рассчитывают из произведения растворимости образующейся малорастворимой соли [уравнение (3,3,1) . Приведенные на рис, 3 6 кривые титрования в соответствии с уравнениями (3,4,5) и (3.4.4) показывают, что скачкообразное изменение показателя концентрации титруемых ионов в точке эквивалентности тем меньше, чем меньше концентрация реактивов титриметрической системы и чем более растворима осаждающая соль. Так как подходящие индикаторы часто отсутствуют, число визуально выполняемых титрований по методу осаждения невелико . Физико-химическая индикация, напротив, привела к более значительному распространению титриметрии по методу осаждения. Особое значение приобрели такие методы, в которых индикация конечной точки титрования осуществляется радиометрическим, кондуктомет-рическим (см. стр. 164) и амперометрическим (см. стр, 137) методами. [c.79]

    Результаты изображают графически, откладывая суммарное количество ионита, прошедшего через данное сито (в г или см ), как функцию размера отверстий сит в мм. По экспериментальным точкам строят кривую и определяют интерполяцией по графику размер отверстий сита, через которое могло бы пройти 50 % общего количества ионита, т. е. эффективный размер зерна. Затем аналогичным путем определяют размеры отверстий сит, через которые могли бы пройти 10 и 80 % ионита, и рассчитывают коэффициент однородности. Более точные измерения размеров зерен ионита можно проводить методом визуальной микроскопии, микрофотографии. [c.692]

    Практическое значение для анализа имеет область кривой титрования, называемая скачком титрования, в которой происходит резкое (скачкообразное) изменение свойства системы. Это связано с тем, что в области скачка происходит изменение концентрации реагирующих веществ на несколько порядков (см. табл. 7.11). Началом скачка титрования считают момент добавления 99,9 /о титранта (т. е. недотитровано 0,1% анализируемого вещества), концом скачка — добавление 100,1% (т. е. вещество перетитровано на 0,1%). При визуальном фиксировании точки конца реакции с помощью вводимых в систему индикаторов необходимо провести предварительный расчет области скачка титрования, чтобы правильно выбрать индикатор (интервал перехода окраски индикатора должен полностью или частично укладываться в пределы скачка титрования). [c.152]

    Дифференциальный термический анализ (ДТА) — один из основных методов физико-химического исследования. Он позволяет изучать характер фазовых превращений и осуществлять построение диаграммы состояния (ДС). Этот метод широко используется при исследовании металлических, солевых, силикатных и прочих систем. Большую роль метод ДТА сыграл в развитии современной химии полупроводников. Область применимости этого метода не ограничивается построением ДС, Он с успехом может быть применен при исследовании тепловых эффектов химических реакций, при изучении процессов диссоциации, для качественного и количественного определения фазового состава смесей и определения теплот фазовых переходов.-Метод ДТА является наиболее универсальным из известных методов термического анализа. Так, метод визуального политермического анализа применим для исследования прозрачных объектов (главным образом, некоторых солевых систем). Метод кривых температура — время не обладает достаточной чувствительностью. Метод ДТА свободен от этих недостатков. [c.7]

    У г а и Я, Л., Тр. Воронежск. гос. унив., 23, Сб. раб, Хнм, фак., 15 (1952),, 1стод визуальный, кривые охлаждения и нагревания с автоматической записью в сосудиках Степанова.. Мол. %. [c.513]

    Визуальная кривая даёт представление о величине светового потока, но не характеризует непосредственно его цветности. Цвет свечения в технике количественно может быть вЕ.1ражен двояким путём. В первом случае параметрами его служат цветовые координаты х и у, полученные, например, по системе МКО [81, 176]. При втором способе, особенно удобном в светотехнических расчётах, цвет определяется доминирующей длиной волны излучения и коэффициентом его насыщенности. Детали расчётов для получения соответствующих параметров цвета могут быть найдены в цитированной выше литературе, В дальнейшем изложении для большей наглядности цвета катодолюминофоров характеризованы цветовыми координатами с нанесением их фигуративных точек на цветовой треугольник. [c.159]

    Согласно графическому методу, данные наносят на график и затем проверяют на отклонения от линейности. Решение об удовлетворительном соответствии прямой линии имеюш,имся данным делают интуитивно при визуальном изучении этих данных. Если есть сомнение, следует использовать больше данных или, сравнивая многочлены второй степени с прямой линией или многочлены га-й и (п — 1)-й степеней применять статистические методы. Хотя эти методы не дают возмо.жности, вообш,е говоря, сравнивать соответствие различных кривых экспериментальным данным, они могут помочь оценить соответствие двух прямых линий или более. Следовательно, графический метод имеет дополнительное преимущество, поскольку он позволяет рационально сравнивать кинетические уравнения. представленные прямыми линиями в подходящих координатах. В качестве примера может служить нахождение зависимости порядка реакции при помощи графика зависимости ] г от lg С. [c.96]

    Экспериментальные данные для построения диаграмм состояния получают либо методом визуального наблюдения за изменением состояния системы в процессе изменения ее температуры, либо методом кривых охлаждения. По визуальному методу [1агре-тую до нолнон однородностп систему медленно охлаждают и наблюдают температуру, при которой появляются очаги повой фазы (кристаллики, капельки). [c.168]

    Для проведения эксперимента исследуемое вещество доводят до заданной температуры при непрерывной ее регистрации. Это производят или визуально с помощью термоизмерительного прибора или автоматически терморегистрирующей аппаратурой. Результаты эксперимента представляются кривыми зависимости температуры выбранной точки вещества (или функции от нее) от времени [c.318]

    Если скорость изменения напряжения, подаваемого на ячейку, велика (до нескольких десятков вольт в 1 с), визуальные и самопишущие регистраторы, в силу их инерционности нельзя использовать, вместо них индикатором служат электронно-луче-вые трубки. Полярографические приборы, в которых скорость изменения напряжения велика и полярографическая кривая регистрируется на экране осциллографа, называют осциллографи-ческими полярографами. На полярографическую ячейку накладывается постоянное напряжение от потенциометра полярографа и переменное напряжение от генератора, изменяющееся во времени линейно, по форме пилы , треугольника, трапеции. Напряжение от ячейки подается на горизонтальные пластины элек-троно-лучевой трубки, падение напряжения на сопротивлении 2 (рис. 2.25), пропорциональное току ячейки, — на вертикальные пластины. Во всех случаях на экране регистрируется вольтамперная кривая соответствующей формы (рис. 2.26). [c.147]

    Низкочастотные структуроскопы позволяют визуально или автоматически анализировать форму кривой напряжения измерительной обмотки проходного ВТП. Для возбуждения ВТП чаше всего используется регулируемый ток промышленной частоты, мощность источника при этом достаточно велика и позволяет получить сильное магнитное поле. В ряде приборов применяют генераторы с набором частот от одного до тысячи герц. Исследуемая форма кривой напряжения получается при встречном включении обмоток двух ВТП, в одном из которых находится контролируемый объект, а в другом - стандартный образец. [c.181]

    Техника проведения амперометрического титрования. При проведении амперометрнческого титрования с применением твердых электродов используют те же приемы, что и при снятии вольтамперных кривых (обработка электродов, присоединение их к прибору). Однако показания прибора всегда фиксируют визуально. Для этой цели можно использовать амперотитраторы. Поскольку метод амперометрического титрования относится к инструментальным методам титриметрического анализа, все приемы последнего должны строго соблюдаться. Исследуемый раствор разбавляют в мерной колбе до метки соответствующим фоном (а не водой). В ряде случаев к исследуемому раствору добавляют вещества для снижения растворимости осадка (например, спирт) или для создания определенной кислотности раствора. [c.165]

    После этого фиксируют механизм стопорным винтом. В режиме периодической развертки осциллографа подбирают временные характеристики последнего. Переводят осциллограф в режим ждущей развертки. После этого нажимают на спусковой рычаг пружинного толкателя. На основании серии пробных опытов с визуальным контролем уточняют режим работы осциллографа. Затем снимают шприцы, заполняют их растворами и вновь устанавливают на блоке смесителя. Присоединяют тремостатирующие блоки, соединенные с водяным термостатом. После установления температуры (контролируется с помощью микротермистора ММТ-54 и мостовой схемы) производят серию кинетических опытов, как описано аь1ше, с фотографической регистрацией кинетических кривых. Обработку кривых ведут с помощью диапроектора. [c.268]

    При достижении определенной концентрации двойных частиц их распады уравновешивает процесс слипания одиночных частиц, вследствие чего численная концентрация золя становится постоянной. В некоторый момент к одной из двойных частиц прилипает третья частица, образуя тройнук> частицу. Энергия связи каждой из трех частиц образовавшегося агрегата в два раза больше, чем у частицы, входящей в двойную частицу. Поэтому такая тройная частица имеет мало шансов распасться. Одновременно происходит дальнейший рост агрегатов за счет присоединения новых частиц. И действительно, визуальные наблюдения под микроскопом показали, что в некоторый момент среди сравнительно слабо видимых частиц (по вспышкам в поле зрения поточного ультрамикроскопа) появляются все более яркие и коагуляция все более ускоряется. Этим объясняется форма кривых с перегибом. При более высоких концентрациях электролита вследствие снижения энергетического барьера и углубления потенциальной ямы горизонтальные участки графика укорачиваются и, наконец, исчезают, но 5-образная форма кривых сохраняется. Таким образом, при изучении коагуляции необходимо учитывать не только процессы агрегации, но и распада агрегатов. [c.268]

    Иногда на обычных полярограммах наблюдаются превышения тока над предельным током диффузии. Эти явления называются полярографическими максимумами. Ток в максимуме может превышать а в десятки и даже сотни раз. А. Н. Фрумкин и Б. П. Брунс впервые высказали предположение, что возникновение тока, превышаюш,его обычный предельный ток диффузии, связано с размешиванием раствора, вызываемым тангенциальными движениями ртутной поверхности. Такие движения можно наблюдать визуально на ртутном электроде (В. Зейдель, X. Антвейлер). Максимумы на поляризационных кривых наблюдаются для жидкой ртути и исчезают при ее замерзании, хотя все другие условия электролиза остаются постоянными. [c.200]

    Экспериментально температуры плавления чистого, вещества и температуры начала и окончания кристаллизации раствора несложно определить визуально, наблюдая за состоянием вещества и отмечая температуру изменения фазового состояния системы. Но можно поступить и по-другому. Начнем охлаждать чистую жидкость и через некоторые промежутки, времени (30 с, 1 мин) будем отмечать температуру вещества. После того как жидкость превратится в кристаллы, построим график зависимости температуры от времени и получим так называемую кривую охлаждения (при повышении температуры аналогичным образом строится кривая нагревания). Так построена кривая 1 на рис. 74. Наклонный участок А отвечает равномерному охлаждению чистой жидкости А. При температуре ее кристаллизации, равной температуре плавления Тп.чА,. вещество начинает кристаллизовываться, и за счет выделения теплоты температура в системе сохраняется постоянной (число, степеней свободы равно нулю), что на графике отображается площадкой Ат+Ак . Система остается двухфазной, пока вся жидкость не превратится в кристаллы, после чего начинается равномерное охлаждение кристаллов — участок Лк . Таким, образом, определив графически температуру площадки , находим температуру плавления или температуру замерзания чистого вещества. [c.152]

    Колориметрические определения основаны на сравнении поглощения или пропускания светового потока стандартным и исследуемым окрашенными растворами. В практике преобладает фотоколориметрия, где для измерений используются фотоэлементы, так как визуальные измерения менее объективны. В основе метода лежит объединенный закон Бугера — Ламберта — Бэра (см. с. 6). Полученная по экспериментальным данным зависимость А=1(с) в виде прямой или кривой (при отклонении от закона Бэра) может далее служить калибровочным графиком. При помощи этого графика по оптической плотности раствора определяется концентрация данного компонента в растворе. Недостаточная монохроматичность поглощаемого светового потока обычно вызывает отрицательные отклонения от закона Бэра тем большие, чем шире интервал длин волн поглощаемого светового потока. Поэтому для увеличения чувствительности и точности фотометрического определения на пути светового потока перед поглощающим раствором помещают избирательный светофильтр. Светофильтры (стекла, пленки, растворы) пропускают световой поток только в определенном интервале длин волн с полушириной пропускания Я1У2макс—Я 1/2 макс- Этот интервал Характеризует размытость максимума пропускания (рис. 155). Чем он уже, тем выше избирательность применяемого светофильтра к данным длинам волн. [c.361]

    Конечную точку титрования можно установить непосредственно достаточно точным добавлением титранта по каплям. Для логарифмических кривых титрования точка эквивалентности должна попадать на скачок титрования (т = 1). В соответствии с законом действующих масс активности титруемого вещества и титранта изменяются в этот момент на несколько порядков. Если один из реактантов отличается от остальных легко различимыми признаками, то по нему можно зафиксировать момент окончания реакции (например, перманганатометрия, иодометрия, процессы осаждения и растворения). В этом случае реакция является самоиндикаторной. Широка используемый прием индикации конечной точки титрования заключается в добавлении к титриметрической системе многоцветных индикаторов такой же химической природы. Если общая концентрация индикатора составляет примерно 10" —10 концентрации титруемого вещества, то при т = 1 происходит скачкообразное изменение свойств индикаторной системы, воспринимаемое визуально как момент окончания реакции. Это становится возможным при наличии определенных соотношений между константами равновесий в системах титруемого вещества, титранта и индикаторной системы. [c.68]

    Визуальное определение конечной точки титрования часто сопряжено с трудностями. Выбор индикатора зависит от типа кривой титрования ipaзд. 3.4.2.1). Чем больше величина скачка в точке эквивалентности, тем благоприятнее предпосылки для резкого изменения окраски от наименьшего количества добавляемого титранта (1 капля). Принципиально подобные же соображения справедливы при оценке кривой полученной при потенциометрическом титровании (см. стр. 121). [c.76]

    Для титрования в неводных средах (см. стр. 49) в качестве растворителя пригодна уксусная кислота. Вследствие своего амфипротного характера (константа аутопрсто-лиза р/С 14,4 DK = 6,13) она особенно пригодна для титрования таких слабых оснований, при титровании которых в воде не получаются удовлетворительные кривые титрования. В безводной уксусной кислоте возможна визуальная индикация конечной точки титрования с окрашенными индикаторами, однако выбор их может быть осуществлен только эмпирически. [c.79]

    Для того, чтобы снять полярографическую кривую, заполним ячейку, например, 1 10- М раствором ZnS04 в 0,1 Ai растворе КС1 (фон). Перемещая вручную или автоматически движок делителя Я сверху вниз со скоростью изменения потенциала, не превышающей 0,1 в сек, и регистрируя изменения величины тока, проходящего через ячейку, визуально или автоматически, получим прямую полярографическую волну, или прямую полярограмму (рис. 111). [c.171]

    На рис. 25 приведены также кривые зависимости рМ (— lg [М1) от 1 для визуального титрования. Отсутствие скачка на обеих кривых показывает невозможность проведения количественных определений. Из сравнения этих кривых с кpивы пl спектрофотометрического титрования становятся ясны преимущества последнего перед визуальным комплексонометрическим титрованием. Этот вывод справедлив в отношении всех титриметрических методов, момент эквивалентности в которых определяется по скачку на кривых титрования. [c.60]


Смотреть страницы где упоминается термин Визуальные кривые: [c.166]    [c.562]    [c.338]    [c.61]    [c.168]    [c.97]    [c.453]    [c.40]   
Катодолюминесценция (1948) -- [ c.158 , c.159 ]




ПОИСК







© 2025 chem21.info Реклама на сайте