Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообмен основные принципы

    ОСНОВНЫЕ ПРИНЦИПЫ СИНТЕЗА ИОНООБМЕННЫХ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ И ИХ КЛАССИФИКАЦИЯ [c.49]

    Хотя основные принципы ионного обмена, а также непрерывно публикуемые результаты последних работ в этой области могут быть известны читателю, все же существует настоятельная потребность в рассмотрении и оценке различных новых ионообменных теорий и экспериментальных фактов по мере их появления. Пристального внимания заслуживают также новые области применения ионного обмена, прогресс которых становится возможным благодаря более глубокому пониманию сущности ионообменных процессов. [c.8]


    Для разделения и определения неорганических веществ наиболее широко применяется ионообменная хроматография. Распределительная хроматография имеет значение для веществ, способных при подходящих условиях переходить в органическую фазу. Осадочная хроматография, основные принципы которой были сформулированы недавно, еще не нашла себе достаточного применения, хотя также может быть использована для решения ряда практических задач. [c.64]

    Основные принципы синтеза ионообменных смол [c.56]

    Благодаря успехам, достигнутым в области теории динамики ионообменной сорбции, радиохроматографический метод может быть применен к определению ряда важных параметров, характеризующих работу ионообменных сорбционных колонок. Приводим краткое изложение основных принципов методики определения таких параметров, как константы обмена, ионное отношение, емкость поглощения сорбентов. [c.95]

    Некоторые из классических методик ионообменного разделения неорганических веществ эффективны и оригинальны. Они являются ценным источником хроматографической информации. В гл. 2 дан обзор основных принципов разделения методом ионной хроматографии, которые иллюстрируются характерными примерами. Обсуждаются также приемы работы и конструкция колонок, смолы и детекторы. [c.13]

    Одной из причин недостаточного внедрения ионообменной хроматографии в повседневную практику лабораторий является отсутствие руководств, в которых были бы подробно изложены основные принципы метода, его особенности и конкретные описания методик применительно к анализу черных и цветных металлов. [c.9]

    Для понимания сущности ионообменных реакций (часть I) и сознательного составления их уравнений необходимо знать , стехиометрические законы, строение вещества, теорию электролитической диссоциации, правило направления ионообменных реакций, закон действующих масс, принцип Ле Шателье, изменение энергии Гиббса (или Гельмгольца), реакции и основные константы веществ. [c.27]

    В своем первоначальном варианте метод хроматографического разделения был основан на различной степени адсорбции компонентов смеси и сводился к многократному установлению равновесия между твердым неподвижным адсорбентом и перемещающимся по колонке раствором разделяемой смеси веществ. В настоящее время в хроматографии, помимо адсорбции, используют и другие явления. При распределительной хроматографии на разделение влияют коэффициенты распределения компонентов смеси между двумя жидкими фазами, а при ионообменной хроматографии — неодинаковая степень диссоциации компонентов и связанная с ней различная прочность соединения с ионообменником. Все методы хроматографического разделения основаны на принципе многократного установления равновесия, но различаются по методическим особенностям и по характеру основного физико-химического явления, на котором основан данный метод. Поэтому распределительной и ионообменной хроматографии посвящаются отдельные главы (гл. ХУП и XX). [c.335]


    Большинство отечественных и зарубежных специалистов, оценивая технические показатели и стоимость разработанных в настоящее время процессов доочистки, приходят к выводу, что наиболее эффективными и экономически целесообразными методами являются фильтрование, обработка стоков реагентами, сорбция на активном уг.че и ионообменных смолах [2—8]. Другие технологические приемы доочистки в силу различных причин пока еще недостаточно широко внедряются в промышленных масштабах. Вот почему при описании технологических схем доочистки биологически очищенных сточных вод в этой главе основное внимание уделено анализу работы и опыту эксплуатации действующих промышленных установок, в которых использованы принципы фильтрования, реагентной обработки и сорбции или различные сочетания этих технологических приемов. [c.237]

    Тонкослойная хроматография является вариантом жидкостной хроматографии, протекающей в тонком слое сорбента, причем толщина слоя существенно меньше его ширины (не менее чем в 5 раз). В тонкослойной хроматографии используются те же варианты, что и в колоночной жидкостной хроматографии. По составу фаз, участвующих в процессе хроматографического разделения, можно выделить следующие основные виды тонкослойной хроматографии [2] жидкость—[твердое тело], жидкость — [жидкость — твердое тело] и жидкость—[гель]. Разделение может быть реализовано при использовании различных принципов удерживания, поэтому тонкослойная хроматография бывает адсорбционной, распределительной, ионообменной, молекулярно-ситовой и аффинной. [c.5]

    В гл, 2 описаны ионообменные мембраны, используемые в электромембранных процессах, и основные физико-химические и гидродинамические принципы таких процессов, В гл. 3 рассмотрены [c.8]

    Поскольку ионообменные зерна и мембраны изготовляются из ионообменных смол, они обладают аналогичными химическими и физическими свойствами. Однако многие аспекты ионного обмена, важные для мембран, не имеют отношения к зернам, и наоборот. Принципы ионного обмена здесь обсуждаются в основном в той мере, в какой они относятся к электромембранным процессам. [c.30]

    Принципы разделения, описанные в предыдущих главах, разумеется, могут быть использованы в качественном анализе, хотя во многих случаях оказываются достаточными и более простые методы. Разделение ионов противоположного знака с помощью сульфокислотного катионита в Н-форме, исследованное в первой работе Самуэльсона [25], имеет большое значение в качественном анализе. В случае, если проба содержит фосфатные, боратные или оксалатные ионы, ее анализ не может быть выполнен обычным путем без предварительного удаления этих анионов. Отделение катионов от анионов может быть достигнуто с помощью катионита сульфокислотного типа. Этот метод является более быстрым и (во всяком случае для неопытного аналитика) более легким, чем обычные более старые методы. В Королевском Технологическом институте (Стокгольм) ионообменный метод с 1946 г. используется в основном курсе анализа [27 ]. [c.399]

    Как известно, применяемые в настоящее время неорганические ионообменные сорбенты (окиси, гидроокиси и соли металлов, алюмосиликаты, силикагели, пермутиты, бентониты, глаукониты, цеолиты и т. д.) обладают высокоразвитой удельной поверхностью, способностью к химической, молекулярной сорбции и сорбции коллоидных частиц, повышенной радиационной и термической стойкостью. Они, как правило, слабо набухают в водных растворах, и ионный обмен происходит в основном на поверхности сорбента, так что кинетика обмена не осложняется процессами, связанными с диффузией ионов в фазе самого сорбента, как это имеет место в случае большинства ионообменных смол. С другой стороны, ионообменные смолы превосходят неорганические сорбенты по таким важным показателям, как величина емкости, основность или кислотность, химическая стабильность. Понятно, что определенный интерес представляет получение ионообменников, сочетающих в себе свойства ионообменных материалов как минеральной, так и органической природы. Этой цели можно достигнуть, используя принцип получения комбинированных минерально-полимерных продуктов путем газофазной привитой полимеризации, осуществляя на неорганических сорбентах полимеризацию мономеров, дающих полимеры, способные к ионному обмену (сами по себе или после введения соответствующих ионообменных групп путем необходимых химических превращений) [1]. [c.168]

    Молекулярные сорбенты, такие как активированный уголь, силикагель, окись алюминия и другие, не обладают высокой специфичностью и, как правило, не могут быть использованы для избирательной сорбции. В отличие от этого иониты, особенно ионообменные смолы, обладают высокой специфичностью сорбции и, что особенно важно, могут быть синтезированы с наперед заданными свойствами. Простейшим примером избирательной сорбции в колонке на ионитах может служить разделение веществ с кислотными и основными свойствами — поглощение катионов катионитами и анионов анионитами. Другой пример фракционирования на основе того же принципа заключается в сорбции ионов малых размеров ионитами, не способными из-за недостаточной пористости поглощать большие ионы. Так, инсулин может быть отделен от белков сыворотки крови, глобулярные белки от продуктов их деструкции, получающихся нри разрыве S—S связей. Синтез ионообменных смол для этой цели, обладающих определенной степенью пористости, основан на введении определенного, ограниченного количества сшивающего агента. [c.118]


    Однако для всех ионообменных аппаратов должны существовать общие принципы, на основе которых можно найти связь между конструкцией аппарата и основными закономерностями и особенностями протекающего в нем ионного обмена. [c.255]

    Интересно отметить, что принцип образования нейтрализованных ионитов и механизм их взаимодействия с солевыми растворами может быть использован, очевидно, и для не смешивающихся с водой, но смешивающихся друг с другом жидких ионитов с кислотными или основными группами (т. е. экстрагентов, работающих по ионообменному механизму). Можно, вероятно, подобрать такую смесь взаимодействующих между собой (если не взаимодействующих, то работающих по принципу механической смеси катионита и анионита) жидких ионитов в соответствующих ионных формах, которые могут поглощать электролиты из растворов. Тогда после отделения органической фазы от воды такие иониты можно разделить обычными приемами (например, изменением температуры и др.) и раздельно реэкстрагировать катионы и анионы. Преимущество жидких ионитов в этом случае может быть в повышении производительности процесса. [c.89]

    Одна из основных особенностей студней по сравнению с блочным полимером — высокая доступность макромолекул, составляющих студень, для растворенных реагентов. Скорость диффузии низкомолекулярных веществ в студнях лишь немного ниже, чем в чистой жидкости, и на несколько порядков превосходит скорость диффузии в твердом полимере. Поэтому времена протекания реакций с участием полимера в студнях сопоставимы с продолжительностью реакций в гомогенной среде (в растворах). Но у студней имеется одно специфическое преимущество перед гомогенными средами — они не теряют свою геометрическую форму и устойчивы к механическим воздействиям. Собственно это обстоятельство и явилось одним из важнейших условий возникновения живых организмов на Земле, для которых характерен интенсивный обмен с окружающей средой без потери внешней формы. Здесь будет рассмотрено использование этого принципа сочетания стабильности формы (механической устойчивости) материала и высокой скорости протекания обменных реакций в области техники. На этом принципе основано действие ионообменных смол (ионитов). [c.235]

    Принципы ионного обмена базируются на процессах диффузионного переноса массы. Ионный обмен отличается от большинства других процессов тем, что основной промышленный метод применения неподвижного слоя является несколько более сложным для математической обработки, чем другие методы, в которых преобладают условия устойчивого состояния. Даже в тех случаях, когда обычно не применяются интегральные уравнения,. при проектировании ионообменного оборудования анализ основных вопросов дает ценное понимание качественного влияния изменений таких величин как размер частиц смолы, концентрация и скорость потока. Возможно, что методы конструирования оборудования в будушем будут зависеть в основном от хорошего знания тео рии ионного обмена. [c.58]

    В пособии изложены основные принципы. хроматографического анализа в применении к исследованию многокомпонентных растворов неорганических ве-ш,еств, теоретическое обоснование каждого метода, рассмотрены возможности того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообразовательная, окислительно-восстановительная хроматография в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, какие могут возникнуть в работе химика-аналитика как в чисто прикладном аспекте, так и в процессе научного эксперимента. Большое внимание в настоящем учебном руководстве уделено ионообменной хроматографии, ионообменни-кам и рассмотрению закономерностей статики и динамики ионообменных процессов, а также использованию ионитов, особенно органических, в аналитической химии. [c.2]

    Настоящее учебное пособие предназначено для студентов химических специальностей университетов. В методическом отношении оно отражает многолетний опыт преподавания автором спецкурса Хроматографический анализ растворов неорганических соединений в Одесском государственном университете им. И. И. Мечникова. В книге рассматриваются основные принципы хроматографии, их применение к исследованию многокомпонентных водных растворов неорганических веществ, теоретическое обоснование каждого метода, возможности использования того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообра-зовательная, окислительно-восстановительная в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, которые могут возникнуть в работе химика-аналитика. [c.3]

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]

    В последние два десятилетия был достигнут вначительный прогресс в изучении кристаллической структуры дисперсных минералов. Развитие теории и техники рентгенографического и электронномикроскопического анализов, применение ИК-спектроскопии и других современных физических методов для решения структурных задач позволило кристаллографам и минералогам выяснить не только основные принципы построения кристаллической решетки дисперсных минералов, но и установить ряд тонких особенностей в их структуре. Однако поверхностные свойства дисперсных минералов до недавнего времени были мало изучены. В частности, еще не выявлены закономерности ионообменных реакций для глинистых минералов и цеолитов, отсутствуют достоверные данные о положении обменных катионов в их решетке, до конца не раскрыта роль кристаллического и субмикроскопического строений, а также обменных катионов в адсорбционных процессах и формировании коагуляционно-кристаллизационных структур. Эти важные физико-химиче-ские проблемы всесторонне изучаются нами в Институте коллоидной химии [c.3]

    Главное внимание мы уделяем изложению в обобщенном виде теории процессов ионообмена, основных принципов синтеза ионообменных смол и методов испытания их физико-химических свойств. Значительное место в книге уделено свойствам ионообменных смол, особенно отечественных марок рассмотрены области применения ионообменных смол, при этом более подробно освещены вопросы очистки и обессоливания воды, улавливания, очистки и концентрирования ценных материалов. Вопросы технологии производства ионитов и аппаратурного оформления различных ионообменных процессов нами не освещаются, так как каждый из них требует специальной монографии. [c.5]

    Наиболее быстрыми темпами развиваются процессы, связанные с применением ионообменных мембран. Наибольшее промышленное применение в настоящее время получил процесс электродиализа, хотя основные принципы этого процесса были известны давно. В разработке теории и практики этих процессов выдающееся значение принадлежит работам И. И. Жукова. В этих работах детально исследованы элек-трокинетические свойства неактивных и активных мембран и показана значительная роль структурных свойств диафрагм и мембран. Для вывода основного уравнения электродиализа последний рассматривали как сложный процесс, являющийся сочетанием электролиза, диализа и электроосмоса. Полученное основное электрохимическое уравнение электродиализа для случая электрохимически неактивных и активных мембран было подтверждено многочисленными экспериментальными работами. [c.5]

    Пористые мембраны, к числу которых относятся различные коллоидное, керамические, пергаментные и разработанные в последнее время ионообменные мембраны, обладают в принципе ситовым механизмом дей- ствия. Однако задержка ими различных растворенных частиц объясняется не только величиной, но также ад-сорбируемостью или знаком заряда частиц. Пористые мембраны можно разделить на две основные группы — диали-зующие мембраны и молекулярноионные сита. [c.213]

    В книге достаточно детально рассмотрены основные преимущества и недостатки классического метода определения аминокислотного состава белков с помощью ионообменной хроматографии по Муру и Стейну даны указания относительно выбора ионообменников, подготовки реактивов и численной интерпретации результатов. Значительное место также уделено изложению принципов анализа аминокислот методом газожидкостной хроматографии. Применение этого метода, обладающего на 2—3 порядка большей чувствительностью по сравнению с нингидринной реакцией по Муру и Стейну, позволяет значительно снизить количества белка, требуемые для определения его состава. Анализ аминокислот с помощью газожидкостной хроматографии пока еще не находит широкого применения, однако имеющиеся в ли-Фературе данные позволяют считать этот метод весьма перспективным. Кроме того, обсуждаются возможности использования газожидкостной хроматографии в сочетании с масс-спектромет-рией для определения состава и аминокислотной последовательности в пептидах. [c.4]

    Совершенно новые возможности открылись для применения явления ионообменной сорбции в течение последних двух десятков лет в связи с синтезом ионообменных смол. Последние представляют собой полимеры, несущие кислотные или основные функциональные группы. В первом случае это катиониты, т. е. сорбенты, способные к обмену катионов, во втором — аниониты. Направленный синтез ионообменных смол открыл большие возможности для получения ионитов, несущих различные кислотные или основные радикалы, способных находиться не только в солевой, но и в кислотной или основной форме, а также ионитов, обладающих различной, в том числе и очень значительной, емкостью сорбции. На основе органического синтеза и процессов полимеризации и поликонденсации имеется возможность получать иониты, обладающие исключительно большой избирательностью сорбции ионов. Один из принципов синтеза специфических ионитов основан на использовании в качестве мономера при получении ионообменной смолы вещества, являющегося аналитическим реактивом, например осадителем, на тот или иной ион. Так, например, описан ионит, избирательно сорбирующий ионы калия [5] и не обладающий подобными свойствами по отношению к ионам натрия. Избирательной способностью сорбировать поны тяжелых металлов обладают иониты, содержащие сульфгидрильные функциональные группы [6]. Перспективным является также 1Ювоо направление синтеза специфических ионитов на основе введения комплексона в структуру смолы [7]. [c.7]

    Изложены принципы действия и описаны устройства всех основных типов ион-се.пективных электродов на основе ионообменных смол, кристаллические и гетерогенные твердые мембранные электроды, мембранные электроды на основе жидких ионообменников. Описано их применение для определения содер/кания различных катионов и анионов в природных и сточных водах. [c.262]

    В принципе почти все ионообменные разделения могут быть в той или иной степени автоматизированы, однако, как и следовало ожидать, до сих пор развитие автоматических методов почти полностью сосредоточено на длительных и трудоемких разделениях аминокислот и сахаров, определение которых является важной частью биохимических и клинических исследований. Различается два основных уровня автоматизации оборудования для ионообменной хроматографии а) автоматизация последовательности операций от загрузки пробы в колонку до колориметрического измерения и регистрации концентраций разделенных компонентов и 6) автоматизация не только разделения и регистрации данных, но и последовательной загрузки ряда проб после каждого законченного aнaJ изa. Ниже описываются примеры автоматического оборудования для ионообменной хроматографии обоих типов с указанием классов анализируемых соединений. [c.285]

    Следует отметить, что термин субстанциональные свойства очень удачен. Во-первых, он прямо указывает на то, что эти свойства принадлежат субстанции, т. е. первоначально взятому веществу такого-то химического состава. Во-вторых, он говорит именно о свойствах вещества, а не о составе. Дело в том, что каталитические свойства лишь в конечном итоге определяются химической природой вещества. Ближайшим же фактором, определяющим их, являются или электронные, или кислотно-основные свойства субстанции. Надо иметь в виду, что даже такие далекие друг ог друга по составу вещества, как, например, окисел металла и чисто органический полимер, в принципе могут обладать одинаковъгми полупроводниковыми свойствами и. следовательно, до известной степени одинаково катализировать реакции. То же относится к таким разным веществам, как протонные кислоты, некоторые соли и ионообменные смолы. [c.221]

    Хотя принцип ионного обмена использовался в сахароварении для удаления кальция перед выпаркой и кристаллизацией еще в XIX веке, широкое изучение процессов очистки сахара при помощи ионитов было начато лишь в 1940 г. Начиная с 1942 г., были достигнуты значительные успехи в разработке процессов хюнного обмена в применении к технологии производства сахара из свеклы, сахарного тростника и других видов сырья. Основное назначение ионообменных процессов—увеличение выхода сахара и уменьшение выхода патоки. Увеличение выхода высокосортного сахара сопровождается, кроме того, устранением образования накипи на поверхностях выпарной аппаратуры и снижением рас-х одов на топливо и рабочую силу. [c.103]

    Эти примеры иллюстрируют приведенные выше факты. Почти любое вещество, которое образует ионы, может быть десорбировано из ионообменной смолы. Вещества, которые образуют катионы, обмениваются с катионообменной смолой, а те вещества, которые образуют анионы, обмениваются с анионообменными смолами. Несмотря на то, что этот принцип является в основном простым, механизм ионного обмена еще полностью не установлен. [c.20]

    Ионообменное фракционирование протеинов. Фракционирование протеинов плазмы крови с использованием ионитов было разработано Рейдо.м и Джонсом В7, 68, 69]. Метод основан на принципе осаждения протеинов обессоливанием, при котором уменьшается ионная сила раствора он дает результат, аналогичный диализу или разбавлению с изоэлектрическим корректированием pH и не имеет недостаттков, свойственных таким методам, особенно в большом масштабе [70]. При периодическом добавлении катионита и анионита (в смеси или отдельно) к сыворотке протоплазмы или при пропускании раствора протеина через колонну с обоими ионитами в пределах pH = 6—8 происходит осаждение некоторых протеинов, так как ионная сила раствора непрерывно понижается. Разделение осадков, образовавшихся при определенной заданное ионной силе, позволяет выделить из плазмы или сыворотки фракции глобулярных протеинов, богатых каким-либо одним компонентом в жидкой фазе основным компонентом является альбумин. [c.616]


Смотреть страницы где упоминается термин Ионообмен основные принципы: [c.44]    [c.573]    [c.4]    [c.19]    [c.183]    [c.224]   
Ионообменная технология (1959) -- [ c.12 ]

Ионообменная технология (1959) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Основные принципы синтеза ионообменных высокомолекулярных соединений и их классификация



© 2025 chem21.info Реклама на сайте