Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы соединение друг с другом

    Если в растворе молекула полимера не имеет определенной фиксированной третичной структуры, например, в гелях, то ее можно рассматривать как статистический клубок . Для описания поведения таких макромолекул в качестве модели обычно используют так называемый эрзац-клубок Куна . В то время как в реальной полимерной цепи отдельные связи и углы между ними достаточно жесткие и имеет место лишь более или менее заторможенное вращение, свободно сочлененная цепь состоит из небольших, одинаковых, соединенных друг с другом участков , статистически ориентированных по отношению друг к другу. Длину этих участков называют персистентной длиной. Спрашивается, какова персистентная длина свободно сочлененной цепи, обладающей такими же физическими свойствами, как и реальная цепочечная макромолекула По персистентной длине можно судить о жесткости молекулы полимера. Среднеквадратичное расстояние между сонцами свободно сочлененной цепи / и ее радиус инерции г связаны с персистентной длиной а соотношением  [c.127]


    Ассоциация молекул в кристаллах приводит к плоскому строению всех групп, заметному увеличению длин кратных связей и еще большему укорочению длин центральных связей. Такой высокой чувствительности длин связей к межмолекулярным невалентным взаимодействиям не наблюдается у соединений других классов. Принято считать (в подавляющем большинстве случаев оправдано), что межатомные валентные расстояния являются наиболее консервативными молекулярными параметрами. [c.133]

    Точное положение максимума поглощения зависит от окружения хромофора, т.е. от строения молекулы. Изменения в химической структуре молекулы и, особенно, сопряжение хромофорных групп меняют длину волн и интенсивность их полос поглощения. Так, алкильные группы, расположенные рядом с хромофором, сдвигают полосу поглощения в сторону длинных волн (батохромный сдвиг) накопление в молекуле сопряженных двойных связей вызывает сдвиг в длинноволновую область примерно на 30-40 нм на каждую новую группу, а также увеличение интенсивности их поглощения. Характеристические линии поглощения многих ароматических (бензол, нафталин) и гетероароматических соединений (пиридин, хинолин) зависят от протяженности и расположения тс-электронной системы, что позволяет распознавать различные соединения одного и того же гомологического ряда. Наиболее сильное изменение спектра происходит при наличии в молекуле нескольких хромофоров наличие метиленовой группы между двумя хромофорами ослабляет их влияние друг на друга, и, если хромофоры разделены двумя или более метиленовыми группами, сопряжение исчезает. [c.182]

    Эта реакция идет лишь в присутствии катализаторов, напр., при пропускании смеси газов через уголь (сравни — фосген), особенно же хорошо—в присутствии камфоры. Вероятна, камфора играет здесь роль растворителя обоих газов и облегчает тем самым их соединение друг с другом в молекулы хлористого сульфурила некоторые авторы, однако, считают, что камфора первоначально дает непрочные химические соединения с хлором и с сернистым ангидридом При изучении влияния на образование хлористого сульфурила — целого ряда других органических соединений (кроме камфоры) — оказалось, что в качестве катализаторов этой реакции особенно пригодны эфиры, кетоны и ненасыщенные углеводороды [c.111]

    Оказалось, что способность многих полимеров испытывать большие обратимые деформации связана с внутренним вращением отдельных частей молекул относительно друг друга. Внутреннее вращение довольно хорошо изучено в случае низкомолекулярных органических соединений. Сначала предполагалось, что внутреннее вращение происходит без изменения энергии молекулы. Такое вращение называется свободным. Позднее С. Е. Бреслер и Я. И. Френкель показали, что внутреннее вращение в макромолекулах не является свободным вследствие взаимодействия химически не связанных между собой атомов. [c.18]


    Прошло более 100 лет с тех пор, как впервые было описано термическое разрушение каучука до изопрена, дипентена и других близких к ним и сравнительно простых молекул. Вскоре после этого открытия было установлено, что мономерный стирол может быть выделен с высоким выходом из продуктов пиролиза твердого прозрачного стекла, полученного при осторожном нагревании стирола. Однако работы по выяснению механизма реакций, приводящих к распаду полимеров, не давали существенных результатов вплоть до 20-х гг., когда было доказано существование и установлена природа цепных реакций и показано, что нитеподобные молекулы полимеров построены из простых молекул, соединенных друг с другом химическими связями. В начале 30-х гг. в результате исследования строения полимеров было получено много данных о распаде природных полимеров. Начавшееся вскоре быстрое развитие промышленности синтетических пластиков повысило интерес к этой области химии полимеров и внесло в нее ряд новых проблем, связанных со стабильностью больших молекул, как природных, так и синтетических. [c.9]

    Таким образом, возникают два противоположных и одновременно протекающих процесса. Следует заметить, что процессы структурирования должны развиваться не только под действием тепла, но и как прямое следствие процесса деструкции. При механической деструкции полимера на концах оборванных полимерных цепей возникают свободные валентности, а следовательно, становятся возможными все явления, связанные с реакционной способностью обрывков цепных молекул. Из сказанного вытекает, что во всякой системе перепутанных молекулярных цепочек, подвергающихся интенсивному механическому воздействию, приводящему к разрыву цепных молекул, неизбежно должны происходить два процесса деструкция и рекомбинация. Следовательно, в системе цепных молекул, соединенных друг с другом химическими связями, представляющей собой сплошную молекулярную сетку, в которой нельзя необратимо переместить один участок относительно другого в результате обычного процесса течения (обусловленного передвижением молекул, не связанных между собой химическими связями), можно добиться течения путем вальцевания и формования материала. [c.314]

    В настоящее время общепринятая картина строения жидкой воды может быть представлена в виде трехмерной сетки более или менее упорядоченно расположенных молекул, соединенных друг с другом Н-связями, число которых непостоянно и которые могут несколько изгибаться. Грант [821] назвал воду непрерывно меняющимся разветвленным полимером . Строение тяжелой воды ОгО отличается от описанного лишь в деталях [877]. [c.25]

    Гидролитическое расщепление солей происходит только в том случае, если составные части воды могут образовывать существенное количество недиссоциированных молекул с продуктами электролитической диссоциации солей, т. е. ион водорода — с анионом, а ион гидроксила — с катионом соли (или только один из ионов воды с одним из ионов соли). Это происходит тогда, когда соединение аниона с водородными ионами представляет собой слабую кислоту или соединение катиона 1с гидроксильными ионами является слабым основанием. Поэтому все соли происходящие либо от слабой кислоты, либо от слабого основания (либо от того и другого), претерпевают гидролитическое расщепление тем в большей степени, чем слабее кислота или основание. [c.878]

    Стереохимическая теория дает следующее объяснение способа разделения оптических антиподов при помощи оптически деятельных соединений. Ввиду того, что молекулы оптических антиподов вполне подобны друг другу и отличаются лишь как зеркальные изображения, они обладают одинаковыми свойствами, за исключением различного вращения плоскости поляризации и кристаллизации в энантиоморфных формах. Но если в молекулы двух оптических антиподов, относящихся друг к другу, как предмет к зеркальному изображению, ввести новую оптически деятельную группу, т. е. вращающую плоскость поляризации только в левую или только в правую сторону, то из двух антиподов получатся две конфигурации, также не совмещающиеся друг с другом, но уже ве относящиеся друг к другу, как предмет к зеркальному изображению. Например, если ввести оптически активную группу [c.585]

    Специфические физические свойства нестехиометрических соединений типа хозяин — гость зависят в основном от характера гостевого компонента и его взаимодействия с окружающей средой. Теория свободного объема Леннарда-Джонса и Девоншира была применена для характеристики термодинамических свойств клатратов неполярных соединений. Было получено превосходное совпадение между экспериментом и теорией. Хозяин и гость в некоторых клатратных соединениях взаимодействуют очень слабо. Поэтому оказалось возможным исследовать поведение индивидуальных веществ в газообразном состоянии, физически изолированных друг от друга. Взаимодействие гостей с хозяевами , ориентация гостевых молекул и их расположение в структурах связывали с физическими, электрическими и магнитными свойствами, диффузией, спектральными свойствами, теплоемкостью и эффектом Мессбауэра, т. е. со свойствами, которые можно измерить. [c.13]


    Согласно другой классификационной системе наибольшее значение придается наличию в молекуле той или другой функциональной группы, поскольку, как уже упоминалось, именно эти группы определяют химические свойства соединения. По этой системе вслед за рассмотрением углеводородов (не имеющих функциональных групп) идут группы соединений, обладающие галогенной, гидроксильной и другими функциями (табл. 6), причем в одном и том же классе оказываются соединения, содержащие различную основу молекулы, i. e., например, алифатические и ароматические амины рассматриваются вместе. [c.68]

    Хотя в целом значения Qa, как видно из табл. 6-3, могут меняться в довольно широких пределах, для протонов в близких по структуре и свойствам соединениях, в особенности для нейтральных радикалов, они, вероятно, весьма близки. На примере аллильного радикала можно проверить степень переноса значений Qa С одной молекулы на другие. Для положений 1 и 3, в которых имеется по одному атому водорода, следует принять значение Qa, равное 24,4 Гс (как в этильном радикале), а для центрального положения 2 с одним протоном — значение 26,2 Гс (изопропильный радикал). Используя среднее из двух расщеплений на протонах СНг-групп (13,93 и 14,83 Гс) и приняв Ра = 24,4 Гс, получим р1 = 0,589. Взяв <22=4,06 Гс и Qa = 2Ь,2 Гс, найдем р2= = —0,155. Сумма спиновых плотностей равна 1,023, что довольно близко к ожидаемому значению 1,000. Данные для аллильного и других нейтральных углеводородных радикалов в известной мере подтверждают общую применимость значений Qa. из табл. 6-2. В таких радикалах значение Qa около 27 Гс, по-видимому, лучше всего согласуется с экспериментальными данными для атомов углерода, соединенных с одним протоном. [c.134]

    Гибкость цепи — одна из важнейших характеристик полимера, определяющих его основные макроскопические свойства. Гибкость цепи — это способность ее изменять форму под влиянием теплового движения звеньев или внешнего поля, в которое полимер помещен. Это свойство макромолекул связано с внутренним вращением отдельных частей молекулы относительно друг друга, которое мы рассмотрим вначале на примере простых органических соединений. [c.54]

    Деление на истинные и аномальные смешанные кристаллы тесно связано с понятием изоморфизма (в его первоначальной формулировке), которое сыграло большую роль в изучении явлений сокристаллизации. Первоначально [56] под изоморфизмом понимались химическая аналогия двух веществ, одинаковый химический тип строения, а также близкое сходство или идентичность кристаллических форм (одинаковая кристаллическая структура и близкие параметры кристаллической решетки) и связанная с этим способность атомов, ионов или молекул замещать друг друга в кристаллах (частица на частицу) с образованием смешанных кристаллов. В дальнейшем, с появлением рентгеноструктурного анализа понятие изоморфизма модифицировалось. Гримм [57] сформулировал следующие три необходимых условия для образования смешанных кристаллов полярных соединений 1) химический тип строе- [c.62]

    Первая попытка создать теорию органических соединений была сделана после того, как в молекулах многих из них были найдены совершенно одинаковые группы атомов. Такова, например, группа из одного углеродного и трех водородных атомов. Эта группа, названная метильной или метилом , входит в молекулы таких отличных друг от друга соединений, как уксусная кислота и древесный спирт, как кипящий при минус 23,6 градуса метиловый эфир и плавящийся при плюс 177 градусах хинин. Ее можно найти и в молекулах других, еще более разительно несхожих между собой веществ. [c.137]

    НИЗКОГО разрешения (с однократной фокусировкой) позволяет определять молекулярный вес анализируемого соединения (с точностью до одной атомной единицы массы) и получать так называемую картину фрагментации (образование осколочных ионов) молекулы этого соединения, с помощью которой это соединение можно надежно идентифицировать. Кроме того, анализируя возможные пути фрагментации молекулы соединения, иногда удается установить природу содержащихся в нем функциональных групп. Лучшие результаты МС дает при анализе чистых веществ, а как раз для получения таких веществ из смеси и предназначена ГЖХ. При прямом соединении обоих методов отпадает необходимость сбора хроматографическн разделенных веществ, но часто требуется дорогой и чрезвычайно чувствительный прибор для соединения газового хроматографа с масс-спектрометром. При современном состоянии МС для получения масс-спектра высокого разрешения обычно требуется собрать нужное вешество, а затем уже ввести его в масс-спектрометр непосредственно или с помощью нагреваемого входного устройства. Анализ с помощью масс-спектрометрии высокого разрешения имеет огромное значение, так как он позволяет получить эмпирические формулы молекулярного и осколочных ионов исследуемого соединения. Поэтому крайне важное значение имеет и сбор хроматографически разделенных соединений. ГЖХ и МС в большой степени дополняют друг друга, и поэтому как при прямом, так и при косвенном объединении этих методов большую пользу может принести учет коррелирования масс-спектрометрических и хроматографических свойств исследуемого соединения. Цель приводимого ниже обсуждения — показать не преимущества прямого объединения ГЖХ и МС над косвенным объединением этих методов, а то, что каждый из этих способов объединения имеет свои хорошие стороны. Важна именно сама комбинация этих методов, а не то, как они объединены друг с другом. [c.294]

    Молекулярная кристаллическая решетка содержит в своих узлах молекулы веществ ковалентной природы, т. е. состоящих из атомов, соединенных друге другом ковалентными связями. Эти узловые молекулы связаны друг с другом слабыми ван-дер-ваальсовымн силами. Молекулярная кристаллическая решетма присуща самым разнообразным веществам элементарным окислителям, благородным газам, водородным, галогенным, кислородным соединениям неметаллов, всевозможным кислотам и. наконец, многочисленным органическим веществам. Молекулярным кристаллам свойственны малая механическая прочность, сравнительно большая летучесть и низкие температуры плавления. [c.70]

    Молекулярные твердые соединения построены из молекул, соединенных друг с другом лишь ван-дер-ваальсовыми силами, включая в определенных случаях водородные связи, и состав этих веществ есть сумма составов всех молекул, вошедших в его структуру. Они образуют молекулярные кристаллы, структурными единицами которых служат молекулы. Молекулярные твердые соединения образуются в результате отвердевания, т.е. фазового превращения вещества, когда имеет место лишь межмолекулярное взаимодействие и не происходит разрыв существующих или образование новых химических связей. При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, образуя настолько плотную упаковку, насколько позволяет конфигурация. молекул /69/. [c.107]

    Органический сапропелевый материал осаждается гораздо медленнее песка, но глинистый материал, как уже было показано, способен длительное время находиться во взвешенном состоянии, и поэтому понятно, почему органический материал и глинистые частицы могут осаждаться совместно, если вообще имело место поступление глинистого вещества. Так как глины, даже в неактивированном состоянии, способны превращать одни молекулы в другие, даже в пределах углеводородных классов, вообще менее способных к превращениям, чем соединения гетерогенного характера, образование углеводородов и близких к ним веществ сложной полициклической структуры кажется с химической точки зрения вероятным. С другой стороны, песок и карбонатные породы лишены ярко выраженных каталитических свойств, а потому совместное осаждение органического вещества теоретически не обеспечивает благоприятной обстановки для нефтепроизводящих процессов. Карбонатные породы, содержащие органическое вещество, являются продуктом превращений скелетных частей организмов, и, следовательно, невозможно как-то разъединять процессы отложения органического вещества и карбонатов. Вероятно, наличие карбонатов доля по препятствовать образованию нефти. Таким образом, приходится опираться главным образом на глинистые породы, ( держащие органическое вещество, как на благоприятную среду для нефтеобразовательных процессов. [c.202]

    Другим видом пространственной изомерии, не связанным с наличием несовместимого зеркального расположения атомов в молекулах, является геометрическая изомерия. Она вызвана неодинаковым размещением атомов и характерна для непредельных и циклических органических соединений. Различное расположение заместителей у углеродных атомов относительно двойной связи (в случае непредельных соединений) или плоскости цикла (в случае циклических соединений) — вот причина этого вида изомерии. В первом случае изомера-ыц являются вещества содержащие по одному неодинаковому заместителю у каждого из атомов, соединенных двойной связью. Вещество, в котором одинаковые заместители расположены по одну сторону плоскости, мысленно проведенной через двойную связь, называется цис- изомером. У транс-изомера заместители расположены по разные стороны этой плоскости. Для соединений, содержащих циклы, различие определяется тем, расположены ли одинаковые заместители по одну цис-) или по разные (траке-) стороны цикла. Таким образом, в 14ис-форме одинаковые заместители сближены, а в траке-форме удалены друг от друга. Примерами служат молекулы [c.112]

    Расположение молекул органических соединений определяется правилом Китайгородского. Согласно этому правилу, кристаллы с молекулярной структурой имеют склонность к наиболее плотной упаковке молекул, В большинстве случаев кристаллы органических соединений можно рассматривать как систему плотно уложенных слоев. На границе слоев молекулы расположены так, что их полярность не проявляется в направлении, перпендикулярном к слою. Координационное число составляет обычно 6, что соответствует наиболее плотной упаковке. По правилу Китайгородского, (или взаимного замещения молекул в кристаллической решетке) способность к образованию твердых растворов зависит от подобия формы и размеров взаимозамещающихся молекул. Замещать друг друга могут атомы, группы атомов и молекулы. Например, твердые растворы образуют хлорбензол и бромбензол, гидразобензол и бензил-анидин, бензол и тиофен. [c.70]

    Реакции окисления углеводородов начинаются при более низких температурах, чем окисление СО и Нз. В присутствии катализаторов эти реакции наблюдаются начиная с температур порядка 100° С, после чего наступает пламенное горение. Так как реакции горения углеводородов имеют цепной характер и протекают со сравнительно большим индукционным периодом, процесс горения сопровождается в той или иной степени термическим распадом исходных молекул. Этот раснад происходит из-за тецловой неустойчивости углеводородов, выражающейся в том, что при нагревании в зависимости от температуры, длительности ее воздействия и ряда других факторов они претерпевают изменение химической структуры, начиная от простого расщепления до перегруппировки атомов в углеводородные соединения другого гомологического ряда. Эти новые углеводороды являются также теплонеустойчивыми, так что конечными продуктами такого процесса, если он достаточно длителен, все же являются углерод и водород. Из всех углеводородов наиболее устойчивым является метан, теплоустойчивость других уменьшается с увеличением молекулярного веса. [c.156]

    Заместители в циклической части молекулы эргостерина и других провитаминов (вторичная гидроксильная группа положения 3, ангулярные метильные группы при С ю) и С 3) и заместитель при (i7)) имеютр-конфигурацию и все находятся в i iiir-положении относительно друг друга [87]. Провитамины дают реакцию с дигитонином, характерную для стероидных соединений с гидроксильной группой Зр-конфигурации, образуюш,ей более устойчивую экваториальную связь [87 ]. [c.127]

    В общем случае молекула может иметь много энергетических минимумов, различающихся по глубине. В первом приближении люлекулярпой механики такая молекула характеризуется структурой, отвечающей наиболее глубокому минимуму энергии. Следующее приближение состоит в описании равновесной смеси конформаций, находящихся во всех минимумах эиергии в соответствии с распределением Больцмана. Для описания этой повер.чности используют эмпирически выведенную систему уравнений, математическая форма которых заимствована из классической механики. Эта систекса потенциальных функций, называемая силовым полем, содержит некоторые варьируемые параметры, числовое значение которых выбирается оптимальным образом так, чтобы получить наилучшее согласие рассчитанных и экспериментальных характеристик молекулы. Метод использует одно общее допущение о возможности переноса соответствующих параметров и силовых постоянных от одной молекулы к другой. Другими словами, эти числовые значения, будучи определены для некоторых простых молекул, используются в дальнейшем в качестве фиксированных величин для других родстаенных соединений, в данном случае для биополимеров. Таким образом, в методе молекулярной механики молекула рассматривается как набор атомов, взаимодействие между которыми описывается простыми аналитическими функциями, заимствованными из классической механики. Потенциальная энергия в общем виде может быть представлена следующим образом  [c.318]

    По тем же причинам весьма мало токсичны соответствующие сернистые соединения — роданиды R-S N и изороданиды R-N S. Наличие в молекуле соединения одновременно атома серы и циан-группы — никогда не дает токсичных веществ бср. главу сульфиды и их про-шводные") даже цианистая сера S( N)2 почти не токсична Поэтому при отравлении цианистыми соединениями часто рекомендуется введение в кровь, в качестве противоядий, растворов гипосульфита и других веществ, легко отщепляющих серу особенно же — коллоидных растворов серы [c.137]

    Ниже показан еще один пример стереоизомерии органических соединений. Две структуры бромфторхлорметана имеют одинаковые молекулярные и структурные формулы, но различное расположение атомов в пространстве. Эти структуры несовместимы (любые повороты молекул относительно друг друга и вращение атомов относительно их связей с соседними [c.179]

    Известно, что деформация высокомолекулярных соединений определяется как перемещением цепных молекул относительно друг друга, так и изменеиием формы самих молекул. [c.298]

    Структура молекул. С точки зрения современной науки при химическом соединении отдельные атомы образуют молекулу сложного вещества. Молекула состоит из тяжелых частиц — ядер, определенным образом расположенных в пространстве относительно друг друга. Вокруг ядер распределяются легкие частицы — электроны, образуя электронные оболочки атомов, составляющих молекулу, и общую электронную оболочку молекулы как целого. Электроны осуществляют связь атомных ядер в молекуле. Они взаимодействуют с ядрами и друг с другом согласно законам ивантавой механики. В настоящее время уже известны сотни тысяч различных типов молекул. Физические свойства вещества — вкус, цвет, запах, температура кипения и т. п. определяются составом молекул и расположением атомов в них. Молекулы содержат некоторые структурные элементы, свойства которых сохраняются при переходе от одной сложной системы к другой. В качестве важнейших структурных элементов молекул современная химия выделяет отдельные валентные химические связи и отдельные группы атомов в молекуле. Существенной особенностью структуры молекул является наличие у них определенных свойств симметрии. [c.70]

    В молекуле стирола, в отличие от бензола и его моноалкнлзамещенных, содержится не 6, а 8 сопряженных я-электронов. В связи с этим наблюдается резкий сдвиг всего спектра в длинноволновую сторону приблизительно на 3000 см по сравнению со спектром бензола. Вместе с тем строение спектра стирола идентично строению спектров исследованных моноалкилбензолов, так как колебательная структура спектра определяется главным образом симметрией молекул данного соединения. Как и у моноалкилбензолов, в спектре стирола реализуются два электронных перехода, поляризованные в плоскости молекулы перпендикулярно друг другу чисто электронный (полоса 34218 см , рис. 4. 45) и элек-тронно-колебательный в сочетании с неполносимметричным колебанием (34622 сж ). Оба перехода образуют характерные для данной группы веществ серии в сочетании с полносимметричными [c.195]

    Суш,ествепную роль в характеристике органических соединений играют спектры поглощения. Часть спектра электромагнитной радиации, соответствующая длине волны от 2-10 см до 150-10 см, наиболее полезна в этом отношении. Некоторые типы органических соединений поглощают в ультрафиолетовой и видимой частях спектра (рис. 1.1) при характерных длинах волн и интенсивностях, что обусловлено возбуждением менее прочно связанных электронов в молекулах. Почти все органические вещества поглощают в инфракрасной области, и интенсивность поглощения меняется с изменением длины волны, давая детальную картину, обычно используемую для характеристики или идентификации соединений. Поглощение в этой части спектра связано с вибрациями различных частей молекулы относительно друг друга. Замечательной особенностью таких спектров является то, что они не только дают способы узнать молекулу в целом, но также часто позволяют идентифицировать некоторые из ее частей. В гл. 28 подробно описывается применение спектроскопии в органической химии. [c.21]

    Канальные соединения включения тиомочевины, открытые независимо Феттерли [26] (см. также [67, 83, 971) и Англом [1, 2] в середине 40-х годов, почти во всех отношениях подобны комплексам типа мочевина — к-парафин. В настоящее время точно установлено, что возможность образования специфических аддуктов в значительной степени определяется поперечным сечением каналов в решетке, образованно молекулами мочевины или тиомочевины, а также пространственной конфигурацией реагирующего вещества иДи потенциальных молекул-вгостей . Однако в то время как мочевина образует аддукты в основном только с углеводородами, молекулы которых имеют неразветвленную углеродную цепь, тиомочевина, в решетке которой образуются каналы большего диаметра (вследствие наличия больших атомов серы), способна к аддуктации и с различными углеводородами, имеющими разветвленные цепи, и с циклическими алифатическими соединениями, и другими органическими веществами, молекулы которых слишком велики, чтобы разместиться в канале мочевины. По этой причине методы разделения смесей путем аддуктообразования с мочевиной и тиомочевиной часто дополняют друг друга и дают возможность добиться определеппой избирательности. Тиомочевина обычно не является в такой же степени специфическим разделяющим агентом, как мочевина, и ее комплексы с мепее длинными, но более широкими гостевыми молекулами, например циклогексана или ыао-октана, обычно менее устойчивы (чем комплексы мочевины с длинноцепочечными углеводородами). [c.488]

    Рассмотрим кратко вопрос о том, какие виды нуклеиновых кислот содержатся в клетке и какую роль в синтезе белка играет каждый из них. Молекулы дезоксирибонуклеиновых кислот (ДНК) предназначены для хранения на-медственной информации и передачи ее прн делении клетки. Дезоксирибонуклеиновые кислоты характеризуются очень высоким молекулярным весом (до нескольких десятков миллионов) и существуют в форме двунитчатых спиралей, соединенных друг с другом водородными связями (рис. 29). ДНК всегда находится в ядре клетки и благодаря своему высокому молекулярному весу не может проникнуть через оболочку ядра и попасть в цитоплазму. Содержащаяся в ДНК наследственная информация включает сведения о всех необходимых организму белках. Эта информация зашифрована последовательностью чередования четырех нуклеотидов аналогично тому, как информация, заключающаяся в какой-нибудь книге, зашифрована определенной последовательностью 32 букв алфавита. [c.456]

    Существует другой вид воды в ионных кристаллических структурах, резко отличающийся от описанных выше. Эта вода носит название свободно связанной или цеолитной. Молекулы свободно связанной воды занимают более или менее случайные позиции в пустотах структуры или располагаются между слоями в слоистых структурах. Дегидратация в этом случае не влечет за собой появления новой кристаллической фазы. Примером структур, имеющих воду только в пустотах, являются цеолиты — гидратированные алюмосиликаты натрия и преимущественно силикаты кальция и натрия (см. стр. 319). В больших пустотах между соприкасающимися по вершинам тетраэдрами (5104) размещаются свободные молекулы воды, количество которых зависит от влажности окружающей среды и изменяется постоянно с изменением среды. Молекулы такой цеолитной воды могут быть легко удалены из кристалла при нагревании либо при помещении в эксикатор. Также легко вода или другие жидкости и газы с небольшими размерами молекул (С2Н5ОН, ЫНз, СО2) могут быть введены в кристаллическую структуру цеолита. Структура цеолитов не изменяется при потере воды или введении молекул других соединений. [c.180]


Смотреть страницы где упоминается термин Молекулы соединение друг с другом: [c.462]    [c.291]    [c.70]    [c.74]    [c.346]    [c.128]    [c.163]    [c.120]    [c.201]    [c.48]    [c.301]    [c.411]    [c.161]    [c.89]    [c.65]    [c.37]   
Биохимия Том 3 (1980) -- [ c.242 , c.331 ]




ПОИСК







© 2025 chem21.info Реклама на сайте