Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензин ароматизированный

    Процесс замедленного коксования в необогреваемых камерах предназначен для получения крупнокускового нефтяного кокса как основного целевого продукта, а также легкого и тяжелого газойлей, бензина и газа. Сырьем для коксования служат малосернистые атмосферные и вакуумные нефтяные остатки, сланцевая смола, тяжелые нефти из битуминозных песков, каменноугольный деготь и гильсонит. Эти виды сырья дают губчатый кокс. Для получения высококачественного игольчатого кокса используют более термически стойкое ароматизированное сырье, например смолу пиролиза, крекинг-остатки и каталитические газойли. [c.29]


    Назначение — получение высокооктанового компонента автомобильных бензинов, ароматизированного концентрата для производства индивидуальных ароматических углеводородов и технического водорода в результате каталитических превращений бензиновых фракций первичного и вторичного происхождения. [c.74]

    Характеристический фактор К определяет химическую природу нефтепродукта, его парафинистость. Определяется в зависимости от двух параметров — плотности и температуры кипения, величина которых зависит от состава нефтепродуктов. Для парафини-стых нефтепродуктов 12,5-4-13, для нафтено-ароматических /(=104-11, для ароматизированных /С 10 и менее, для крекинг-бензина К 11,5- 11,8. Применяется характеристический фактор для корреляции при расчете физико-химических свойств нефтепродуктов. Характеристический фактор определяют по формуле [c.8]

    Коксование — длительный процесс термолиза тяжелых остатков или ароматизированных высококипящих дистиллятов при невысоком давлении и температурах 470 — 540 °С. Основное целевое назначение коксования — производство нефтяных коксов различных марок в зависимости от качества перерабатываемого сырья. Побочные продукты коксования — малоценный газ, бензины низкого качества и газойли. [c.8]

    Бензин Ароматизированный бензин Pt (2% 4%) на активированном угле 300—305° С содержание ароматических углеводородов до 32,1 об. % [1264] [c.1154]

    Назначение — получение высокооктанового компонента автомобильных бензинов, ароматизированного концентрата для производства индивидуальных ароматических углеводородов, а также технического водорода. [c.146]

    При добавлении 0,4 г/кг ТЭС приемистость составляет для тяжелых ароматизированных фракций (выше 145—150 °С) и для бензина каталитического крекинга (установка 1А/1м)—3—7 для прямогонного бензина и фракции выше 140°С (установка 22/4) — 32 для пентан-амиленовой фракции термокрекинга — 24. Как уже отмечалось, приемистость существенно снижается в случае присутствия соединений серы — относительное понижение приемистости пропорционально концентрации соединений серы в степени [c.207]

    Контрольный образец. 172 65 Бензин ароматизированный. .............175 78,6 [c.50]

    В бензинах прямой перегонки и термического крекинга низко-кипящие фракции имеют более высокую детонационную стойкость, чем высококипящие. В бензинах каталитического крекинга октановые числа различных фракций близки между собой. В бензинах платформинга некоторые головные фракции имеют низкую детонационную стойкость, а высококипящие ароматизированные фракции имеют октановое число выше 100 (табл. 25). [c.165]


    Предусматривается развитие нового производства ароматических углеводородов (бензола, толуола и ксилолов) на базе каталитического риформинга (платформинг) узких бензиновых фракций (65—85 и 85—105 ). Вместе с тем этот узел может быть использован и в направлении выработки высококачественных ароматизированных бензинов. [c.180]

    Нафталин получают из ароматизированных фракций, выкипающих в пределах 200—300 °С, которые содержат значительные количества нафталина и его производных. В качестве таких фракций используются продукты каталитического риформинга тяжелого бензина с к. к. выше 200 °С (140—250 или 200—270 °С). Сырьем для получения нафталина может быть также легкий газойль каталитического крекинга (фр. 200—350 °С), в котором содержится 25—30% нафталина и его производных. Для того чтобы повысить концентрацию ароматических углеводородов, применяют процесс термического крекинга или экстракции. Каталитическое гидродеалкилирование с целью получения нафталина проводят над алюмокобальтмолибденовым катализатором с добавкой окиси кремния при 6 МПа, 550 °С и объемной скорости подачи сырья 0,5 ч с добавкой к водороду водяного пара. Термическое гидродеалкилирование проводят при 4 МПа, 700 °С и объемной скорости подачи сырья 2,5 ч . [c.19]

    Для того чтобы избежать снижения выхода бензина вследствие совместного крекирования различных по химическому составу продуктов — свежего сырья и ароматизированной флегмы,, прибегают к раздельному крекированию на комбинированных установках (избирательный крекинг). [c.233]

    Данные, полученные различными исследователями, свидетельствуют о большей эффективности ТМС по сравнению с ТЭС в высокооктановых ароматизированных бензинах. Другим преимуществом ТМС является более равномерное распределение его по цилиндрам автомобильного двигателя на режимах разгона, связанное с более низкой температурой кипения ТМС (110° С), чем ТЭС (200° С), и более высоким давлением насыщенных паров (26,5 мм рт. ст. вместо 0,3 мм рт. ст.). [c.119]

    Полученные результаты свидетельствуют о влиянии компонентного и углеводородного состава бензинов на эффективность ТМС и подтверждают закономерности, полученные другими исследователями. Так, при добавлении 0,68 г/кг ТМС к высокоароматизированному образцу 2, содержащему 65% бензина каталитического риформинга жесткого режима, прирост октанового числа оказывается на 2,7 единиц выше, чем при добавлении того же количества ТМС к менее ароматизированному образцу 1. [c.123]

    Из самого понятия коэффициента рециркуляции явствует, что чем выше этот коэффициент, тем ниже пропускная способность установки по свежему сырью. Снизить коэффициент рециркуляции можно путем увеличения глубины превращения сырья, в частности выхода бензина за цикл. Это, в свою очередь, достигается выбором оптимального режима процесса, а также рациональной конструкции реакционных аппаратов, позволяющей избегать местных перегревов н закоксовывания труб. При углублении крекинга за однократный пропуск качество получаемого бензина улучшается, — он становится более ароматизированным, и, следовательно, повышается его октановое число одпако выход бензина в пересчете на свежее сырье с углублением крекинга падает. [c.48]

    Исходным сырьем для процесса термического риформинга служат низкооктановые лигроиновые (реже керосиновые) фракции. Таким образом, фракционный состав сырья и крекинг-бензина частично совпадает, что указывает на необходимость глубокого преобразования молекул исходного сырья для получения из них ароматизированных бензинов с удовлетворительным октановым числом. Действительно, октановые числа риформинг-бензинов (в среднем 70—72) наиболее высокие, по сравнению с октановыми числами бензинов других видов термического крекинга под давлением (60—05 для бензинов крекинга мазута). Температурный режим термического риформинга жесткий и зависит от фракционного состава, сырья для бензино-лигроиновых фракций температура риформинга достигает 550— 560" С при давлении 50—60 ат. Октановое число получаемого бензина возрастает с увеличением глубины превращения. [c.57]

    Лигроин (с пределами выкипания 93— 204° С) Бензин ароматизированный (пределы выкипания 38—193° С, октановое число 85— 90), газ TiOa (1—10%) — СгаОз (1 — 10%) — глина 3 бар, 455—511° С. Выход бензина 85% [273] [c.435]

    Бензино-лигроино-вая фракция крекинг-продукта Риформинг-бензин ГАФ] ZrOz-3iOa-АЬОз 1—7 бар, 590° С. Бензин ароматизированный, с высоким октановым числом [362] НИЙ [c.444]

    По данной схеме ступень гидрокрекинга дает основное количество дизельного топлива— около 40% от дистиллята ДВП за счет изменения режима процесса выход дизельного топлива можно будет увеличить до 43— 46%. С учетом средних фракций коксования остатка ДВП общий выход дизельного топлива от этих двух процессов составит 27—30%, считая на мазут. Указанное отличие третьей схемы переработки дистиллята ДВП является весьма важ ным в том отношении, что позволяет освободить процесс каталитического крекинга от производства компонента дизельного топлива и ориентировать этот процесс на получение более высокооктанового бензина, ароматизированных средних фракций (как сырье для производства ароматики и сажи) [c.74]


    Линии I — сырая нефть II — отходящие газы (парафиновые углеводороды) III —легкий бензин IV — средний бензин V — тяжелый бензин (бензин-растворитель, лаковый бензин) VI — керосин VII — дизельное топливо VIII — легкий газойль IX — остаток от атмосферной перегонки на перегонку под вакуумом X — отходящие пары вакуумной перегонки XI — тяжелый газойль XII — веретенное масло XIII—дистилляты машинного масла (а — легкий, б — средний, а — тяжелый) XIV — цилиндровое масло XV — остаток вакуумной перегонки асфальт из сильно ароматизированных нефтей, цилиндр — сток из парафинистых нефтей. [c.18]

    Некоторый интерес представляет обработка циклических фракций каталитического крекинга водородом для того, чтобы получить продукты, менее стойкие к повторному каталитическому крекингу. Ароматические углеводороды большей частью превращаются в нафтеновые на этот факт указывает то, что процесс гидрирования легко принимает направление очистки. В табл. П-81 приводятся результаты каталитического крекинга газойля прямой перегонки, циклического дистиллята и гидрированных циклических фракций. Обычно несколько экономичнее гидрирование проводить при низком давлении (52,0 кПсм ) при 370° С, применяя в качестве катализаторов сульфиды металлов. При этом уменьшается содержание серы, некоторые конденсированные полициклические ароматизированные углеводороды превращаются в ароматику с простыми кольцами и нафтены, и в результате при крекинге получается бензин удовлетворительного качества [226]. При помощи гидрирования можно превратить низкосортные масляные дистилляты в очищенные фракции парафинистого характера, но, как известно, при этом значительно уменьшается выход фракции и уровень вязкости. В табл. П-9 приведены продукты, полученные гидрированием двух дистиллятов масляных фракций при 400° С. Гидрированные фракции имеют низкое содержание серы и улучшенный цвет [223—226, 200, 228—231]. [c.96]

    Назначение — переработка прямогонных бензиновых фракций с целью получения ко.мпонеитов высокооктановых бензинов или ароматизированного катализата для производства индивидуальных углеводородов. Октановое число в зависимости от перерабатываемого сырья может изменяться от 80 до 85 (по МиМ). [c.63]

    Разбавленная серная кислота, например 75%-ной концентрации, заполимеризует диолефины и удалит вещества, портящие цвет нефтепродукта, но не сможет обеспечить очистки дистиллята от серы [12, 40—45]. Удаление олефинов из бензина вызывает уменьшение октанового числа, в то время как очистка от сернистых соединений улучшает приемистость бензина к тетраэтилсвинцу. Таким образом, суммарный эффект очистки в отношении октанового числа может оказаться равным нулю [46]. В нефтезаводской практике наблюдались случаи, когда в результате сернокислотной-очистки у крекинг-дистиллята, полученного из парафинового сырья, октановое число снижалось, а у крекинг-дистил-лята, полученного из ароматизированного газойля, октановое число повышалось. [c.229]

    Применяемый платинорениевый катализатор позволяет вести процесс риформинга под низким избыточным давлением на выходе из последнего реактора и увеличить продолжительность работы катализатора без регенерации до 240—270 суток. Низкое давление процесса способствует увеличению выходов ароматизированного бензина и водорода. Окислительную реакцию катализатора проводят одновременно во всех реакторах установки, резервный реактор в схеме ренифор-минг-процесса отсутствует. [c.39]

    Теперь, однако, парофазный крэкинг опять начинает входить в задачу дня благодаря возможности получения сильно ароматизированных бензинов с высокими антидетонируюшими свойствами, а также высокой ценности газов парофазного крэкинга для промьЕШлен-ности органического синтеза. [c.297]

    Температура самовоспламенения для тяжелых нефтепродуктов (тяжелая флегма, шлам) намного ниже, чем темпер, тура самовоспламенения бензина. Сильно ароматизированные нефтепродукты имеют высокую температуру самовоспламенения. Так, наприм2р, шлам (продукт низа колонны в смеси с катализатором), нагретый до 300—320° С, в случае пропусков через неплотности соединений может самовоспламениться при соприкосновении с воздухом. [c.221]

    Значительное содержание толуола в ароматизированном риформинг-бензине позволяет использовать его в нефтехимии. Одним из путей является алкилирование толуола олефинами в паровой фазе на алюмосиликатном катализаторе или в жидкой фазе в присутствии AI I3, с последующим дегидрированием в алкенилтолуолы. Это происходит по следующей схеме  [c.33]

    Учитывая групповой состав светлых нефтепродуктов нефтей Бинагадинского района, представляет большой интерес выделение природных ароматических углеводородов из керо-сино-газойлевой фракции для нефтехимического синтеза, а лигроин целесообразно подвергнуть каталитической дегидрогени- ции в целях получения либо ароматизированного бензина для смешения с низкооктановыми бензинами, либо индивидуальных ароматических углеводородов. [c.63]

    Катализатор К-536 был улучшен заменой алюмосили-катного носителя фильтролем, обработанным фтористым водородом. Получен более ароматизированный бензин с октановым числом 77—80 [c.18]

    Приведены результаты гидроочистки различных нефтепродуктов легкий крекинг-бензин — содержание серы уменьшается с 0,065 до 0,0013%, бромное число с 56 до 5 г Вгг/ЮО г тяжелый газойль — соответственно с 0,26 до 0,002%, с 75 до 8,4 бензин соответственно с 0,51 до 0,008%, ароматизированный дистиллят с 0,08 до 0,003%, с 28 до 0,5. Расщепление практически не происходит, ароматические углеводороды не затрагиваются, обессеривание протекает несколько быстрее гидрирования олефинов, сохранить которые, однако, не удается При гидроочистке сырой нефти более активен катализатор I содержание серы снижается с 2,08 до 0,17%, тогда как в случае катализатора II — лишь до 0,32% Содержание серы в циркулирующем масле каталитического крекинга уменьшалось от 1,42 до 0,15%. При этом происходило заметное гидрирование ароматических колец (число ароматических атомов на молекулу при нейзменяющемся молекулярном весе 208—209 уменьшается с 11,5 до 8,8, неароматических — возрастает с 3,8 до 6,9), протекающее за счет бициклических ароматических углеводородов. Для полного насыщения ароматических углеводородов необходимо давление 200 кгс/см  [c.48]

    Данные табл. 4 (см. также обобщающие статьи и монографии позволяют сделать вывод, что проблемы селективной гидроочистки любых дистиллятных продуктов от сернистых, азотистых и смолистых веществ в основном решены. Разработаны теоретические основы управления этими процессами путем варьирования технологических параметров в случае трудного сырья, т. е. сырья, содержащего много смолистых и ароматизированных компонентов, помимо более жестких условий используется противоток жидкого сырья, улучшающий его контакт с водородом а также цоб авка доноров водорода В целях уменьшения расхода водорода процессы проводят в условиях, при которых наряду с гид-рогенолизом сернистых соединений происходит дегидрирование нафк генов, дающее дополнительный источник водорода. Таким образом иожет быть обеспечена автогидроочистка бензинов, керосинов и [c.93]

    На установке предусмотрена возможность переработки двух видов сырья 1) смесь бензина с природным ароматизированным газоконденсатом, содержащим 30 % ароматикп 2) смесь бензина с предварительно деароматизированным газоконденсатом. [c.108]

    Такой характер коксоотложений можно объяснить следуюхцим образом. Закоксовывание нижней половины труб потолочного экрана обусловливалось, очевидно, низкой агрегативной устойчивостью и расслоением коксуемого сырья. В последуюише годы на Ново-Уфимс-ком НПЗ и других НПЗ с прямогонными остатками стали смешивать ароматизированные добавки, такие как экстракты селективной очистки масел, тяжелые газойли каталитического крекинга и другие, что существенно повысило агрегативную устойчивость сырья коксования, удлинило безостановочный пробег печей. Снижение интенсивности закоксовывания труб на участке непосредственно после ретурбенда объясняется интенсивной турбулизацией парожидкостной реакционной смеси, а в концевых трубах - увеличением доли паровой фазы в результате протекания реакций крекинга с образованием низкомолекулярных продуктов (газа, бензина), т.е. за счет химического кипения реакционной смеси. Были разработаны и внедрены рекомендации, направленные на улучшение структуры парожидкостного потока в змеевике печи и регулирование паросодержания в потоке путем увеличения диаметра трансферной линии от печи до реакторов от 100 до 150 мм, осуществлена реконструкция схемы обвязки распределительного устройства на потоке коксуемого сырья, которая заключалась в замене двух четырехходовых кранов пятиходовым краном. Изменено место подачи турбулизатора. По проектной схеме турбули-затор подавался в трубу, соединяющую подовый и потолочный экраны. Путем поиска оптимального места ввода турбулизатора было установлено, что значительно уменьшить коксоотложение можно при его подаче в первую трубу на входе вторичного сырья в печь. В результате заметно понизилось давление в трубах на входе в потолочные экраны (с 2,4 до 2,1 МПа) и на выходе из печи (с 1,1-1,2 до 0,7-0,8 МПа), повысилась доля паровой фазы, улучшилась гидродинамическая структура и уменьшилось время пребывания сырьевого потока как следствие, значительно снизилась интенсивность коксоотложения в трубах и удлинился межремонтный пробег установки. [c.71]

    Керосиновая (200—300°) и лпгроино-керосиновая (65—300 ) фракции требуются не только для дизельмоторов, по п для получивших распространение в конце 2-п мировой войны воздушных и жидкостных реактивных двигателей. Для первых использовались преимущественно парафиновые углеводороды бензина, синтезировавшегося из водяного газа, для вторых — аробин (ароматический бензин с содержанием ароматических углеводородов выше 40%) или ксилольную фракцию каменноугольной смолы или, наконец, ароматизированный бензин деструктивного гидрирования угля, причем каждый из этих компонентов брался в смесп с аминами, пирокатехином или другими инициаторами воспламенения, осуществлявшегося смешением с азотной кислотой [6]. В некоторых рецептурах были использованы также смеси спиртов (метилового п этилового) с жидким кислородом или перекисью водорода. [c.13]

    Неароматизированные нефтяные остатки — мазуты, полугудроны и гудроны прямой перегонки нефти, крекинг-остатки от крекинга мазута, битумы деасфальтизации с масляных установок — дают при коксовании дистилляты, вполне пригодные для крекирования и получения из них бензина. Качество получаемого при этом кокса будет зависеть от содержания золы и серы в исходном сырье. Полученный из мазутов и гудронов прямой гонки и крекинг-остатков от крекинга мазута кокс обычно содержит значительное количество золы. Если исходная нефть была высокосернистой, то кокс содержит также повышенное количество серы. Такой кокс не может служить сырьем для изготовления электродов и используется как топливо. Следовательно, в зависимости от характера исходного сырья меняются качества получаемых продуктов. Поэтому, если целью коксования является получение беззольного кокса для электродов, выгодно брать малозольное и сильно ароматизированное сырье если же нефтяные остатки подвергают коксованию для углублейия отбора светлых и целевым продуктом является широкая фракция, годная для последующей переработки в бензин, то сырьем должны служить неароматизированные остатки, у [c.300]

    Одновременно с тетраэтилсвинцом изучали антидето-национные свойства и других алкилов свинца. Однако тогда ТЭС оказался наиболее эффективным соединением. В пятидесятые годы в связи с изменением состава бензинов (увеличением содержания ароматических углеводородов) и повышением степени сжатия в автомобильных двигателях (увеличением октанового числа бензинов) пришлось вновь вернуться к изучению различных алкилсвинцовых соединений. Оказалось, что в высокооктановых ароматизированных автомобильных бензинах тетраметилсвинец (ТМС) более эффективен, чем ТЭС [37—43]. [c.20]

    Целью процесса яиляется получеиие высокооктанового ароматизированного компонента бензина или чистых ароматических углеводородов, которые выделяют из катализата одним из извест-пых промышленных методов (экстракцией, азеотропной перегонкой и др.). При получении компопента бепзина риформингу подвергают обычно широкие фракции с началом кипения 85— 105 °С и концом кипения около 180 °С. Для ироизводства ароматических углеводородов используют более узкие фракции 62—105 или 62—120 °С — для получепия бензола и толуола 120—150 °С — для получения ксилолов. Наиболее распространены катализаторы, содержаш ие платину, а также платину и рений на окисноалюминие-вой или цеолитовой основе. Все шире применяют полиметаллические катализаторы, в которых помимо платины и рения содержатся германий, свинец и другие металлы. В зависимости от вида катализатора температура риформинга составляет от 400 до 500 °С. [c.161]


Смотреть страницы где упоминается термин Бензин ароматизированный: [c.50]    [c.36]    [c.371]    [c.145]    [c.169]    [c.77]    [c.287]    [c.291]    [c.118]    [c.140]    [c.154]    [c.158]    [c.11]   
Общая химическая технология Том 1 (1953) -- [ c.230 , c.234 , c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте