Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

СТВ на протонах ионные пары

    Большинство исследователей полагает, что расщепление силоксанов протонными кислотами происходит в результате координации свободного протона [898, 953, 980—983] или протона ионной пары кислоты [984] с кислородом силоксановой связи с последующим распадом образовавшегося промежуточного комплекса  [c.92]

    В обычных условиях замещения в протонных растворителях карбоксилат-анион является одним из наиболее слабых нуклеофилов. Главный фактор, снижающий нуклеофильность, — сильная сольватация аниона. Ионные пары в неполярных апротонных растворителях (ситуация, характерная для МФК) должны [c.124]


    На рис. 15.2 приведены потенциальные кривые протона Н-мостика при отсутствии (сплошные кривые) и наличии (пунктирные кривые) электрического поля в направлении координаты г. Перенос протона может иметь место при наличии как двух, так и одного потенциального минимума для протона. В первом случае реорганизация среды может вызвать изменение глубины и сдвиг обоих минимумов, во втором — единственного минимума. В обоих случаях образование ионной пары с более высоким дипольным моментом определяется скоростью реорганизации среды. По этой причине, как отмечал Н. Д. Соколов [206], едва ли правомерно предположение о туннельном переносе протона между двумя ямами, как это нередко постулируется для таких систем. [c.246]

Рис. 5-3. Кислоты и основания по определению Бренстеда — Лаури. В теории Бренстеда — Лаури кислотой является любое вещество, высвобождающее в растворе протоны, а основанием-любое вещество, удаляющее из раствора протоны путем соединения с ними. H I представляет собой сильную кислоту, потому что легко высвобождает протоны. Ион СГ-слабое основание, потому что он обладает небольщой склонностью соединяться с Н . НС1 и СК могут рассматриваться как сопряженная пара кислота - основание. Рис. 5-3. Кислоты и основания по <a href="/info/683963">определению Бренстеда</a> — Лаури. В <a href="/info/2390">теории Бренстеда</a> — <a href="/info/132833">Лаури кислотой</a> является любое вещество, высвобождающее в <a href="/info/353087">растворе протоны</a>, а основанием-любое вещество, удаляющее из <a href="/info/353087">раствора протоны</a> <a href="/info/1538937">путем соединения</a> с ними. H I представляет <a href="/info/1795776">собой</a> <a href="/info/18713">сильную кислоту</a>, потому что легко высвобождает протоны. Ион СГ-<a href="/info/5210">слабое основание</a>, потому что он обладает небольщой склонностью соединяться с Н . НС1 и СК могут рассматриваться как сопряженная <a href="/info/18984">пара кислота</a> - основание.
    Ширина линий в спектре может по ряду причин различаться. Мы упоминали ранее, что спиновая плотность на протонах группы СН эти-ламина зависит от конформации. Временная зависимость этого типа процесса может повлиять на ширину линий различных протонов в молекуле различным образом. Быстрый обмен между различными конфигурациями ионной пары с анион- или катион-радикалом также может привести к большему уширению одних линий но сравнению с другими [256, 26]. [c.49]

    Кроме того, данные Н-ЯМР ясно указывают на существование ионной пары His-57—Asp-102 [86], что делает маловероятным согласованный переход двух протонов. [c.224]

    Механизм реакции. Согласно современным представлениям, реакция сложноэфирной конденсации протекает в три стадии (все стадии обратимы). На первой стадии алкоголят-ион, образовавшийся при взаимодействии следов спирта с натрием, отщепляет от метиленового компонента протон, причем образуется стабилизированный сопряжением с карбонильной группой мезомерный анион (78). Известно, что раствор натриевого производного такого типа не проводит электрический ток. Поэтому есть основания предполагать, что оно существует в виде тесной ионной пары, в которой катион металла координируется по месту с наибольшей электронной плотностью — атому кислорода. [c.230]


    Так, упомянутые процессы, ведущие к снижению эффективного заряда реагирующих частиц и тем самым уменьшающие отталкивательное взаимодействие между ними, повышают константы скорости реакции димеризации. Скорость димеризации нейтральных свободных радикалов в кислых растворах на несколько порядков выше скорости димеризации непротонированных частиц — анион-радикалов — в средах с пониженной протоно-донорной активностью. Образование ионных пар также приводит к росту константы скорости димеризации анион-радикалов (табл. 7.1) и зависимости ее эффективного значения от природы катионов фона и их радиуса (рис. 7.19). [c.252]

    На стадии инициирования протон присоединяется к молекуле мономера, и образуется ионная пара  [c.38]

    Реакции 1-отщепления, как уже отмечалось, обычно протекают нестереоспецифично. Рассмотрим, однако, случай, когда растворитель имеет низкую диэлектрическую проницаемость (что способствует стабилизации ионных пар) и низкую основность. В этом случае нуклеофилом для отщепления р-протона может служить лишь образовавшийся при диссоциации анион X, который и отщепляет ближайший, т. е. находящийся в цисоидном (скошенном) положении р-протон. Такой ход реакции наблюдался для меченых дейтерием бутил-2-то-зилатов при проведении реакции в нитробензоле  [c.440]

    В этом типе механизма существенную роль играют различия в коэффициентах распределения ионных пар. Необходимо, чтобы коэффициенты распределения У" и 0+ А существенно различались, в противном случае 0+ У , оставаясь в органической фазе, будет тормозить реакцию. Именно поэтому, например, применение активных алкилиодидов при алкилировании часто не дает удовлетворительных результатов. Иодиды более активны на стадии 4, однако вследствие большого коэффициента распределения тормозят процесс на стадии 5. Принимая такую схему, не следует забывать, что роль катализатора состоит не только в переносе аниона А из водной фазы в органическую, но и в переносе аниона У в водную фазу из органической фазы. Катион катализатора 0+ может, по-видимому, облегчить отрыв протона (или другой группы) за счет синхронного взаимодействия или ориентации в промежуточном комплексе  [c.18]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Авторы [32—34] использовали вклад в сдвиг протонов алкиламмо-ниевой группы ионной пары R4N MXзL для оценки расстояния между анионом и катионом (г) в ионной паре и для изучения эффектов сольватации. В первом случае задавались геометрией ионной пары. В спектре ионной пары с Я — н-бутил наблюдаются четыре протонных сигнала. Этот спектр можно попытаться согласовать с уравнением (12.23) (или другой, более удобной формулой) путем варьирования расстояния в так называемом геометрическом факторе [(1 - 3соз 0,)/г, ]. Для удобства мы запишем уравнение для псевдоконтактного сдвига как [c.188]

    Различие в поведении алкилароматических углеводородов при термическом и каталитическом крекинге некоторые авторы объясняют непосредственным образованием во втором случае карбоний-иона за счет присоединения протона к паре я-электроновбензольного ядра. [c.157]

    На основании этих результатов сделан вывод, что дейтерий отщепляется амином и образующийся аммоний-ион остается спаренным с карбанионом ионной связью. Катион необязательно должен оставаться в исходном положении, так как резонанс кольцевой системы обеспечивает делокализацию отрицательного заряда по всем атомам вплоть до кислорода заместителя. В таком случае ионная пара, которая теперь лежит в плоскости кольца, может скюльзить вдоль планарной структуры или возвращаться в исходное положение, не обменивая дейтерий на протоны растворителя. Для данного процесса Крам предложил название механизм направленной миграции (основание мигрирует вдоль молекулы), чтобы объяснить явление изоинверсии. Заметим, что в метаноле (более сильная кислота, чем трет-бутанол) карбанион гораздо легче протонируется и поэтому его период полупревращения не достаточно продолжителен, чтобы обеспечить процесс направленной миграции. [c.446]


    Эта кислота, отдавая протон молекуле мономера, превращает его в карбониевый ион, уравновешенный комплексным противононом (ионная пара)  [c.394]

    В отличие от газа, где столкнувшиеся частицы-реагенты изолированы от других молеул, в жидкости молекулы растворителя создают для реагентов новые условия и возможности в осуществлении элементарного акта. Если реакция идет с переносом электрона, то возникает возможность его туннелирования. Реакция с участием атома Н может идти с переносом протона или гидрид-иона. Возрастает вероятность и роль реакций с участием ионов и ионных пар из-за сильной сольватирующей способности полярного растворителя. [c.137]

    Диссоциация как результат переноса протона при взаимодействии а растворителем. В органичееких неполярных и малополярных растворителях степень диссоциации / СООН на 4—6 порядков ниже, чем в воде. При взаимодействии кислот с основаниями (или основными растворителями) образуются ионные пары и асеоциаты. Степень ассоциации очень высока (Касс — и больше). [c.95]

    Ионы в растворе могут появиться и путем переноса протона от молекулы растворенного вещества на молекулу растворителя или наоборот. Например, сильная кислота при растворении в воде передает свой протон молекуле воды, в результате чего образуется катион оксоний Н3О+ и анион кислоты. Первоначально образуется ионная пара, которая легко диссоциирует в воде в силу высокой диэлектрической постоянной последней. Аналогично растворение. аммиака в серной кислоте приведет к образованию ионов NHJ и аниона HSO4, В растворителях с низкой диэлектрической постоянной, которые мог т либо отдавать протон, либо обладают неподеленной парой электронов, способной принимать протон от кислоты, образование ионной пары происходит, но не сопровождается ее диссоциацией, и свободных ионов в растворе не образуется. [c.125]

    В этом случае информацию о механизме реакции можно получить, измеряя отношение константы скорости изотопного обмена ке) к константе скорости рацемизации (йа). Если отношение кс к значительно больше единицы, это означает, что реакция происходит с сохранением конфигурации, поскольку процессы изотопного обмена не вызывают изменения конфигурации. Величина отношения ке ка, близкая к единице, указывает на рацемизацию, а величина этого отношения, равная /г, говорит об обращении конфигурации (разд. 10.1). В зависимости от природы К, основания и растворителя наблюдается один из трех типов стереохимического поведения. Как и в реакции расщепления алкоксидов, в растворителях с низкой диэлектрической проницаемостью обычно наблюдается сохранение конфигурации, в полярных апротонных растворителях — рацемизация, а в протонных растворителях — обращение конфигурации. Однако в реакциях обмена протона появляется и четвертый тип стереохимического поведения. Было найдено, что в апротонных растворителях и с апротонными основаниями, подобными третичным аминам, отношение кс1ка. меньше 7г это свидетельствует о том, что рацемизация происходит быстрее, чем изотопный обмен (такой процесс известен как изорацемизация). В этих условиях сопряженная кислота амина остается ассоциированной с карбанионом в виде ионной пары. Иногда ионная пара диссоциирует достаточно медленно, для того чтобы карбанион успел вывернуться и снова захватить протон  [c.415]

    Действительно, спектроскопические исследования пикратов замещенных солей аммония показало, что существуют ионные пары с водородной связью. По Дэвису, в паре ВН+...А-, где В — онова-ние, а А — кислота, протон смещается от А к В по мере того, как возрастает сила основания и уменьшается сила кислоты. В конечном счете при полной диссоциации получаются сольватйрованный протон и соответствующий анион. Это означает, что сила кислоты зависит от природы растворителя. Вещество, которое в данном растворителе проявляло себя как типичная кислота, в другом может оказаться очень слабой кислотой или даже обнаружить свойства основания. Так, например, азотная кислота в водном растворе является сильной кислотой благодаря реакции [c.249]

    При анионной полимеризации рост цепи осуществляется при участии карбаниона или ионной пары при этом концевая группа растущей макромолекулы, обладая высокой активностью, в то же время достаточно стабильна. Поэтому анионая полимеризация в отсутствие примесей, являющихся донорами протонов и способных к обрыву цепи, во многих случаях может протекать без обрыва цепи до полного исчерпания мономера. В результате такой полимеризации образуются полимеры, макромолекулы которых содержат активные центры и способны инициировать полимеризацию. Эти полимеры называют живымш> полимерами. При добавлении к такому полимеру новой порции мономера его молекулярная масса возрастает. [c.88]

    V Растворение щелочного металла, например натрия, в жидком аммиаке — ЭТО в сущности электролитическая диссоциация, непосредственным результатом которой является образование системы, содержащей ионную пару ооцьватированный катион металла — сольватнрованный электрон (схе-мя 2.6). Первой стадией реакции Берча яв тяется атака сольватированного эдектрона на ароматическое ядро с образованием анион-радикала 14. По-следапсй отрывает протон от спирта, давая при этом радикал 15. Этот радикал присоединяет второй электрон, давая карбанион 16, взаимодействие которо-го со второй молекулой донора протона дает диен 11. [c.75]

    Карбоновые кислоты относятся к слабоионизированным средам. Вследствие их низкой диэлектрической проницаемости растворенные в карбоновых кислотах сильные минеральные кислоты и соли находятся в основном в виде ионных пар с низкими константами диссоциации. Поскольку индикаторные основания Гаммета протонируются и протонами, входящими в состав ионных пар, и протонами, находящимися в растворе отдельно, линейную зависимость IgA от Hq раствора следует трактовать как зависимость константы скорости реакции от суммарной прото-нодонорной способности среды. Изменение Яд в изученных растворах достигалось при изменении и концентрации минеральных кислот, и концентрации воды при этом все данные зависимости gk2 от Hq описывались общей прямой линией. Это позволяет сделать вывод, что катализ осуществляется протонированиём одного из реагентов, а не в результате ассоциации его с молекулой катализатора. [c.303]

    В диметилсульфоксиде наблюдается почти 100%-ное алкилирование по кислороду. Это объясняется тем, что сильные доноры протонов типа воды и трифторэтанола сольватируют кислород аниона, снижая его нуклеофильную способность до такой степени, что алкилирование карбаниона становится конкурентоспособным. Представляет интерес также частичное алкилирование по углероду (3-нафтола но не бензеноидных фенолов), наблюдаемое в таком растворителе, как диметиловый эфир этиленгликоля. Вероятно, в этом растворителе существуют ионные пары, у которых натриевый катион нафтола испытывает некоторое электростатическое притяжение к атому брома бромистого алкила, например бромистого метила [c.328]

    Понятия К. и О. часто прнмен. прн обсуждений св-в водных р-ров. Благодаря высокой диэлектрич. проницаемости и хорошей сольватац. способиости воды кислотно-осиовное взаимод. в разбавл. водных р-рах, как правило, завершается переходом протона от к-ты к основанию, т. е. в этнх р-рах практически отсутствуют комплексы АН. .. В и ионные пары. С др. стороны, в неводных р-рах нaблюдae ся образование комплексов и ионных пар. Наряду с др. хим. соед. в качестве К. и О. могут выступать и углеводород Если, напр., на бензол действовать этилнатрием, то тг(- [c.258]

    За счет чего же возрастает ионная концентрация при образовании смеси НАс и Ру Вспомним, что кислота и пиридин взаимодействуют друг с другом, образуя продукт присоединения (гетеромолекулярный ассоциат) НАс+Ру 5= = НАс-Ру. Но ведь в этом продукте присоединения ионов еще нет. Они появляются только в результате процесса ионизации, внутримолекулярной перегруппировки атомов и связей. В данном случае ионизация заключается в том, что в молекуле продукта присоединения протон от кислоты переходит на основание НАс-Ру sriHPy+A . Впрочем, образующийся при этом ионный ассоциат, или ионная пара не может стать причиной высокой электропроводности раствора, так как свободных ионов здесь еще нет. [c.32]

    Если фрагменты молекулярного комплекса с B. . имеют высокие кислотность и основность, возможен переход протона от донора к акцептору и образование ионной пары с В.с А . ..НВ . Этот процесс в значит, степени определяется взаимод. с окружением. Так, в газовой фазе F3 OOH, НС1, gHjOH образуют с N( H3)3 только молекулярные комплексы без перехода протона. Аминокислоты, напр, глицин и его производные, в газовой фазе и в инертных р-рителях существуют в форме молекулярных комплексов, однако по мере усиления взаимод. с р-рителем [c.404]

    Первонач. вариант теории Брёнстеда рассматривал только полный переход протона от к-ты к основанию. Однако к нач. 60-х гг. было показано, что р-ция между К. и о. не сводится лишь к полному переходу протона и имеет более сложный характер. Сначала при р-цив между атомом водорода к-ты АН и электронодоиорным атомом основания В возникает водородная связь и образуется комплекс АН... В. Во мн. случаях протолитич. р-ция ограничивается этой стадией такой процесс наз. незавершенным кислотно-основным взаимодействием. В благоприятных условиях, напр, при высокой диэлектрич. проницаемости р-рителя е, происходит передача протона от к-ты к основанию, в результате чего основание протонируется (завершенное кислотно-основное взаимод.). Образовавшиеся ионы могут находиться в р-ре в виде ионных пар илн в своб. виде. Весь кислотно-основной процесс м.б. выражен схемой  [c.394]


Смотреть страницы где упоминается термин СТВ на протонах ионные пары: [c.188]    [c.271]    [c.326]    [c.198]    [c.189]    [c.133]    [c.16]    [c.82]    [c.254]    [c.273]    [c.274]    [c.258]    [c.300]    [c.337]    [c.761]    [c.81]    [c.199]    [c.404]    [c.219]    [c.394]   
Ионы и ионные пары в органических реакциях (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная пара



© 2025 chem21.info Реклама на сайте