Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекулы, физическое состояни

    Анализируя результаты работ по изучению распада поливинилхлорида, можно назвать следующие основные факторы, определяющие стабильность полимера структура макромолекул, физическое состояние полимера, реакционность среды, природа и интенсивность энергетического воздействия, наличие примесей, способных [c.144]

    При более низких температурах (Г < Гт) подвижность сегментов и связанные с ней перестройки конформаций цепей сохраняются значительными, однако они недостаточны для того, чтобы могло иметь место заметное изменение взаимного расположения центров тяжести макромолекул, по крайней мере при обычном времени наблюдения. Этому случаю соответствует важнейшее физическое состояние полимеров — высокоэластическое. Это состояние, присущее только высокомолекулярным соединениям, характеризуется, как уже указывалось ранее, тем, что материал способен к большим обратимым деформациям. [c.39]


    К эластомерам относятся каучуки и резины. Термином каучук принято обозначать эластомер, состоящий из длинных гибких макромолекул, которые могут перемещаться друг относительно друга при повышении температуры или при действии механических напряжений. Для каучуков характерно аморфное состояние, однако при охлаждении или при растяжении они способны кристаллизоваться. Рабочим физическим состоянием каучуков является высокоэластическое состояние (17.2.1). При этом, чем шире интервал эластичности АТ = Тт Тс, тем обширнее температурная область, в которой каучуки могут использоваться в качестве эластомера. [c.424]

    В каких фазовых и физических состояниях существует целлюлоза Влияют ли химическое строение, молекулярная масса и конфигурация макромолекул на зависимость свойство -температура  [c.391]

    Наша книга не претендует на охват всех разделов физики н механики полимеров. В трех ее частях представлены наиболее важные сведения о строении и свойствах полимеров. В первой рассмотрены строение, физические состояния, кристаллизация и стеклование как основные фазовые и релаксационные переходы, статистическая и молекулярная физика макромолекул и полимерных сеток, а также некоторые вопросы термодинамики механических свойств полимеров. Во второй рассмотрены механические, электрические, магнитные и оптические свойства, относящиеся к релаксационным явлениям в полимерах. В третьей представлены важнейшие тепловые и механические свойства, связанные с прочностью и разрушением, а также с трением и износом полимеров. [c.8]

    Механические свойства полимеров определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул. [c.361]

    При нагревании застеклованного полимера в результате теплового движения отдельных участков макромолекул — сегментов — часть межмолекулярных связей нарушается. Сегменты макромолекул начинают скручиваться. Это особое состояние полимера называется высокоэластическим, так как пребывая в нем, вещество проявляет эластичность, т. е. способность восстанавливать свою первоначальную форму. При дальнейшем нагревании полимер переходит в текучее, т. е. истинно жидкое состояние. Стеклообразное, высокоэластическое и текучее состояния полимера являются его физическими состояниями, при этом по своему фазовому состоянию полимерное вещество является жидкостью (см. табл. 11) или иногда твердым телом при наличии дальнего порядка в упаковке макромолекул. Температуры перехода полимера из застеклованного состояния в высокоэластическое и затем в текучее (температура стеклования и температура текучести) не являются явно выражен- [c.111]


    Температурный интервал перечисленных физических состояний полимеров определяется природой мономеров, расположением мономерных звеньев в макромолекулах, т.е. строением полимеров, и их молекулярной массой. [c.13]

    Полимеры могут существовать в аморфном или кристаллическом состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно образование более сложных надмолекулярных структур, тип которых будет определять весь комплекс физико-механических и химических свойств полимера. Незакристаллизованные полимеры могут находиться в одном из трех физических состояний — стеклообразном, высокоэластическом и вязкотекучем, причем в зависимости от ряда факторов возможен переход полимера из одного состояния в другое. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного состояния в высокоэластическое называются эластомерами, с высокой — пластиками. [c.108]

    Таковы общие особенности механокрекинга в зависимости от физического состояния полимеров. Остается сделать иесколько замечаний о тех дополнительных осложнениях механокрекинга, которые связаны с кристалличностью и пачечной структурой твердых полимеров [146, 168—178]. Во-вторых, кристаллиты, которые представляют собой с точки зрения механических свойств узлы жесткости в структуре, естественно, способствуют протеканию меха)Н0-крекинга по линии проходных макромолекул, связывающих объединенные в узле макромолекулы с соседними, окружающими, аналогичными узлами структуры. Если исходить из того, что при [c.55]

    Высокоэластичность — физическое состояние высокомолекулярных соединений, характеризуемое высокой подвижностью сегментов макромолекул, стремящихся принять самые разнообразные конформации. Именно поэтому полимеры в высокоэластическом состоянии можно деформировать до огромных значений относительного удлинения, а после снятия нагрузки наблюдать значительное сокращение образца [8, с. 132—148 9, с. 40—52 10, с. 302]. [c.149]

    Рассмотренные выше физические состояния характерны для аморфных полимеров. Переход полимера из одного физического состояния в другое совершается при сохранении ближнего порядка между звеньями макромолекул без установления дальнего порядка, т. е. не сопровождается фазовым превращением. Однако имеется большое число полимеров, которые могут при соответствующих условиях переходить из аморфного в кристаллическое состояние. [c.69]

    Внешнее сходство термомеханических кривых нетканых материалов и высокополимеров объясняется не глубокой аналогией их свойств, а тем, что свойства нетканого материала определяются термомеханическими свойствами связующего. Область высокоэластичности нетканого материала на термомеханической кривой объясняется не проявлением способности участков волокон (как макромоделей макромолекул высокополимера) к тепловому движению, а изменением физического состояния связующего, склеивающего волокна. [c.285]

    При некотором критическом значении МШ (порядка пяти) у полимера обнаруживается способность переходить в высокоэластическое состояние, для которого типично существование трехмерной сетки взаимно связанных макромолекул. Это чисто релаксационный переход, осуществимый в изотермических условиях нри Т > Т . Он проявляется наиболее четко у полимеров с узким ММР. Поэтому именно на их примере удобнее всего проследить за влиянием перехода полимеров из одного физического состояния в другое на вязкостные свойства. [c.191]

    На примере полимерных смесей обсуждаются экспериментальные данные по кинетике макромолекулярных реакций в смесях полимеров, иллюстрирующие влияние физического состояния объектов и предыстории их получения. В качестве предыстории полимерных материалов в случае пленок рассматривается структура растворов смесей полимеров и межмолекулярное взаимодействие компонентов, влияние растворителя, термический режим формования пленок. В случае материалов, получаемых совмещением полимеров в твердой фазе, обсуждаются примеры изменения в термической устойчивости смесей, вызванного образованием при интенсивных комбинированных силовых воздействиях типа давления и сдвига развитых диффузионных межфазных слоев, неравновесных по составу, размерам фазовых образований, конфор-мационному состоянию макромолекул. [c.244]

    Все это послужило основанием для постановки систематических исследований структуры полимеров, начатых В. А. Каргиным. Особое внимание было уделено изучению структуры аморфных полимеров с применением в основном дифракционных методов и электронной микроскопии. В результате этих исследований, проведенных совместно с Н. Ф. Бакеевым, были установлены два фундаментальных фактора во-первых, показано, что в аморфных полимерах во всех физических состояниях существует ближний ориентационный порядок в расположении макромолекул, и, во-вторых, было обнаружено, что морфологически ближний порядок реализуется в виде дискретных образований, имеющих форму асимметричных ассоциатов макромолекул. [c.7]


    Естественно, что термодинамические исследования растворов полимеров и изучение структуры полимерных волокон и пленок, начатые В. А. Каргиным ранее, были продолжены, но с учетом развития работ по механическим свойствам полимеров. Это привело к разработке важнейшей проблемы связи механических свойств полимеров с их структурными характеристиками. Начав с изучения влияния химического строения и ориентации макромолекул на свойства волокон и пленок, В. А. Каргин впоследствии пришел к выводу о существовании надмолекулярной структуры в полимерах во всех их физических состояниях и об ее существенной роли в формировании механических свойств полимеров. Особое значение имело то, что В. А. Каргин сразу обратил внимание на плодотворность проведения исследований меха- [c.9]

    Пластификация полимеров обычно рассматривается как технологический прием повышения эластических и пластических свойств материала, т. е. уменьшения его хрупкости в результате введения специально подобранных пизкомолекулярных веш,еств — пластификаторов. При этом, как известно, смещаются в сторону более низких температур точки переходов полимера из одного физического состояния в другое, либо расширяется температурный интервал его высокоэластического состояния [1]. В первом случае имеет место ослабление межмолекулярных связей в результате блокирования молекулами пластификатора активных групп полимерных ценей, ответственных за эти связи, во втором случае имеет места блокирование активных групп звеньев полимерной цепочки, ответственных за придание жесткости цепям в целом. Поэтому такая пластификация повышает гибкость полимерных макромолекул, не изменяя точки перехода из высокоэластического в вязкотекучее состояние. [c.319]

    В связи с разнообразием фазовых и физических состояний полимеров, связанных с размерами, формой, расположением и взаимодействием гибких макромолекул, прочность полимерных материалов зависит как от их свойств, так и от внешних условий, при которых происходит разрушение полимеров. Влияние некоторых факторов на прочность полимеров в настоящее время уже изучено, но в большинстве случаев ответить однозначно на вопрос о роли одного фактора не удается, так как одновременно с ним проявляется действие и других, тесно связанных с первым. [c.232]

    В книгу введена гл. 3, которая знакомит читателя с такими основными понятиями физической химии эластомеров, как гибкость макромолекул, физические состояния эластомеров, высокоэластические деформации и др. Гл. 14, написанная 3. Н. Тарасовой, посвяшена окислению вулканизатов и призвана дать читателю представление о химических реакциях, протекающих в вулканизатах при эксплуатации. В связи с этим из нового издания исключен раздел Старение и утомление резин . [c.6]

    Молекулярная подвижность в полимерах и их физические состояния. В ряду макроскопических свойств полимерных материалов, определяющих области их применения, особая роль принадлежит механическим свойствам. Они у полимеров являются уникальными, не характерными для обычных низкомолекулярных веществ. Это обусловило выделение высокомолекулярных соединений в особый класс материалов, поведение которых не может быть охарактеризовано на основе обычных представлений об агрегатных состояниях вещества. Как известно, в молекулярной физике эти состояния определяют в зависимости от интенсивности и характера теплового движения его основных структурных и кинетических единиц. В случае низкомолекулярных веществ оба типа единиц совпадают, для полимеров же такое совпадение не имеет места. --Их- структурной единицей является макромолекула, но перемещение макромолекулы — это не единовременный акт, а совокупность последовательных перемещений отдельных сравнительно независимых субчастей цепи — кинетических сегментов. Такой сегмент, содержащий от нескольких единиц до нескольких десятков мономерных звеньев, и является основным типом кинетических единиц в полимере. [c.39]

    Высокоэластические свойства в расплаве определяются не только подвижностью отдельных макромолекул, но и подвижностью высокоупорядоченных вторичных образований. Таким образом, для некристаллических полимеров надмолекулярные структуры существуют во всех физических состояниях (стеклообразном, высокоэластическом и вязкотекз чем). Процесс образования надмолекулярных структур носит многоступенчатый характер. Монокристаллы полимеров со- [c.22]

    С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентаций электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной мрпл описаны в литературе [9.6 50]. [c.234]

    Итак, большая длина цепных макромолекул прчводит к появлению у них гибкости. Гибкость ограничена взаимо йствием атомов и атомных групп, связанных с основной цепью. )то взаимодействие ограничивает свободу вращения вокруг углерод-углеродных связей в макромолекуле. Чем больше взаимодействие, тем выше барьер вращения и тем меньше гибкость макромолекулы. Гибкость макромолекул проявляется в характерной для полимеров зависимости свойств от температуры и обусловливает существование трех физических состояний полимера и особенности его кристаллической структуры. Наличие двух основных элементов структуры — макромолекул и их сегментов — обусловливает особенности надмолекулярной структуры и, в частности, существование флуктуационной сетки. Все это вместе делает для полимера наиболее типичной не чисто упругую или чисто вязкую (необратимую) деформацию, а деформацию вязкоупругую. [c.105]

    При нагревании застеклованного полимера в результате теплового движения отдельных участков макромолекул — сегментов — часть межмолекулярных связей нарушается. Сегменты макромолекул начинают скручиваться. Это особое состояние полимера называется высокоэластическим, так как, пребывая в нем, вещество проявляет эластичность, т. е. способность восстанавливать свою первоначальную форму При дальнейшем нагревании полимер переходит в текучее, т. е. истинно жидкое состояние. Стеклообразное, высокоэластическое и текучее состояния полимера являются его физическими состояними, при этом по своему фазовому состоянию полимерное вещество является жидкостью (см. табл. 11) или иногда твердым телом при наличии дальнего порядка в упаковке макромолекул. Температуры перехода полимера из застеклованного состояния в высокоэластическое и затем в текучее (температура стеклования и температура текучести) не являются явно выраженными температурными точками, как это имеет место для температуры плавления и температуры кипения низкомолекулярного вещества. Температуры перехода полимера из одного физйческого состояния в другое представляют собой температурные интервалы, в которых происходит изменение физико-ме-ханических свойств материала. Иногда такой интервал составляет десяток градусов, что объясняется неодинаковостью длины макромолекул полимера — его полидисперсностью. [c.87]

    В пределах одного физического состояния большое зпачение имеет плотность упаковки макромолекул. По-видимому, полиизобутилен значительно плотнее упакован, чем натуральный каучук и полибутадиен, поэтому его газопроницаемость значитель ю мепьше, чем у последних двух полимеров. Из стеклообразных полимеров наибольшей газопроницаемостью обладает полистирол, что может быть объяснено его более рыхлой упаковкой по сравнению с упаковкой других высокомолекулярных стекол. [c.491]

    Температура стеклования разделяет два физических состояния материала И30ЛЯ1ЩИ, что фиксируется на графике изломом прямой линии на два участка. В стеклообразной области полимерного материала вследствие заторможенности теплового движения макромолекул преобладает упругая деформация, пропорциональная возникающему двулучепрелом-лению. Эффект, вносимый упругой деформацией в общее значение Ди, всегда является положительной величиной. [c.32]

    В каких фазовых и физических состояниях существуют аморфные и кри-сталличсскне полимеры Влияег ли химическое строение, молекулярная масса и конфигурация макромолекулы на характер термомеханической кр1ГВ0Й  [c.279]

    Переход от линейной конфигурации макро-молскулы к раз-ветвлетюи или пространственно-сетчатой изменяет е и е" по-разному в зависимости от физического состояния полимера. В высоко-мастнческом состоянни е и а" уменьшаются с ростом степени разветпления нли сшивания, При этом максимум потерь сдвигается в сторону более высоких температур и уменьшается. В стеклообразно.м состоянии точки разветвления и сшивки снижают плотность упаковки и уменьшают межмолекулярное взаимодействие, тем самым способствуют повышению доли макромолекул, способных релаксировать, приводя к росту е и е  [c.376]

    У полимеров в отличие от низкомолекулярных соединений как отдельный вид состояния вещества рассматривают релаксационные (физические) состояния. У низкомолекулярных соединений границы физических состояний совпадают с границами афегатных состояний. Под физическим состоянием полимера понимают состояние, равновесное для данной температуры. Физические состояния определяются особенностями подвижности атомов, фупп атомов, звеньев, сегментов, макромолекул и элементов надмолекулярной структуры при данной температуре. Переходы из одного равновесного состояния в другое являются релаксационными процессами, т. е. при изменении температуры данное равновесное состояние полимера уже становится неравновесным, а переход из неравновесного состояния в новое равновесное в результате тепловых движений происходит во времени. Это время характеризует скорость релаксационного процесса. У низкомолекулярных соединений оно очень мало и им пренебрегают. У полимеров время релаксации может быть очень большим и оказывать существенное влияние на их поведение. Поэтому равновесные физические состояния называют релаксационными состояниями. Повышение температуры, понижение энергии межмолекулярного взаимодействия и уменьшение размеров элементов надмолекулярной структуры приводят к ускорению релаксационных процессов, т. е. к ускорению достижения системой равновесного состояния. [c.147]

    Целлюлоза - наиболее распространенный в природе полисахарид. Кроме древесины, в большом количестве она содержится в семенных волосках хлопка (96...99%), в лубяных волокнах таких текстильных растений, как лен, рами (80...90%), соломе злаков и др. Свойства целлюлозы -физические, физико-химические и химические зависят как от химического строения целлюлозы, так и от ее физической структуры - формы макромолекул, межмолекулярного взаимодействия, надмолекулярной структурь[ и фазового и релаксационного (физического) состояний. Целлюлоза, будучи основным компонентом клеточных стенок, во многом определяет строение и свойства древесины. [c.225]

    От величины молекулярной массы зависит также физическое состояние полимера после его плавления. Объясняется это тем, что при достаточно больших молекулярных массах свойства кристаллических областей, в том числе способность их к плавлению, определяются не длиной всей макромолекулы, а подвижностью звеньев. Температура же текучести полимера в аморфном состоянии растет с молекулярной массой (с. 381). Следовательно, при достаточно больших степенях полимеризации Ттек Тпл, а кристаллический полимер после плавления и перехода его в аморфное тело окажется в высокоэластическом состоянии (высокомолекулярный кристаллический полиэтилен). [c.457]

    В данном разделе кратко рассмотрены в самом общем виде факторы, определяющие возникновение критических напрян<ений, приводящих к крекингу макромолекул полимеров, и в первую очередь связи этих факторов с особенностями фазовых и физических состояний полимеров. Оценка этих факторов основана на современных представлениях о механичеаких свойствах полимеров. [c.52]

    В отношении структуры аморфных полимеров существует две точки зрения. Одна из них, представленная работами Флори, Бенуа, Кирсте, Фишера и других, основана на том, что в аморфных полимерах, независимо от их физического состояния, отсутствует всякая упорядоченность расположения макромолекул (если материал не подвергался предварительной ориентации). Другая точка зрения исходит из возможной локальной упорядоченности расположения макромолекул (школа Каргина, Гейля, Иеха и другие). [c.64]

    Феррети с сотр. [130] выдвинули другую гипотезу, которая, по их мнению, может разрешить имеющиеся противоречия и объяснить данные метода ЯМР. Они предположили, что общепринятые представления об активированном комплексе в данном случае неприменимы и система не может быть описана в рамках классической схемы парных взаимодействий с образованием и разрывом связей [173, 174]. В равновесном состоянии спираль — клубок для клубкообразной формы (в отличие от полностью спирализован-ной) в стабилизирующих растворителях, согласно гипотезе авторов, имеется набор низколежащих возбужденных торсионных состояний, энергия которых определяется усреднением по всем состояниям аминокислотных остатков, связанных и не связанных водородными связями, возможным при фиксированной степени спиральности одной молекулы. Физическое состояние макромолекул определяется двумя существенно разными процессами с резко различающимися характеристическими временами, зависящими от длины цепи (1) медленным процессом, описывающим переходы из формы клубка в какое-либо или во все возбужденные состояния спирали, и (2) быстрыми скачкообразными хаотическими переходами между состояниями с заданной (не обязательно равновесной) степенью спиральности. Реальное состояние ансамбля молекул, таким образом, определяется как усредненное по этим состояниям. Для коротких цепей природа среднего возбужденного состояния практически такая же, как для полностью спирализован-ной формы, и не меняется в процессе перехода. Напротив, для длинных цепей, для которых возможно гораздо большее число торсионных состояний, природа среднего возбужденного спирального состояния непрерывно меняется в процессе перехода и в конце его становится эквивалентной состоянию клубка. Метод ЯМР регист- [c.323]

    До сих пор в качестве фактора, определяющего скорость образования мономера из полимера или способность полимера образовывать мономер при соответствующей обработке, рассматривали только химическую структуру мономерных звеньев, из которых состоит полимер. Однако выход Аюномера может также зависеть от физического состояния деполимеризую-щегося полимера, в частности, различные результаты получаются при проведении реакции в растворе, в твердом и полужидком состояниях. Кроме того, выход мономера может зависеть от различных факторов, связанных с особенностями строения макромолекул. Выше указывалось, что структурные элементы, присутствующие в полимере в небольших количествах, такие, как узлы разветвлений или концевые группы, часто являются местами, наиболее чувствительными в отношении деструкции. Поэтому выход мономера или даже характер реакции деструкции данного полимера часто могут зависеть от метода его получения, природы примененного катализатора и его концентрации, температуры полимеризации, молекулярного веса полимера [c.16]

    Как известно, структуру полимеров в аморфном состоянии рассматривали до исследований В. А. Каргина как систему хаотически расположенных макромолекул, существующих в различных конформациях и связанных друг с другом через взаимные захлесты и переплетения. Такая модель структуры полимеров в аморфном состоянии была использована для создания кинетической теории высокоэластичности в виде известной молекулярной сеточной модели и для построения других физических теорий, объясняющих особенности поведения аморфных полимеров в различных физических состояниях. Структуру же полимеров в кристаллическом состоянии представляли в виде кристаллитов, вкрапленных в аморфную матрицу. При этом представляли, что полимерные кристаллиты, размеры которых значительно меньше длины макромолекул, соединены проходяпщми через них цепями (известная модель бахромчатых мицелл ). [c.6]


Смотреть страницы где упоминается термин Макромолекулы, физическое состояни: [c.14]    [c.112]    [c.246]    [c.491]    [c.158]    [c.220]    [c.424]    [c.23]    [c.491]    [c.491]    [c.245]    [c.233]   
Катализ в химии и энзимологии (1972) -- [ c.292 , c.293 , c.294 , c.295 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Состояние физические



© 2025 chem21.info Реклама на сайте