Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы со сложными эфирами

    Известно, что наиболее устойчивым комплексом сложных эфиров с кислотами Льюиса является комплекс состава 1 1 [35]. В этом предположении реакцию роста цепи при полимеризации ММА в присутствии КО можно рассматривать как суперпозицию четырех элементарных актов, описываемых схемой  [c.66]

    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]


    Структуры некоторых сложных эфиров, образующих комплексы с мочевиной [c.207]

    Ассоциация молекул в водной фазе вызывает уменьшение коэффициента распределения при увеличении концентрации металла, ассоциация же в органической фазе—увеличение этого коэффициента. Комплексы металла, имеющего хорошо ассоциирующие частицы, отличаются очень слабой растворимостью в воде, большой—в неполярных растворителях (бензол, четыреххлористый углерод, хлороформ и метилизобутилкетон) и слабой в полярных (спирты, эфиры). Металлы со слабо ассоциированными молекулами особенно хорошо экстрагируются кетонами, простыми и сложными эфирами и другими растворителями типа доноров при добавлении кислот. В таких системах коэффициент распределения увеличивается с повышением количества свободной кислоты, а в некоторых системах имеет максимум при известных ее концентрациях, так как при низких концентрациях из частиц кислоты и экстрагируемого вещества образуется мало комплексов, а при высоких концентрациях количество комплексов сильно увеличивается. Нов некоторых системах при определенной кислотности одновременно начинает расти взаимная растворимость фаз, что может ухудшить коэффициент распределения. [c.425]

    Как показано в работе [56], смесь непрореагировавшего углеводорода и промежуточных продуктов окисления целесообразно возвращать в реакционную массу на стадии развившегося процесса. При этом в реакторе имеется достаточное количество бенз-альдегида, образующего активный комплекс с катализатором, который не будет поэтому дезактивирован спиртами и сложными эфирами. Принципиальная схема получения бензойной кислоты в среде углеводорода представлена на рис. 11. [c.69]

    При правильно выбранных условиях процесса побочные реакции незначительны, однако продукты взаимодействия катализатора с полиолефиновыми компонентами — комплексы, концентрирующиеся в катализаторе, необходимо четко отделять от последнего, а для удаления их следов и образующихся сложных эфиров алкилат подвергают очистке. [c.302]

    Наибольшая длина цени при образовании карбамидного комплекса обнаружена среди нормальных парафинов для молекул С50 и среди сложных эфиров для молекул С4д. Однако не доказано, что такая длина является предельной. [c.18]

    Масло Б-ЗВ (ТУ 38.101295-85) — синтетическое на основе сложных эфиров пентаэритрита и жирных кислот с комплексом присадок. Применяют в газотурбинных двигателях, редукторах вертолетов и другой технике с температурой масла на выходе из двигателя до 200 °С. Обладает высокими смазывающими свойствами. Недостаток выпадение в осадок противозадирной присадки при низкой температуре эксплуатации в результате окисления с последующим растворением осадка в масле при 70—90 °С. [c.171]


    Масло 36/1-КУА (ТУ 38.101384-78) — синтетическое на основе сложных эфиров с комплексом присадок обладает высокими противозадирными свойствами. Используют в газотурбинных двигателях с температурой масла на выходе из двигателя 200 °С. В настоящее время не вырабатывается. [c.171]

    Масло ЛЗ-240 (ТУ 301-04-010-92) — синтетическое на основе сложных эфиров пентаэритрита и жирных кислот с комплексом присадок. Рекомендуется для использования в тех же двигателях, в которых применяется масло Б-ЗВ. [c.171]

    В данной схеме водород играет роль газообразного катализатора. П. Сабатье и другие авторы неоднократно отмечали благоприятное действие водорода нри процессах дегидрирования, добавки водорода при этерификации спиртов повышают выход сложного эфира на 5—10%, но роль водорода остается неясной. Водород не является переносчиком или разбавителем, но непосредственно участвует в химическом процессе. Адсорбируясь на катализаторе, он образует с реагентами активированные комплексы, что способствует нормальному протеканию процесса. Как правило, при реакциях типа бескислотной этерификации, дегидроконденсациях или кето-низации первичных спиртов всегда должен присутствовать дополнительно вводимый водород, так как без него нарушается нормальное течение процесса, и катализаторы быстро теряют активность. [c.290]

    Из многих предложенных теорий образования сложных эфиров заслуживает внимания теория Ф. Уитмора с промежуточным образованием иона карбония РзС+], достаточно хорошо объясняющая роль минеральных кислот как катализаторов. По этой теории карбоновая кислота образует с кислотой-катализатором ионный комплекс [c.472]

    Многостадийный характер превращения субстрата на активном центре химотрипсина [6—101. Гидролиз субстратов (сложных эфиров,. амидов) на активном центре химотрипсина протекает в несколько стадий. На первой стадии ферментативного процесса происходит сорбция субстрата (образование комплекса Михаэлиса Е5). На последующих стадиях наблюдается химическое превращение сорбированной молекулы с промежуточным образованием ацилфермента ЕА. В кинетической схеме [c.128]

    Классификация каталитических реакций. Катализ делят на гомогенный и гетерогенный. Гомогенный катализ можно разделить на кислотно-основной (его вызывают кислоты и основания), окислительно-восстановительный (его вызывают соединения металлов переменной валентности), координационный (катализаторы — комплексные соединения), гомогенный газофазный (катализаторы — химически активные газы, такие, как N62, ВГз и т. д.) и ферментативный. Деление это не строго, так как одна и та же реакция, например гидролиз сложного эфира, может в зависимости от катализатора— кислоты, комплекса или фермента — попасть в ту или иную группу, [c.169]

    Доказательства в пользу образования промежуточного тетраэдрического комплекса получены при изучении частичного щелочного гидролиза сложного эфира, в карбонильную группу которого введен кислород 0 . Непрореагировавший эфир отделяли, и в нем определяли содержание кислорода О . Если справедливо предположение о структуре промежуточного соединения, то при наличии в нем быстрых переходов протона между атомами кисло- [c.220]

    Как и по реакции 10-54, этим методом из сложных эфиров можно синтезировать гидразиды и гидроксамовые кислоты действием гидразина и гидроксиламина соответственно. И гидразин, и гидроксиламин взаимодействуют быстрее, чем аммиак или первичные амины (а-эффект, разд. 10.12). Вместо сложных эфиров часто используют фенилгидразиды, получаемые из фе-нилгидразина. Образование гидроксамовых кислот, которые в присутствии трехвалентного железа дают окрашенные комплексы, часто используется как тест на сложные эфиры. Из имидатов R ( = NH)OR получаются амидины R ( = NH)NH2 [729] (см. реакцию 10-36). Лактоны при обработке аммиаком или первичными аминами дают лактамы. Лактамы получаются [c.158]

    Антраинловую кислоту применяют в аналитической химии, так как с ионами многих металлов оиа образует нерастворимые комплексы. Сложные эфиры антраниловой кислогы применяют в парфюмерии. [c.625]

    Казалось бы, что полученные сведения не оставляют сомнения в том, что химотрипсин работает по такому же принципу. Однако выяснилось, что фермент-субст-ратный комплекс (сложный эфир + химотрипсин) представляет собой продукт взаимодействия сложноэфирной группы с гидроксильной группой остатка серина (0-ацил-серин). Далее оказалось, что в линейной цепочке аминокислот, которые входят в так называемый активный участок химотрипсина Гли.— Асп.— Сер.— Гли.— Про.— Лей., нет остатков гистидина по соседству с серином. Остается предположить, что активные центры химотрипсина — гидроксильная группа серина и имидазольное кольцо гистидина — хотя и удалены друг от друга (например, находятся на разных витках полипептидной цепи в модели Полинга — Кори), имеют возможность сближаться как раз в тот момент, когда происходит захват молекулы сложного эфира одним из активных центров химотрипсина. [c.101]


    Изучение термодинамических параметров реакций комплексообразования карбонильных соединений алифатического ряда выявило наличие линейной корреляции lg/С и —АЯ с константами заместителей СУ. Это установлено для комплексов Ы,Н-диметиламидов некоторых кислот с иодом [42] и фенолом [43], для комплексов сложных эфиров и. кетонов со Sb lg [44], а также для комплексов ряда тио-карбонильных соединений с иодом [45]. [c.347]

    Многие классы органических соединений образуют комплеАсы, например гомологические ряды кетонов, кислот, эфиров, галоидуглеводородов, меркаптанов и сложных эфиров. Насыщенные и ненасыщенные структуры будут образовывать комплексы при наличии достаточно длинной цепи. [c.206]

    Карбонильный кислород в кетонах, кислотах и сложных эфирах не только не арепятствует образованию комплексов, но, по-видимому, облегчает комплексообразование, так как окисленные соединения с более короткими углеродными цепями дают комплексы. Ацетон с тремя углеродными атомами в прямой цепи, масляная кислота с четырьмя углеродными атомами и их высшие гомологи образуют комплексы с мочевиной. [c.206]

    Криджи предложил следующую схему образования таких комплексов, или сложных эфиров осмиевой кислоты  [c.367]

    Полученные таким путем сложные эфиры ошиовой кислоты совершенно нерастворимы во всех обычных растворителях, кроме третичных оснований, особенно пиридина, растворов, в которых они выделяются в виде слабоокрашешшх кристаллических продуктов с двумя молекулами кристаллизационного пиридина. Такие соединения могут рассматриваться как координационные комплексы, предположительно имеющие структуру [c.367]

    Реакция изопарафиновых углеводородов со сложными эфирами. С алкилхлоридами. При взаимодействии изонарафинов с алкилхлори-дами в присутствии хлористого алюминия реакция алкилирования идет лишь в незначительной степени. Вместо этого имеет место реакция хлорводородного обмена, в результате которой нолучаются продукты, подобные тем, которые нолучаются но реакции переноса водорода при алкилировании изопарафинов олефинами. Алкилхлориды восстанавливаются в соответствующий парафин и хлористый водород, тогда как изопарафин превращается в продукт самоконденсации (и в парафины, образующиеся путем деструктивного алкилирования этого продукта) или же дает комплекс с катализатором. [c.332]

    Чтобы избежать гидролиза сложных эфиров, следует использовать объемистые грет-бутильные группы. Метиловые эфиры можно применять в том случае, если кислотные свойства активной метиленовой группы усилены. Для этого, например, подходит образование я-комплексов типа арен-Сг (СО)з, в которых атом металла является электроноакцептором [341, 930]. Эти комплексы получают при кипячении с гексакарбонилом хрома. После почти количественного алкилирования (СНгСЬ или СбНб/цетилтриметиламмонийбромид/50%-ный NaOH, 1,5—3 ч при комнатной температуре) комплексы можно легко разрушить солями церия [341, 390]. [c.189]

    Для омыления стерически затрудненных сложных эфиров, которые трудно гидролизуются в обычных условиях, оказалось очень полезным использование краун-эфиров и криптатов. Педерсен и сотр. [504, 505] обнаружили, что дициклогексано-18-краун-6 способствует растворению гидроксидов калия и натрия в бензоле. При этом можно приготовить растворы концентра-цпей до 1 моль/л. В большинстве случаев этот комплекс сначала получают в метаноле, который затем замещают на бензол, однако около 1% СН3ОН удалить не удается. Таким образом, хотя в конечном растворе находятся как ионы ОН , так и СНзО [43, 504], этого вполне достаточно для гидролиза эфиров [c.246]

    Были также запатентованы комплексы Pd l2 с фосфином как катализаторы гидрокарбоксилирования олефинов при 50—90°С и 700 атм (6864-10 Па) [51]. На Ы1(С0)4 проводили каталитическое превращение хлористых аллилов в ненасыщенные сложные эфиры [52] и выдел я- [c.203]

    Способность образовывать комплексы обнаруживают также олефины, диолефины, карбоновые кислоты, сложные эфиры, галоидзамещенпые нормальных парафинов, кетоны, спирты, меркаптаны, амины и др. При этом имеет место одна закономерность легкость образования комплекса и его стабильность увеличиваются с ростом цепи. Неразветвленные моноолефины и диолефины легче образуют комплекс, чем разветвленные. Полиолефины как с разветвленной, так и с неразветвленной ценью, содержащие три и более двойных связи, не образуют комплекса. Это объяс- [c.20]

    Карбонильный кислород в кетонах, кислотах и сложных эфирах в известной степени облегчает комплексообразование, поскольку окисленные соединения образуют комплекс при наличии менее длинной цепи, чем неокисленные. У карбоновых кислот способность образовывать комплексы проявляется, начиная с масляной кислоты, у кетонов — с ацетона, у спиртов — с гексанола. [c.21]

    Способы комплексообразования, предложенные Шленком [135] и Арнольдом с сотр. [136], основаны на том, что во время обработки масла карбамидом к смеси добавляют также соединения, способные образовывать комплекс (индивидуальные к-парафины, их смеси, мягкий парафин, твердый парафин, сложные эфиры и др.). Применяя этот способ, удается получить масла с более низкой температурой застывания при некотором снижении их выхода. [c.73]

    Систематические исследования прямого синтеза сложных эфиров в присутствии ВРд в качестве катализатора проводил С. В. Завго-родний [28]. Он нашел, что в присутствии комплекса ВРз-О(СоН ), олефины при нормальном давлении и мягких температурных условиях (от комнатной температуры до 150°) реагируют с карбоновыми кислотами, образуя (примерно через сутки) до 40—90% соответствующих сложных эфиров. В результате большого числа проведенных опытов было установлено, что выходы и скорость реакции зависят от структуры олефинов, из которых медленнее всех реагирует этилен. Скорость реакции нарастает только до бутиленов нормального строения. Во многих случаях сравнительно низкие выходы эфи-рсв объясняются наличием побочных параллельных реакций. [c.664]

    Кислород карбонильной группы, присоединяя протон минеральной кислоты (катализатор), образует карбониевый ион I, который подвергается нуклеофильной атаке молекулой спирта. В результате этого образуется неусточивый промежуточный комплекс II, распадающийся сразу же с выделением молекулы воды. Возникший карбкатион сложного эфира III, отщепляя протон, дает сложный эфир IV. [c.168]

    Рентгеновские исследования комплексов химотрипсина с субстратоподобными ингибиторами сыграли принципиальную роль в установлении структурных предпосылок каталитической функции его активного центра (см. 2 этой главы). Однако для выяснения динамических аспектов действия активного центра оказались особенно плодотворными подходы химической кинетики (см. 5,6 этой главы). Успехи кинетических исследований были во многом предопределены открытием М. Бергмана и Д. Фрутона и позднее Г. Нейрата и их сотрудников, которые установили, что химотрипсин способен гидролизовать не только сложные белковые молекулы, но также и простые низкомолекулярные синтетические субстраты (амиды, сложные эфиры и др.) [20]. [c.127]

    Не менее важным структурным элементом молекулы субстрата является и а-ациламидная группа. Этот субстратный фрагмент не оказывает заметного влияния на свободную энергию образования комплекса Михаэлиса, однако, как видно из табл. 28, наличие его в молекуле сложного эфира приводит к существенному ускорению последующих химических стадий ферментативной реакции и обусловливает также стереоспецифичность катализа по отношению к -энантиомерам. [c.134]

    Экстрагирование молибдентиоцианатного комплекса можно проводить простыми и сложными эфирами, спиртами, бутил-фосфатом и другими растворителями. Экстракция значительно понижает предел обнаружения молибдена, а также устраняет мешающее здияние друшх крашенных ионов, которые могут присутствовать в растворе, - хрома, никеля, меди и т.д. [c.164]

    Протолитическая теория была применена к истолкованию закономерностей реакций кислотно-основного катализа разложение нитра-мида, инверсия сахаров, омыление сложных эфиров и т. п. Скорость этих процессов зависит от природы и концентрации кислот и оснований, присутствующих в растворе, причем сами кислоты и основания в ходе реакции не расходуются, т.е. выступают в роли катализаторов. Реагирующее вещество можно рассматривать как слабую кислоту пли слабое основание, которые вступают в реакцию с катализатором основанием или кислотой с образованием некоторого промежуточного комплекса. Последний затем распадается на конечные продукты с регенерацией катализатора. Сила кислот и оснований (константы их ионизации) и их каталитическая активность связаны между собой. Я. Брёнстед установил, что если в качестве катализаторов использовать ряд однотипных слабых кислот, то между константой скорости катализируемого ими процесса и константой ионизации кислот Ка существует следующее соотношение  [c.84]

    В большинстве случаев разделению подвергают карбоновые кислоты, и если молекула не содержит карбоксильную группу, ее превращают в карбоновую кислоту перед попыткой разделения. Однако превращение в диастереомеры не ограничивается реакциями карбоновых кислот для сочетания с оптически активными реагентами можно использовать и другие функциональные группы [76, 77]. Рацемические основания можно превратить в диастереомерные соли реакцией с активными кислотами, спирты превращают в диастереомерные сложные эфиры [78], альдегиды — в диастереомерные гидразоны и т. д. Даже углеводороды можно превратить в диастереомерные соединения включения, используя мочевину, которая хотя и не хиральна, но имеет структуру клетки [79]. Для разделения смесей энантио-мерных алкильных и арильных аммониевых ионов были использованы хиральные краун-эфиры (разд. 3.2), образующие диастереомерные комплексы [80. В этом случае разделение упрощается благодаря тому, что один из диастереомеров может образовываться значительно быстрее другого. транс-Циклооктен (17) был разделен путем превращения в комплекс платины, содержащий оптически активный амин [81]. [c.159]


Смотреть страницы где упоминается термин Комплексы со сложными эфирами: [c.551]    [c.607]    [c.343]    [c.383]    [c.441]    [c.369]    [c.31]    [c.146]    [c.551]    [c.96]    [c.290]    [c.181]   
Химия органических соединений бора (1965) -- [ c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Комплекс сложный



© 2025 chem21.info Реклама на сайте