Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен поглощение

    В этан-этиленовой фракции определяют этилен поглощением в кислом растворе сульфата ртути состав предельной части контролируют сжиганием над окисью меди с последующим поглощением образовавшейся углекислоты. В эту фракцию попадает метан, остающийся в колонке и гребенке. Количество метана во фракции не превышает вредного пространства прибора. [c.325]

    Хлор и чистый этилен могут находиться вместе и стеклянной аппаратуре в течение некоторого времени без заметной реакции. При низкой температуро иод образует лабильное молекулярное соединение с соотношением мо.пей компонентов 1 1с пропиленом, г ,мс-бутоном-2, транс-бутеном-2 и бутадиеном-1,3, как было показано при помощи характеристических полос спектров поглощения [26]. [c.364]


    Метод синтеза этилового спирта, предложенный в 1932 г. В. Ф. Герром с сотрудниками, заключается в следующем. Пирогенный газ пропускают через активированный уголь с целью поглощения последним гомологов этилена очищенный газ содержит водород, метан, этан и этилен (до 22 % по объему). В таком составе газ (так называемая этиленовая фракция) при нормальном давлении и температуре около 100 °С поступает в железные скрубберы с насадкой из мелких кусков кварца, орошаемых — навстречу газовому потоку — концентрированной серной кислотой (плотность при 15 °С — 1,84) В указанных условиях максимальные выходы этилового спирта колебались по лабораторным данным в пределах 7—8 % на газ (30% потенциала этилена в газе) при расходе кислоты в 14—16 кг/кг абсолютного спирта, по данным работы полузаводской спиртовой установки — не выше 6,5 % на газ нри расходе кислоты до 18 кг/кг абсолютного спирта. [c.26]

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]

    Если я-электронная система ненасыщенного углеводорода имеет большую протяженность (охватывает большее число 2р-орбиталей), чем в этилене, разность энергий между высшей занятой я-орбиталью и низшей вакантной п -орбиталью становится меньше и поглощение энергии происходит при больших длинах волн. Такие протяженные я-электронные системы присущи сопряженным полиенам-соединениям, обычные структурные формулы которых содержат чередующиеся простые и двойные связи  [c.593]

    Технологическая схема процесса приведена на рис. 6.14. В реактор 7 подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ [концентрация кислорода в исходном газе около 5,5% (об.)]. Реакция осуществляется при 130 °С и давлении 3 МПа. Выходящая из реактора смесь непрореагировавшего этилена, кислорода, продуктов реакции и уксусной кислоты после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после поглощения двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией Og в отпарной колонне 6) возвращаются в реактор J. Для удаления инертных компонентов часть газа периодически выводится иа системы. Конденсат из газосепаратора 4 поступает в колонну 7, в которой отгоняются продукты реакции, включая образовавшуюся воду. Из куба этой колонны отбирается непрореагировавшая уксусная кислота, которая затем возвращается в реактор. В колонне 8 отгоняются низко-кипящие компоненты, которые для выделения ацетальдегида поступают в абсорбер 12. Поглощенный водой ацетальдегид выделяется из водного раствора ректификацией в колонне 13. Отбираемый из куба колонны 8 продукт, состоящий из винилацетата, воды и высококипящих компонентов, разделяется в отстойнике 9 на два слоя. Водный слой после извлечения следов винилацетата направляют в канализацию. Органический слой из отстойника 9 направляют для удаления воды в колонну 10, из которой смесь продуктов поступает в ректификационную колонну И, где отгоняется чистый винилацетат. Из куба колонны И выводятся высококипящие примеси. Пары воды с примесью винилацетата из верхней части колонны 10 возвращаются в колонну 8. [c.193]


    Для поглощения этилена обычно пользуются бромной водой, так как крепкая серная кислота (95%), легко связывающая этилен, поглощает предельные углеводороды и пары бензина. [c.831]

    Величина коэффициента разделения показывает, что при использовании метода движущегося слоя можно получить этилен чистотой 99% и выше. Известны случаи промышленного применения подобного способа получения этилена. Для эффективного течения процесса необходимо предварительно тщательно осушать газ, так как поглощение воды цеолитом приводит к значительному снижению его активности в отношении этилена. [c.317]

    Для практической реализации этих наблюдений необходимо было применять соли одновалентной меди в виде растворов. Разработаны были методы, позволяющие таким способом выделять этилен из определенных смесей углеводородных газов. Лучше всего применять те же соли одновалентной меди, которые используют для поглощения окиси углерода. Так, например, 1 л аммиачного раствора формиата и карбоната меди [19] определенного состава поглощает [c.176]

    Поэтому нри непрерывном нроцессе адсорбции получается следующая картина распределения но высоте колонны интенсивности поглощения этилена и связанной с этим тепловой нагрузки. На верхних тарелках-, которые орошаются свежей 98%-пой серной кислотой, очень энергично реагирующей с этиленом, выделяется относительно мало теила. Это происходит потому, что ] онцентрация этилена в газе,контактирующем с кислотой на верхних тарелках, очень понизилась, так как подавляющая часть олефина уже была извлечена из газа реакционной смесью на тарелках, расположенных ниже. С другой стороны, очень мала также растворимость этилена в свежей серной ](ислоте, не содержащей еще этилсульфатов. Так как скорость присоединения свежей серной кислоты к этилену значительно больше, чем его растворимость в этой кислоте, в пей свободный этилен в растворенном состоянии отсутствует. [c.454]

    Эту реакцию можно использовать не только для того, чтобы отделить олефины от парафинов, но и для разделения смеси низших олефинов. В последнем случае пользуются их различной реакционной способностью по отношению к серной кислоте. Например, из газовой смеси, содержащей этилен, пропилен, -бутилены, изобутилен и парафины, изобутилен поглощают холодной 50—65%-ной серной кислотой, н-бутилены — холодной 75%-НОЙ, пропилен — холодной 90%-ной, а этилен — горячей 90—96%-ной серной кислотой. Метановые углеводороды серной кислотой не поглощаются. Подробности этого процесса как в отношении стадии абсорбции, так и в отношении стадии гидролиза алкилсерных кислот в соответствующие спирты описаны в гл. 8. Применимость этого метода широка его можно использовать для разделения газовых смесей, содержащих от 2 до 100% олефинов. Сернокислотное поглощение олефинов применяли во время первой мировой войны в Англии для удаления небольших примесей этилена из коксового газа. Однако такой метод получения спиртов менее выгоден по сравнению с методом, предусматривающим предварительное выделение и концентрирование олефинов с последующей гидратацией. Поглощение олефинов серной кислотой все еще применяют в тех случаях, когда разделение физическими методами затруднительно, например при извлечении изобутилена из смеси с н-бутиленами и другими С4-углеводородами. [c.116]

    Хорошим дополнением к ИК-сиектрам являются спектры комбинационного рассеяния (КР), характеризующие не поглощение, а рассеяние веществом направленного на него света. Спектры КР заключают в себе информацию о симметричных валентных колебаниях в симметричных молекулах (например в этилене, циклогексене и др.), которые не находят отражения в ИК-снектрах. В последних фиксируются лишь по- [c.230]

    В то же время антисимметричные валентные и деформационные колебания приводят к появлению дипольного момента молекулы. Им соответствуют интенсивные полосы в спектре поглощения. По той же причине валентные колебания двух одинаковых атомов в симметричных молекулах не проявляются в спектрах поглощения, например колебания С=С в этилене. Но при наличии разных заместителей у таких атомов на связи появляется дипольный момент, и она становится активной в спектре поглощения. Таким образом, соседние атомные группы оказывают влияние как на частоту, так и на интенсивность полос поглощения. В результате каждая молекула имеет свой вполне определенный спектр поглощения в инфракрасной области спектра. Практически невозможно найти два вещества, имеющих точно одинаковый спектр поглощения. [c.293]

    Я -орбиталями этилена. Поэтому для перехода электрона в 1,3-бутадиене требуется меньше энергии и, следовательно, достаточно света с большей длиной волны, чем для перехода электрона в этилене. Это явление носит общий характер, и можно утверждать, что, как правило, чем больше сопряжение в молекуле, тем в большей мере поглош,ение смеи ается в сторону больших длин волн (см. табл. 7.1) [6]. Если хромофор поглощает при некоторой определенной длине волны и замещение одной группы на другую вызывает смещение поглощения в длинноволновую область, говорят, что имеет место батохром-ный сдвиг. Противоположное смещение называют гипсохром- [c.308]


    Чтобы понять, как характер поглощения связан со строением органического вещества, вернемся к условию Бора Е — Ео = /IV. Чем ближе друг к другу находятся оба энергетических уровня (основной и возбужденный), тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать действующий квант света, тем, следовательно, меньше его частота (и соответственно больше длина волны). Разность энергий Е — Ед определяется природой возбуждения. Свет видимой и ультрафиолетовой частей спектра обладает энергией, достаточной для возбуждения электронов затрачиваемая на возбуждение энергия определяется в конечном счете подвижностью электронов. Так, электроны 0-связей требуют для своего возбуждения квантов с большой энергией, эти электроны малоподвижны. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные л-электроны, поглощает свет при 193 нм. Сопряженные двойные связи в бутадиене, обладая еще большей подвижностью я-электронов, вызывают поглощение уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновая из которых расположена в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, как с ростом сопряжения (ростом подвижности электронов) поглощение постепенно сдвигается в длинноволновую область — в область квантов со все меньшей энергией. Однако все упоминавшиеся пока соединения бесцветны — их поглощение лежит в ультрафиолетовой области спектра. [c.358]

    В этан — этиленовой фракции определяют этилен поглощением в бромной воде состав ирв/мельной части контролируют ежигапием иад окисью меди с иослсдующим поглощением образовавшейся углекислоты. В эт / фракцию попадает метан, остающийся в колонке и гребенке. Количество метана во фракции но превышает емкости грибора. [c.205]

    Серная кислота. Этилен не полимеризуется в присутствии серной кислоты, потому что образуются устойчивые этилгидросульфат и этил-сульфат. Однако этилен полимеризовался ири обработке его 2 %-ным раствором сульфата ртути и 5 %-ным раствором сульфата меди в 95 %-ной серной кислоте [11]. В присутствии этих солей ссрнан кислота поглощала этилена в 100 раз больше, чем в их отсутствии. При стоянии в течение некоторого времени раствор расслаивался на два слоя верхний — углеводородный и нижний — пастообразный. Если небольшое количество пасты сразу же смейать с чистой серной кислотой, то смесь приобретает максимальную способность к поглощению этилена. Эта активность катализатора постепенно уменьшалась и совершенно терялась через 24 часа. Углеводородный слой состоял из смеси предельных углеводородов, включая парафины и циклопарафины. Непредельные соединения, напоминающие углеводороды с открытой цепью и циклические терпены, также были выделены при разбавлении водой сернокислотного слоя [3]. [c.190]

    Фос( )орная кислота, жидкий катализатор. Действие фосфорной кислоты на этилен при обычном давлении изучалось Мюллером [54]. Поглощение этилена фосфорной и нирофосфорной кислотами при 115—145° идет очень медленно. Так, например, 1200 мм этилена поглощалось в течение 17 дней, при этом образовалось всего лишь 1,8 з моноэтилового эфира фосфорной кислоты и жидких угловодородов. Повторение этой работы [22 а] подтвердило образование моноэтилфосфата путем превращения этого эфира в его бариевую соль. [c.194]

    Этилен реагирует с концентрированной серной кислотой при обычных температурах очень медленно, но при 80—85° реакция сильно ускоряется, особенно с кислотой, содержлщэй98 Уа Н ЗО . Реакция идет почти количественно с образованием моно- и диэтилсульфатов [41]. Скорость поглощения этилена увеличивается при давлениях 17,6—35,2 кг/см [9, 13а, 49], это указывает на то, что кислота реагирует главным образом с растворенным этиленом, а пе на поверхности за счет контакта кислоты с газом. В более ранней работе было показано, что при постоянном давлении (низком) скорость абсорбции меняется незначительно, если применяется перемешивание или встряхивание кислоты [15]. При средних давлениях с использованием 98 /д-ной кислоты увеличивается образование диэтил-сульфата. Если применяется 98 /о-ная кислота при 80—85°, пропилен должен быть удален полностью, так как он при этих условиях быстро обугливается. [c.353]

    Хлористая медь и другие соединения меди весьма полезны для выделения и очистки диенов с сопряженными двойными связями. По Френсису в 1951 г. в США был выдан 21 патент на процесс поглощения олефинов модными солями [5]. Твердая безводная полухлористая медь образует твердый комплекс с этиленом [231, а также с пропиленом и изобутиленом, однако эти комплексы оказываются стойкими только нри высоком парциальном давлении этих олефинов. Водный раствор полухлористой меди и хлористого аммония образует комплексы с циклопентеном и циклогексеном, которые разлагаются приблизительно при 90 с выделением олефинов [18]. Было предложено применять водные растворы медных солей, содержащие соли дныетиланплина, для поглощения этилона из газов с 10% этилена для нолучения концентрированного этилена рекомен/ овалось нагревание [12]. [c.388]

    Реактив для определения окиси углерода работает одинаково хо-])ошо прн всех температурах, но при указанной концентрации годится для связывания не больше О см окиси углерода. Соединение окиси углерода с пол тслористой медью очень непрочно при эва-ку1грованип, даже при встряхивании с индифферентными газами, час1ъ СО выделяется обратно. Поэтому удобнее пользоваться двумя пипетками, из которых первая служит для предварительного поглощения. вторая для окончательного. Далее надо заметить, что аммиачный раствор полухлористой меди поглощает ацетиленовые углеводороды и отчасти даже этилен, не говоря уже о кислороде. Поэтому, прежде чем определять окись углерода, необходимо элиминировать из газовой смеси эти компоненты. [c.384]

    Поэтому небольшое изменение высоких концентраций серной кислоты резко сказывается на скорости поглощения олефинов. Так, при прочих равных условиях этилен поглощается. 97,5%-ной Н2804 в 1,7 раза бы-стрее, чем 96,5%-ной. [c.220]

    На рис. 7.2 показано влияние концентрации серной кислоггы на степень насыщения ее этиленом и пропиленом. Для этилена минимально допустимая массовая концентрация кислоты 95%, так как при меньшей концентрации скорость поглощения резко снижается. Однако из-за значительного расхода олеума на укрепление отработанной кислоты нецелесообразно повышать концентрацию исходной кислоты сверх 98%. Применяя концентрацию (97—98%), можно достичь требуемой по условиям технологии степени насыщения (0,6—1,2 моль СаН4/моль H2SO4) за 1,25—3 ч. [c.221]

    С алкенами серная кислота вступает в реакции присоединения. Легче всего взаимодействует кислота с алкенами, содержащими третичный углеродный атом, наиример изобутилен растворяется в 63% Н2304 при комнатной температуре. Вторичные алкены вступают в реакцию с серной кислотой более высокой концентрации. Так, пропилен взаимодействует с 65—70%) кислотой при повышенных температуре и давлении, а для поглощения бутиленов и амиленов нормального строения исшзльзуют 80—90% кислоту. Этилен вступает в реакцию только с 94—98% кислотой. [c.315]

    В начале периодического процесса абсорбции этилена серная кислота поглощает его относительно плохо, поскольку величина, определяющая скорость реакции, а именно растворимость этилена, в 38%-иой кислоте еще незначительна. По мере накопления этилсериой кислоты в растворе поглощение олефина растет до максимума, отвечающего 30%-ному насыщению, после чего снова падает, хотя способность реакционной смеси растворять этилен продолжает увеличиваться. Уменьшение скорости абсорбции этилена объясняется нонгокением концентрации свободной серной кислоты, так как поглощение олефина моноэтилсульфатом протекает значительно медленнее, чем свободной кислотой. [c.454]

    Высшие олефины растворяются в органических растворителях лучше, чем этилен, однако последний более растворим в растворах солей одновалентной меди. Применение таких растворов подвергалось многими исследователями тщательному изучению в качестве средства избирательного поглощения одного этилена. Для этой цели было предложено применять аммиачный раствор формиата меди [14], этаноламиновый раствор полухло-ристой меди [15] и пиридиновый раствор ацетата меди [16]. В Германии во время второй мировой войны для концентрирования этилена, находящегося в газах высокотемпературного дегидрирования этана, применяли этанол-аминовый раствор нитрата одновалентной меди [17] сейчас этот способ не используется. [c.115]

    Исходные углеводородные газы должны быть очищены от высших олефинов, которые реагируют с серной кислотой легче, чем этилен. С нан более концентрированной серной кислотой, какую только можно исполь зовать для поглощения этилена, последний реагирует настолько медленно что приходи7ся работать при температуре выше его критической точки причем этилен будет при этом находиться в газообразном состоянии. ПО этому, чтобы повысить скорость реакции, имеет смысл проводить поглощение этилена под значительным давлением. Температура процесса не должна превышать 80° во избежание осмоления и полимеризации. Более чем 98%-ную кислоту нельзя применять, так как в противном случае создаются условия для образования карбилсульфата, этионовой и изэтионовой кислот  [c.144]

    А. М. Бутлеров и В. Горяйнов [2], изучавшие взаимодействие серной кислоты с этиленом и продукты, получаемые при этом, предсказали технические возможности этой реакции. Они писали Удобное и быстрое поглощение этилена концентрированной серной кислотой при температуре около 100"" составляет факт, обещающий со временем приобрести практическое значение если бы удалось открыть дешевый способ приготовления этилена, то он составил бы материал для добывания спирта . [c.511]

    Ацетилен имеет полосу поглощения при 173 нм (я я -переход). Замена атомов водорода в этилене и ацетилене на алкильные группы приводит к длинноволновому смещению максимума поглои1ения. Если в цепи сопряженных связей двойную связь заменить на тройную, то это практически не влияет на положение максимума поглощения, но вызывает уменьшение интенсивности полосы поглощения. [c.134]

    Кроме [Ni(OHa)e] + и [Ni(NH3)eJ2+ возможны смешанные аквоам-минокомплексы [Ni(OH2)e n(NH3) ] + (n=l-i-6). Замена лигандов НаО на лиганды H3N приводит к изменению окраски комплексов от ярко-зеленого до синего цвета. Это объясняется увеличением параметра расщепления Д (изменением энергии d— -переходов), что приводит к сдвигу полос поглощения в сторону меньших длин волн (рис. 259). Еще больший сдвиг полос поглощения наблюдается в случае этилен-диаминовых комплексов [Ni(en)3l= + (Д=11 200 jn" ), окраска которых интенсивно-синяя. [c.651]

    Определение углеводородов и водорода. При анализе многокомпонентных газовых смесей, содержащих наряду с СО,, СО и О,, также предельные и непредельные углеводороды (например метан СН , этилен С2Н4) и водород, поступают следующим образом. Для поглощения непредельных углеводородов служит раствор бромистого калия, насыщенный бромом при пропускании газовой смеси через такой раствор происходит бромирование непредельных углеводородов с образованием жидких бромпроиз-водных, например  [c.448]

    Наиболее современный способ получения этилового спирта основан на реакции гидратации этилена (см. 9.10). В этом способе воплотилась идея, высказанная А. Л1. Бутлеровым около ста лет тому назад. В одном из своих опытов Бутлеров пропускал этилен в концентрированную серную кислоту, надеясь вызвать уплотнение (полимеризацию) этилена. Вместо этого после разбавления водой в продуктах реакции обнаружился этиловый спирт, в связи с чем Бутлеров писал Удобное и быстрое поглощенне этилена концентрированной серной кислотой при температуре около 160 С составляет факт, обещающий приобрести со временем практическое значение если бы удалось открыть дешевый способ приготовления этилена, то он составил бы материал для добыва[1ия спирта . [c.286]


Смотреть страницы где упоминается термин Этилен поглощение: [c.833]    [c.96]    [c.480]    [c.389]    [c.578]    [c.28]    [c.30]    [c.152]    [c.177]    [c.444]    [c.452]    [c.454]    [c.140]    [c.676]    [c.134]    [c.78]    [c.178]   
Фотохимия (1968) -- [ c.212 , c.401 ]

Синтетические каучуки (1949) -- [ c.81 ]




ПОИСК







© 2025 chem21.info Реклама на сайте