Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа равновесия условия

    Термодинамический расчет дает возможность установить связь между концентрациями исходных веществ и продуктов реакции (а следовательно, определить достигаемый в данных условиях максимально возможный выход реакции) с помощью вычисления значения константы равновесия химической реакции. Для этого нужно рассчитать изменение энергии Гиббса во время реакции и из уравнения (У1-48) найти константу равновесия. [c.152]


    Как уже было указано выше, константа равновесия для каждой реакции при определенной температуре есть величина постоянная. Следовательно, зная величину К, можно вычислить количества веществ в равновесных состояниях данной реакции, а отсюда — и максимальные выходы продуктов реакции (для данных условий). [c.177]

    Расчет однократной перегонки с водяным паром можно проводить, решая общую систему уравнений материального и теплового баланса с учетом содержания в смеси водяного пара. В этом случае константу равновесия для водяного пара следует принимать по какому-либо высоколетучему компоненту, не растворяющемуся в рабочих условиях в жидкости, например по метану или азоту. Такой расчет становится аналогичным расчету процесса без водяного пара и поэтому обладает значительно большей общностью по сравнению с рассмотренной выше методикой. [c.65]

    Константа равновесия — важная характеристика реакции. По ее значению можно судить о направлении процесса при исходном соотношении концентраций реагирующих веш,еств, о максимально возможном выходе продукта реакции при тех или иных условиях. [c.179]

Рис. 20. Эволюция экстремума на изотерме свойства в зависимости от величины константы равновесия. Условие а=1 6=2 с=1 Рис. 20. Эволюция экстремума на <a href="/info/923150">изотерме свойства</a> в зависимости от <a href="/info/783107">величины константы равновесия</a>. Условие а=1 6=2 с=1
    При достаточно малых концентрациях коэффициенты активности становятся постоянными и не зависящими от состава и, если выбрать за стандартное состояние бесконечно разбавленный раствор, можно положить коэффициенты активности равными единице. При этих условиях определение кп априори сводится к определению структурных параметров X, необходимых для определения суммы по состояниям для X, и к определению влияния растворителя на константу равновесия Кх- [c.431]

    При статических методах определения константы равновесия реакционная смесь выдерживается прн температуре опыта до достижения равповесия. Если затем проводится химический анализ смеси, то необходимо быстро (чтобы равновесие не успело сместиться) охладить смесь до возможно низкой температуры, при которой скорость реакции очень мала. При соблюдении этих условий смесь сохраняет состав, отвечающий равновесию при высокой температуре (или, как говорят, замораживается ). Выше (стр. 271) был кратко описан статический метод изучения равновесия образования HJ. [c.301]


    Обезвоживание пропана. Для обезвоживания жидкого пропана применяется одна из разновидностей азеотропной перегонки. В процессе получения и при последующем хранении жидкий пропан поглощает небольшое количество воды в растворенном виде. При полном насыщении и при температуре 27° в пропане содержится 0,092% мол. воды. Активность воды, растворенной в пропане, очень высока, однако эту воду можно отогнать в виде азеотропной смеси [12]. Схема этого процесса изображена на рис. 24. Влажный пропан непрерывно поступает в колонну для обезвоживания. Сухой пропан (температура кипения при атмосферном давлении —42°) получается в виде остатков, а отогнанный продукт представляет собой азеотропную смесь воды и пропана. После конденсации отогнанный продукт расслаивается на две фазы. Верхняя — углеводородная — фаза возвращается в колонну, а нижняя — водная — фаза сливается. Данные по равновесию системы жидкость — пар для пропана, насыщенного водой, приведены в табл. 26. При низких давлениях константа равновесия для испарения воды из раствора в пропане значительно превышает единицу. Это означает, что в данных условиях вода является более летучим компонентом. [c.129]

    При подсчете состава и выхода продуктов реакции на основании константы равновесия условимся в уравнениях (98а) -(98в) в числителе ставить концентрацию тех веществ, которые реагируют с выделением тепла, а в знаменателе — тех, которые поглощают его ". [c.179]

    Уравнение (IV.44) совпадает с формулой (IV.41) в условиях, когда скорость обратной реакции пренебрежимо мала, а также согласуется с условиями равновесия реакции. Заметим, что если = kjk , — константа равновесия реакции (III), то константа равновесия, соответствующая кинетическому выражению (IV.44), равна [c.79]

    Вводить в выражение константы равновесия Лр суммарное давление только участников реакции P=lp , а мольные доли и вычисляемые из них величины а, р и т. д. рассчитывать тоже по отношению к сумме молей участников. Тогда введение индифферентного газа (при суммарном давлении, заданном условиями процесса) уменьшит значение Хр . и равновесие соответственно сместится. [c.281]

    В связи с изложенным, для численного раскрытия величины Кр предпочтительнее всего обратиться к выражению (11.85), которое позволяет с требуемой точностью количественно оценить значение константы равновесия при различных величинах давления и температуры в газонефтяной системе. Отличительной особенностью выражения (П.85) по сравнению с (П.89) является то, что рекомендуемая для вычислений формула целиком и полностью опирается на информацию Д(3, Ср, с , полученную при непосредственном экспериментировании в условиях, близких к природным [10]. Это положение усугубляется также и тем, что величины А0(АФ1) и Кр характеризуют направление протекания процессов и термодинамические условия равновесия, или указывают, насколько данный процесс далек от условий равновесия, что определяет выражение (П.89). Поэтому величина АО примерно равна нулю, если процесс находится в состоянии равновесия. Когда АО большая отрицательная величина, то данная система должна еще прореагировать в значительной степени, прежде чем процесс достигнет равновесия. Однако скорость процесса не связана ни с знаком, ни с величиной термодинамического потенциала, и его нельзя предсказать, зная АО. [c.89]

    Вместе с тем выполненные здесь расчеты показывают, что для получения правильной величины свободной энергии в стандартных условиях необходимо располагать не только достоверными экспериментальными данными по измерению констант равновесия, но и правильной величиной теплового эффекта реакции. [c.114]

    На численное значение константы равновесия не оказывает также никакого влияния и изменение относительных количеств отдельных твердых фаз при условии, как уж было сказано выше, что они между собою не образуют твердого раствора переменного состава. [c.153]

    Здесь Ке—константа равновесия, выраженная через концентрации, а индекс е обозначает равновесные условия. В неидеальных системах константу равновесия Кс выражают через активности. Таким образом, оказывается, что термодинамическая активность соответствует действующим массам в уравнении закона действия масс (см. стр. 22), но следует обратить внимание на приведенное выше определение. [c.63]

    Зависимость теоретических равновесных концентраций метана, ацетилена и водорода от температуры (в интервале 1000—1600 °С> представлена на рис. 35. На этой же диаграмме приведены концентрации ацетилена (гораздо меньшие), полученные в результате экспериментов, причем соотношение экспериментальной и термодинамической констант равновесия очень сильно зависит от рабочих условий. Максимальный выход ацетилена из метана, полученный экспериментально, достигает 17%, в тЬ время как термо- [c.102]

    ЦИИ участников реакции в долях от концентраций их в насыщенном растворе в данном растворителе, то константа равновесия, выраженная через эти доли, должна быть постоянной (при соблюдении указанных выше условий). Действительно, величины К в табл. VH1, 8, равные [c.287]


    Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связан -) между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ в итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия. [c.186]

    Вычислить константы равновесия реакций окисления гидроксидов железа (II), кобальта (II) и никеля (II) бромом в щелочной среде. Какое из равновесий относительно более смещено вправо (см. условие задачи 1097 и табл. 7)  [c.215]

    Константа равновесия обычно определяется эксперимен-тальпо или рассчитывается аналитически в зависимости от температуры и давления. (Значения К при стандартны. условиях для ряда реакции приведены в приложешш 7.) При определении константы по опытным данным ее выражают через степень превращения или выход продукта. [c.93]

    Если для упрощения расчета условий нарожидкого равновесия вместо констапт ki используются относительные лоту-чести а г, то в этом случае температуры потоков определяются по константе равновесия эталонного компонента, которая согласно (Vil.3) пли (VII.4) связана с относительными летучестями и концентрациями компонентов в данной фазе. [c.397]

    Полученные сведения о численных значениях равновесных соотношений для различных пластовых нефтегазовых систем при переменных Г и р позволяют изучить возможность применения в практических условиях принципа Ле-Шателье, направленного для выявления характера термодинамического процесса (экзотермического и эндотермического), происходящего в залежи. В связи с этим нами построены температурные зависимости константы равновесия (при р = onst) для всех рассмотренных случаев состояния пластовой жидкости. По кривым видно, что принцип Ле-Шателье в конкретных пластовых условиях для реальных нефтегазовых систем хорошо выдерживается, так как с повышением температуры константа равновесия заметно увеличивается, свидетельствуя об экзотермическом направлении процесса. [c.112]

    На рис. 61 представлены зависимости выхода стабильного ко 1денсата от способа стабилизации и температуры НТС. Здесь наименьший выход конденсата наблюдается прн двухступенчатом выветривании, что объясняется уносом жидких углеводородов с газами дегазации. При однократном испарении даже в условиях равновесия не происходит четкого разделения газовых и жидких углеводородов все углеводороды присутствуют и в газовой, и в жидкой фазе в соответствии со своими константами равновесия. Кроме того, резкое снижение давления вызывает вскипание конденсата за счет бурного испарения газовых углеводородов и увеличивает степень неравновесности и унос. [c.210]

    Из всех трех тримолекулярных реакций, представленных в табл. XII.9, только реакция N0 с Ог была изучена при и1ироком варьировании условий. Все три реакции, однако, имеют примерно одинаковые по величине иредэксио-ненциальные множители, отвечающие стерическому фактору около 10 . Гершинович и Эйринг Ц20] показали, что теория переходного состояния может привести к такой величине частотного фактора при разумном выборе молекулярных параметров для переходного KOMUjreK a. С другой стороны, любой из двух механизмов, включающих промежуточные комплексы (N0) или NO-Оз, приводит к удовлетворительному объяснению величины скорости реакции NO+Oa, в то время как для реакций N0 с I2 и Вга можно лишь предполагать образование комплексов N0 l2 и NO-Bra- В этих случаях для наблюдаемой константы скорости [см. уравнение (XII.15.5)] справедливо соотношение /Снабл == Ккг, где К есть константа равновесия образования промежуточного бимолекулярного комплекса, а к — бимолекулярная константа скорости последующей реакции этого комплекса. [c.274]

    П. Подсчитать а) степень превращения азота в аммиак при 427° С н давлении 300 ата 6) состав равновесной смеси газов, если в колонну синтеза поступает стехиометрическая смесь и константа равновесия Кс реакции синтсча при данн1>1х условиях равна 0,0136 на 1 моль NH3. [c.213]

    Для вычисления констант равновесия реакций в реальных растворах нужно пользоваться уравнением (VIII, 36). Выход же продуктов реакции даже в том случае, когда величина константы равновесия Ка известна, может быть рассчитан только при условии, что известны коэффициенты активности всех компонентов реакции. Для их определения необходимы сложные и кропотливые исследования, включающие по необходимости аналитическое определение состава равновесных растворов, т. е. предела протекания реакции. Таким образом, предсказание равновесных выходов в реальных растворах в общем случае практически невозможно. Оно осуществимо лишь для отдельных классов растворов, где известные закономерности позволяют учесть зависимость коэффициентов активности от концентрации (регулярные растворы, разбавленные электролиты). [c.288]

    Сколько образуется водорода из 5 г Н2О при 198.5° С и 1 ата. если константа равновесия реакции 2Н2+02 2Н20 + (7 при этих условиях [c.213]

    В циклогексановом ряду конфигурационная изомеризация изучена особенно широко. Скорость достижения термодинамического равновесия в ряду гомологов циклогексана зависит от природы и активности катализаторов, условий проведения реакции и свойств исходных изомеров. Так, Ватерман и сотр. показали [28], что цис-и транс-, 3- и 1,4-диметилциклогексаны в присутствии катализатора Ni/кизельгур при 170—180°С и давлении водорода (7—8)-10 Па быстрее достигают термодинамического равновесия, чем 1,2-диметил-циклогексаны. Под действием скелетного никеля транс-1,2-диметил-циклогексан быстрее достигает равновесия, чем соответствующий цис-изомер. Аллинджеру с сотр. принадлежит серия работ [29—34], посвященных конформационному анализу стереоизомерных гомологов циклогексана, которые с помощью конфигурационной изомеризации в присутствии Pd-катализатора обратимо превращаются друг в друга. Состав термодинамически равновесных смесей, образующихся при этом, позволил авторам рассчитать константы равновесия, значения ряда термодинамических функций, а также энергий взаимных переходов различных конформеров. [c.76]

    В 1930 г. Смис и Херст [7 ] вновь определили константы равновесия реакции синтеза метанола в тех же условиях, что и в предыдущей работе, т, е. при 303,8° С и атмосферном давлении. Однако и в этой работе, численные значения константы колебались в интервале от 0,00024 до 0,00067 авторами было принято среднее значение, равное 0,000415. [c.348]

    Состав продуктов реакции является исключительно функцией температуры, давления и времени контакта, если сырье состоит из одного реагента. Если указанные неременные факторы действуют на концентрацию продуктов так, что глубина конверсии становится незначительной сравнительно с равновесной конверсией, то следует рассматривать только кинетику дальнейших реакций. Получаемые выходы продукта ограничиваются константой равновесия. Сторч [87] в качестве меры приближения к равновесию при различных условиях реакции применил отношение / /Л, гд( К — отношение величин парциального давленая в атмосферах [c.57]

    Величина Кр является функцией температуры н во многих случаях ее можпо рассматривать как действительную константу равновесия. Холлидей п Экселл полагают, что метан разлагается на углерод и водород через ацетилен. Именно стадия разложения ацетилена и замедляется водородом, небольшое количество по подворггаегося разло кению ацетилена в равновесных условиях способно сохранить высокую концентрацию метана  [c.63]

    Экспериментальное определение констант равновесия производилось различными исследователями. Эти исследования ограничивались определением соотношений между -пентаиом и изонентаном (2-метилбутаном), так как неопентан (2,2-диметилпропан) в условиях опытов не принимал участия в реакции. В одной серии опытов равновесие достигалось как со стороны нормального, так и со стороны изопентана при условиях, когда число вторичных реакций сведено к минимуму [57]. На основании полученных результатов были вычислены концентрации изопентана и н-нен-тана в жидкой и паровой фазах как функции температуры образования неопентана не наблюдалось. Результаты сведены в табл. 3. Вычисленные значения основывались на уравнении [c.21]

    Сендерс и Додж [46] рассмотрели термодинамические данные по гидратации этилена и пришли к следующему заключению Ясно, что в настоящее время (1934 г.) невозможно получить константу равновесия, отклоняющуюся от теоретической менее чем в сто раз . Они изучали гидратацию этилена в паровой фазе при 360—380° и давлениях от 35 до 135 ат над окисью алюминия и окисью вольфрама в качестве катализаторов. На основании своих результатов и результатов других исследователей они пришли к выводу, что еще не найден активный катализатор для реакции гидратации. Выдано большое количество патентов по гидратации этилена в присутствии кислых солей и фосфорной кислоты на носителях [39] в паровой фазе при высоких температурах и давлениях. Один из таких процессов, в котором в качестве катализатора используется фосфорная кислота, применяется в промышленности. Этилен может реагировать с разбавленной 10 %-ной серной кислотой при температурах 240—260° и давлениях около 141 кг/см , при этих условиях образуется равновесная смесь этилена, этанола и этилового эфира. Спирт или эфир мон<ет быть возвращен в процесс для получения другого продукта, но технические трудности процесса помешали его промышленному использованию [29]. [c.355]

    Используя известные значения тёрмодинамических величин для реакции дегидрирования этилбензола в стирол [13], а также легко выводимое уравнение, связывающее константу равновесия с концентрацией этилбензола в исходной смеси Со, конверсией х, с разбавлением Я и общим давлением в системе р, можно вычислить равновесные концентрации при любых условиях  [c.735]

    Состоянию равновесия реакций, протекающих в жидкой фазе, отвечает условие, выражаемое уравнением (VIII, 6). Исходя из этого уравнения, можно получить выражения для констант равновесия реакций, протекающих в растворах. [c.284]

    Условиям равновесной, но не идеальной хроматографии отвечает дифференциальное уравнение материального баланса (8), рассмотренное в 3, с соответствующими поправками на перепад давления газа вдоль колонки, рассмотренными в 4 этой главы. В соответствии с этим мы будем исходить из уравнения (18) для удерживаемого объема, в котором вместо константы равновесия изотермы Генри К в общем случае сохраним производную d jd см. уравнение (8)], величина которой зависит от концентрации (см, стр. 555, 556)  [c.589]


Смотреть страницы где упоминается термин Константа равновесия условия: [c.192]    [c.88]    [c.83]    [c.275]    [c.315]    [c.492]    [c.184]    [c.198]    [c.146]    [c.178]    [c.204]    [c.403]    [c.110]   
Краткий курс физической химии Издание 3 (1963) -- [ c.189 , c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние изменения температуры на параметры реакций в условиях, отвечающих одинаковым значениям констант равновесия

Влияние температуры на параметры однотипных реакций в условиях, отвечающих одинаковым значениям констант равновесия

Константа равновесия

Константа условие

Однотипные реакции и процессы в условиях, отвечающих одинаковым значениям констант равновесия

Органические реакции в условиях, отвечающих одинаковым значениям их констант равновесия

Равновесие константу, Константа равновесия

Уравнение второго начала. 58. Максимальная работа и химическое сродство. 59. Уравнение Гельмгольтца. 60. Константа рав новесия и максимальная работа реакции. 61. Направление реакции и условия равновесия. 62. Влияние внешних условий Энтропия и термодинамические потенциалы

Условия протекания реакции и аналитическое выражение для константы равновесия

Условия равновесия

Химические реакции и другие процессы в условиях, отвечающих одинаковым значениям констант равновесия



© 2024 chem21.info Реклама на сайте