Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий получение применение жидкий

    Для препаративного разделения тепловытеснительный метод был применен Е. В. Вагиным [8], осуществившим получение чистых легких редких газов — неона и гелия при температуре жидкого азота. Содержание гелия в выделяемом чистом неоне составляло 0,2 объемн. %. [c.199]

    Приведены сведения об источниках и ресурсах гелия, по применению газообразного и жидкого гелия. Освещена история развития гелиевой промышленности в России. Представлены материалы по технологии получения гелия из природного газа, ожижению гелия, выделению гелия из природного газа и его ожижению на Оренбургском гелиевом заводе, изменению традиционной схемы процесса ожижения гелия для Братского газоконденсатного месторождения, системам хранения и транспортирования жидкого гелия, рынку гелия. [c.2]


    Так как температура кипения гелия чрезвычайно низка (4,22° К), для получения жидкого гелия необходимо применение специальной техники. Количество тепла, которое нужно отвести для ожижения данного количества газа, находящегося первоначально при комнатной температуре, не является слишком большим, однако работа, которая требуется для отвода тепла от конденсирующегося гелия и передачи этого тепла на уровень комнатной температуры, приблизительно в 800 раз больше той работы, которую было бы необходимо затратить, если бы охлаждение производилось на уровне температуры замерзания воды. Кроме того, весьма серьезной проблемой является создание надежной тепловой изоляции, препятствующей притоку тепла к холодным частям ожижителя. [c.82]

    Сжижение газов получило широкое применение в промышленпости. Аммиак, хлор (и некоторые другие газы) большей частью сохраняются и транспортируются в сжиженном состоянии в стальных баллонах или цистернах. Для многих целей в таком же виде применяется и углекислота. Сжижение воздуха используется для разделения его на составные части, главным образом для выделения азота. Жидкий воздух применяется и в лабораторной практике для получения низких температур до —180° С. Жидкий водород дает возможность понижать температуру до 15—20° К, жидкий гелий — до 4,2° К и при кипении в вакууме — до 0,8° К .  [c.111]

    В последнее время широкое применение начинает находить способ получения больших концентраций свободных радикалов путем замораживания их при очень низких температурах, когда процессы рекомбинации затруднены. С этой целью свободные радикалы, образовавшиеся в пламени или электроразряде, подвергают быстрому охлаждению до очень низких температур (вплоть до температур жидкого водорода или гелия) или воздействуют светом или ионизирующим излучением на замороженные образцы вещества. Однако, как правило, использовать оптические методы для изучения поведения свободных ради- [c.20]

    Жидкий гелий применяется для получения сверхнизких температур в криогенной технике. В последние годы для криогенной электроники стали применять более дешевый жидкий неон. Хотя создаваемая им температура выше, чем у гелия, неон менее летуч и удобнее в обращении. В смеси с кислородом гелий применяется в водолазном деле. В дыхательных смесях гелий замещает азот и предотвращает кессонную болезнь, поскольку в отличие от азота он хуже растворим в крови при повышенном давлении. Легкость и негорючесть гелия обусловили его применение для наполнения дирижаблей, аэростатов, шаров-зондов. [c.398]


    Инертные газы находят довольно разнообразное практическое применение. В частности, исключительно важна роль гелия при получении низких температур, так как жидкий гелий — самая холодная из всех жидкостей. [c.38]

    Применяют гелий для наполнения аэростатов, а также для приготовления смеси кислородом (гелий заменяет азот воздуха), используемой при водолазных работах для предотвращения кессонной болезни при вдыхании обычного воздуха под повышенным давлением азот растворяется в крови, а затем выделяется из нее в виде пузырьков, которые закупоривают мелкие сосуды применение для дыхания смеси гелия с кислородом исключает в этих условиях наркотическое (анестезирующее) действие, оказываемое азотом под давлением. Важнейшее применение гелия — использование его в жидком состоянии для получения предельно низких температур при научных исследованиях, а также при изучении электрической сверхпроводимости. [c.107]

    Получение очень низких температур в лабораторных условиях осуществляется последовательным применением различных методов. Испарение жидкого гелия (т. кип. 4,2 К) при быстрой откачке дает температуры вплоть до 0,3 К. Более низкие температуры могут быть достигнуты путем адиабатического размагничивания. Парамагнитная (разд. 16.1) соль, например сульфат гадолиния, охлаждается жидким гелием в присутствии сильного магнитного поля. Соль термически изолируется от окружающей среды, и магнитное поле медленно снимается. В соли происходит обратимый адиабатический процесс, при котором атомные спины [c.73]

    Промышленная добыча гелия ведется из газоносных источников, содержащ,их этот элемент в количестве до 1—2%. Гелий получил широкое применение в технике и науке. Благодаря своей легкости и негорючести гелий используется для наполнения им аэростатов и шаров-зондов при исследовании атмосферы (иногда в смеси с водородом). Подъемная сила гелия составляет 93% от подъемной силы водорода, но безопасность работы с гелием является его серьезным преимуществом. По гелию определяется адсорбционная способность углей. По остаточному содержанию гелия в углях судят об их возрасте. Жидкий гелий — самая холодная из всех жидкостей, поэтому гелий применяется при получении очень низких температур. Жидкий гелий обладает рядом свойств, делающих его особенно ценным для научных исследований. Существуют две формы жидкого гелия — гелий I и гелий И. [c.408]

    Если вблизи образца, имеющего форму острия, создается сильное электрическое поле с напряженностью порядка (100—600) X 10 б-сж" , то с поверхности этого образца могут удалиться все адсорбированные слои [26, 75, 76]. При дальнейшем увеличении напряженности поля будут испаряться поверхностные слои самого вещества образца. Этот весьма специализированный метод, позволяющий получать чистые поверхности, используется в электронном проекторе для очистки положительного электрода-острия (см. разд. 3.3.5.1). Этот же метод был успешно применен для очистки кремния и германия [77] и вольфрама [78]. С помощью такой методики оказалось возможным удалять атомы вольфрама из его собственной кристаллической решетки даже нри температуре жидкого гелия, когда напряженность электрического поля достигала 5,7 X 10 в-см" . Таким путем преимущественно удалялись слабо связанные атомы решетки, расположенные на гранях и выступах, что приводило к образованию более регулярной структуры поверхности. Многие из полученных таким образом атомных плоскостей имели высокие миллеровские индексы. Площадь чистой поверхности, образующейся при десорбции под действием ноля, редко превышает 1,5 X X 10-1 см . [c.73]

    Для получения жидкого водорода используются цикл с однократным дросселированием (производительность ожижителей до 300 л/ч), цикл двух давлений и циклы с детандером (рис. 8). Оба цикла имеют производительность ожижителей более 300 л/ч. Используется также гелиево-водородный конденсационный цикл, основанный на конденсации водорода за счет охлаждения газообразным гелием, имеющим температуру ниже критической температуры водорода. Такой цикл, однако, не нашел широкого промышленного применения. [c.30]

    Жидкий газ из резервуара может сливаться самотеком (обычно для лабораторных сосудов небольшой емкости), передавливанием с помощью газа, полученного в испарителе, куда подается часть жидкости, или насосов (обычно центробежных). Вместо газа, полученного при испарении части транспортируемой жидкости, можно использовать вспомогательный газ с более низкой температурой кипения, чем перевозимая жидкость. Так, для передавливания жидкого кислорода применяют азот или гелий, для жидкого водорода — гелий, для жидкого метана— азот. Применение азота для передавливания жидкого кислорода экономичнее гелия, однако азот загрязняет жидкий кислород. [c.71]


    Применение водорода. Водород широко применяется в технике, жидкий водород используют для получения низких температур в смеси с гелием им наполняют аэростаты. В пищевой промышленности водород применяют для превращения жидких растительных масел в твердые жиры. Его используют в качестве восстановителя при получении некоторых редких металлов. В топливной промышленности водород применяют для переработки твердого топлива, например каменного угля, в жидкое моторное топливо. [c.51]

    Подпитка установки газообразным гелием производится из реципиентов в количестве, эквивалентном производительности установки по жидкому гелию. Применение в установке эжектора 22 и вакуумной ванны 24 позволяет выдавать потребителю переохлажденный гелий температурой 3,6. .. 3,8 К. При этом жидкий гелий из сборника 23 направляется в теплообменник 24 и далее в змеевик ванны 25, которая вакуумируется эжектором 22. Получение переохлажденного гелия производится на дроссельном режиме без включения детандера 19. [c.155]

    Подбирая соответствующие концентрации взаимодействующих растворов жидкого стекла и соляной кислоты, Хармадарьян н Копелевич получили гели в кислой, нейтральной и щелочной средах. Р1зучениестатической активности этих силикагелей по бензолу показало, что последняя увеличивается от кислого к щелочному образцу. Ими также было установлено существенное изменение адсорбционных свойств силикагелей под влиянием различных условий промывания гелей. Применение в качестве промывной жидкости разбавленных (0,2%) растворов соляной кислоты и аммиака позволило сделать вывод об избирательном характере такого рода активации. Так, при обработке нейтральных гелей указанными активируюшими растворами суммарная адсорбционная емкость ксерогелей не менялась. Промывание кислых гелей аммиаком увеличивало емкость вдвое, что объяснялось пептизацией кремневой кислоты. По-разному сказывалась на адсорбционной активности гелей, полученных в разных условиях, последовательность промывки и сушки [34, 381. Промывание кислого геля, после предварительного просушивания, приводило к повышению поглотительной способности ксерогеля. Противоположный этому эффект наблюдался в случае щелочного геля. [c.12]

    Неон. Неоно-гелиевая смесь, очищенная адсорбционным методом от других примесей, подвергалась последующему разделению конденсационным методом с применением жидкого водорода, кипящего в вакууме. Полученный таким образом неон со-держиг ничтожные примеси гелия, которые едва улавливаются спектроскопическим методом [Л. 2]. [c.50]

    Плотность. Для определения пикнометрическим способом плотности таких тонкодисперсных пигментов, как сажа, необходимо вытеснить газы, адсорбированные частицами сажи, чтобы молекулы смачивающей жидкости могли проникнуть в пространство между кристаллитами. Для этого рекомендуется применять низкомолекулярную жидкость, хорошо смачивающую сажу. В качестве жидкостей применяют воду, бензол, толуол, причем часто получаются только сравнительные результаты. Применение жидкого гелия дает результаты, наиболее близкие к теоретически рассчитанным по рентгенографическим данным. Нил<е приводятся некоторые результаты, полученные Риссманом и Смитом различными способами  [c.533]

    Применение жидкого гелия в ЭБСпериментах по адиабатическому размагничиванию. Опыты по получению температур еще более низких, получаемых уже не откачкой паров жидкого гелия, а другими способами, например адиабатическим размагничиванием парамагнитных солей, и результаты этих опытов не будут затронуты в настоящем параграфе. При применении метода адиабатического размагничивания температура около 1°К,полученная с помощью откачки гелия, служит начальной температурой, с которой начинается охлаждение. [c.209]

    Казалось бы, магнитографические данны имеют не большую ценность, чем электрографические, так как являются следствием тех же токов, которые фиксируются электрограммой. Методика электрографии, существующей уже около 100 лет, разработана весьма подробно, получение же магнитограмм требует более сложного оборудования с применением жидкого гелия. Из изложенного следует, однако, что магнитные и электрические данные дают разную информацию о токах в организме, и связь между ними (или отсутствие таковой) определяется структурой источников токов. Поэтому электро- и магнитография — это не конкурирующие, а дополняющие друг друга методы исследования организма. Несмотря на большую сложность аппаратуры, у биомагнитографии есть определенные принципиальные преимущества  [c.96]

    Описание ожижителя. Выбранная нами схема действительного цикла приведена на фиг. 1.36. Она отличается от схемы идеального цикла не за счет неизбежной неидеальности теплообменников и детандеров, а рядом практических соображений, которые повлияли на выбор цикла и аппаратуры. Для большей компактности ожижителя и получения большего количества жидкого гелия при той же производительности гелиевого компрессора предварительное охлаждение осуществляется за счет применения жидкого азота. Теплообмен между газообразным гелием и жидким азотом, испаряющимся при постоянной температуре, происходит, разумеется, необратимо, что ведет к увеличению энтропии системьь. Разница между идеализированным и действительным циклом состоит также в замене четвертого детандера (см. фиг. 1.35) дроссельным вентилем. [c.85]

    Перспективно применение жидких гелия и неона для быстрого получения глубокого вакуума — на охлаждаемой поверхности вымораживаются газы и она действует как отличный вакуум-насос [61 ]. Достигаемый вакуум зависит от природы откачиваемого газа — примеси гелия, естественно, снижают глубину достигаемого вакуума. Применение этого метода получения вакуума сопряжено с трудностями — охлаждаемая поверхность покрывается толстым слоем отложений с низким коэффициентом теплопроводности, что требует создания развитой поверхности. Этот способ используется также, для получения высокоскоростного потока газа низкого давления в специальных аэродинамических трубах для воспроизведения условий, соответствующих большим высотам. Такая аэродинамическая труба была создана в Калифорнии потоком чистого азота были достигнуты скорости, превышающие 150 ООО лкек при давлении 10 мм рт. ст. (поверхность охлаждалась жидким гелием). Аналогичную систему сооружает Институт астрофизики в Торонто, где предполагается вместо жидкого гелия применить жидкий неон [62, 63]. [c.24]

    Можно получить обогащенную неоном и гелием фракцию воздуха без применения жидкого водорода. Так, Рамзай и Траверс пропускали в 1900 г. в замкнутом цикле компримированный воздух через спираль Гампсона. В результате постепенного сжижения воздуха удавалось в несжиженной части воздуха получить значительное содержание неона и гелия. После очистки несконденсированной части воздуха от кислорода и азота был получен аргон с 10%-ным содержанием неона и гелия. Этот метод в свете современных потребностей в неоне и гелии имеет чисто историческое значение. [c.43]

    Применение в энергетике. Гелий применяется в ядерной энергетике как источник а-частиц (ядра гелия). Ксенон 54X6 обладает свойством поглощать тепловые нейтроны, поэтому также применяется в атомной энергетике. Благородные газы, преимущественно неон, используются для изготовления светотехнических приборов (маяков, рекламы и т. п.). Смесью аргона с азотом наполняют лампы накаливания. Жидкий гелий применяется для получения очень низкой температуры (—272,2 К), при которой у многих металлических веществ обнаруживается сверхпроводимость. [c.235]

    Второе направление предусматривает использование жидких стекол в качестве единственно доступного сырьевого источника растворимого кремнезема для получения таких продуктов, как зо- ли и гели кремнекислоты, цеолиты, катализаторы. Поскольку основным приемом осаждения кремнезема из жидких стекол является их обработка кислотой, то с позиций снижения расхода кислоты, а также уменьшения количества образующихся при этом попутных солей — электролитов (Na l, N32804), которые необходимо ути-i лизировать, целесообразно применение для этой цели высокомодульных жидких стекол с максимальной концентрацией. [c.186]

    Определение молекулярно-массового распределения приведено в работе [444 ] на ацетилированных образцах оксиэтилированного лаурилового спирта с различным числом оксиэтильных групп (в пределах 1,02 до 6,02). Получение на хроматограммах стабильной нулевой линии, необходимой для успешного расчета площадей пиков автоматическим интегрирующим устройством, достигнуто за счет применения термически устойчивой (до 380 °С) жидкой фазк в следующих условиях хроматографирования. Стальная колонка размером 300 х X 4 мм заполнена предварительно промытым кислотой и силанизиро-ванным хромосорбом О (фракция 0,160—0,127 мм) с нанесенной жидкой фазой апиезон М (4%) температуру колонки программируют от 130 до 350 °С со скоростью 7,5 °С/мин, детектор — по теплопроводности, расход газа-носителя (гелий) —. 50—60 мл/мин, температура испарителя пробы 425 °С, объем пробы — от 0,5 до 2 мкл. [c.211]

    Интересным примером применения двух различных жидких фаз для анализа веществ могут служить хроматограммы, предста-вленные на рис. П-12. Хроматограмма а получена для смеси 1, / 2 и 3° метил- и этиламинов на колонке 2,9 м с внутренним диамет-ром 0,5 см, заполненной хромосорбом- 60 -80 меш, с папессп-ным на него в количестве 25% глицерином, при температуре 41° С. Та же смесь при хроматографировании на колонке 3,3 ж с внутренним диаметром 0,5 см, с 25% к-деканола на промытом щелочью хромосорбе- дала хроматограмму б. В обоих случаях скорость потока гелия была равна 75 см /мин. Значения величины к для различных веществ, полученные на этих колонках, приведены в табл. П-6. [c.70]

    В настоящее время наиболее широко для изучения процессов деструкции используется вариант динамической схемы, в которол продукты разложения полимера удаляются из реакционной (горячей) зоны и улавливаются в охлаждаемых ловушках, которые периодически нагревают для десорбции продуктов деструкции с целью последующего газо-хроматографического анализа. Применение этого метода охватывает значительную часть литературы, описывающей газо-хроматографическое изучение разложения полимеров [14—25]. Поскольку все они в методическом отношении достаточно однотипны, то в качестве примера рассмотрим некоторые из них. Так, этим методом в работе [15] были измерены скорости образования различных летучих продуктов разложения гидроперекисей. Разложение гидроперекисей, полученных окислением полипропилена, проводили на циркуляционной установке в потоке газа-по-сителя так, что летучие продукты разложения выносились из реакционного сосуда потоком циркулирующего в системе гелия и вымораживались в ловушках, охлаждаемых жидким азотом. Ввод пробы в хроматографическую колонку осуществлялся с помощью приспособления, изображенного на рис. 35, а. Когда кран 1 находится в положении, указанном на рисунке, газ-поситель поступает в колонку, минуя капиллярную 11-образную ловушку. Для периодического анализа смесь продуктов из ловушки 3 переводится в капилляр 5, затем кран 2 становится в положение 2, и после поворота крапа 1 в положение 1 продукты из капиллярной ловушки 5 выносятся потоком газа-носителя в хроматографическую колонку. Капилляр 5 нагревается горячей водой. В ходе работы были испытаны различные инертные носители и неподвижные фазы (НЖФ). [c.155]

    Однако для получения заполненного мономоле-кулярного слоя в опытах с гелием, неоном и водородом следует измерять адсорбцию при температурах жидкого гелия и водорода. Так как жидкий гелий и водород обычно недоступны, в то время как жидкий воздух получить легко, приходится применять несколько более крупные молекулы азота и аргона. Эти два рода молекул обычно пригодны, так как они инертны хемосорбция не усложняет применения изотермы ван-дер-ваальсовой адсорбции. Чаще всего применяется азот, как наиболее доступный. Однако, если адсорбент содержит чрезвычайно тонкие поры, метод адсорбции азота может дать совершенно ошибочные результаты относительно величины истинной поверхности. Так, Эммет нашел, что дегидратированный на 50% шабазит адсорбирует водород при 77°К, но молекулы азота практически не проникают в его поры при этой температуре. [c.405]

    В Другой работе [49] излагаются результаты исследования индивидуального состава ароматически.х углеводородов, выделенных из фракции 157—272 Котур-Те-пинской нефти. Моно- и бициклические ароматические углеводороды выделялись из исследуемой фракции адсорбционным методом, а затем разделялись четкой ректификацией яа 24 узкие фракции. Изучение индивидуального состава узких фракций проводилось газожидкостной хроматографией в насадочной колонке длиной 13 м и диаметром 4 мм. Неподвижной жидкой фазой служил адипинобензойный эфир триэтаноламина. В качестве газа-носителя применялся гелий, расход которого составлял 50 мл мин. Хроматографическое разделение узких фракций производилось при двух температурах. Фракции моноциклических углеводородов, выкипающих до 207,6 °С, анализировались при 125 °С, а фракции бициклических углеводородов — при 200 °С. Идентификация углеводородов производилась по времени удерживания. В итоге было идентифицировано 18 индивидуальных моноциклических и 11 бициклических углеводородов ароматического ряда. Анализ данных, полученных в работах [48—49], показывает, что количество индивидуальных ароматических углеводородов, идентифицированных в широких нефтяных фракциях, выкипающих до 270 °С, относительно невелико. Это обстоятельсгво, по-видимому, следует отнести за счет применения насадочных колонок. Более высокой разделительной способностью па сравнению с насадочными обладают капиллярные колонки, в которых отсутствуют поперечная вихревая диффузия и ограничения в длине колонки. [c.159]

    Сухое горючее получают путем введения в жидкое топливо загустителей—мыла, нитроцеллюлозы и др. Однако такое сухое горючее имеет ряд недостатков, например в случае применения нитроцеллюлозы при горении происходят местные взрывы, обусловливающие колебание пламени. При применении геля двуокиси кремния вышеуказанные недостатки отсутствуют. Гель легко приготовить гидролизом эфиров ортокремневой кислоты водой в присутствии щелочного катализатора. Скорость желатинизации можно ускорить нагреванием. Гидролиз происходйт непосредственно в среде жидкого топлива. С увеличением содержания эфира увеличивается твердость и хрупкость геля для отверждения достаточно присутствия 2% окиси кремния. Полученное таким образом сухое горючее представляет собой очень устойчивый гель, не выделяющий жидкости, который горит равномерно и без копоти. Оно дает больше тепла, чем сухое горючее, загущенное нитроцеллюлозой [203]. [c.325]

    Применение водорода. Благодаря своей легкости водород широко применяется в воздухоплавании для заполнения дирижаблей и воздушных шаров. Однако большой недостаток при этом заключается в горючести водорода. Поэтому теперь в воздухоплавании применяют неогнеопаспую смесь водорода с газом гелием (гелий отличается полной негорючестью). Значительные количества водорода расходуются для получения высоких температур (водородо-кислородное пламя). При помош и водорода жидкие жиры превращают в более ценные твердые ишры. Этот процесс называют гидрогенизацией жиров (от латинского названия водорода—Hydrogenium). В разработке этого процесса большую роль сыграли труды Н. Д. Зелинского. Далее, водород получил большое применение для приготовления искусственного жидкого топлива из каменного угля. Для этого уголь подвергают действию водорода при 450—500°С под значительным давлением, причем получается продукт, пoxoн ий на природную нефть. Из такой искусственной нефти можно получать бензин, керосин, смазочные масла и другие продукты, так же как из природной нефти. [c.59]

    Уже упоминалось о многостороннем использовании растворов силиката натрия или калия — жидкого стекла. Отвердевание связки на основе растворимого стекла обусловлено ее превращением в дисперсную систему, твердая фаза которой — гель кремниевой кислоты — в момент выделения обладает вяжущим свойством. Используют жидкое стекло для получения кислотоупорных цементов, в формовочных смесях, при силикатизации грунтов, для получения огнестойких и жаростойких материалов, как коррозионноустойчивое средство во многих областях промышленности и пр. В ЛТИ им. Ленсовета разработаны смешанные алюмосиликатные связки (растворы алюминатов и силикатов натрия и калия), которые яашли применение в литейном деле. Связки получают также и на основе концентрированных растворов (золей) кремневой кислоты, на основе гетерополисоединений, насыщенных солей кристаллогидратов. [c.462]

    В настоящее время научно-технический прогресс невозможен без использования криогенных жидкостей — жидких кислорода, азота, аргона, водорода, фтора и гелия. Эти сжиженные газы нашли самое широкое применение в различных областях новой техники, в том числе в ракетной технике и атомной энергетике, при получении низких температур и т. д. Потребление промышленных газов с каждым годом неуклолно возрастает. [c.6]

    Для сброса образующегося при хранении или перевозке газа на резервуаре имеется труба газосброса, которая в процессе эксплуатации резервуара может быть открыта или закрыта вентилем газосброса. Для отбора проб жидкого водорода предусматривается трубопровод с выходом из нижней части сосуда с вентилем на конце. Продукт из резервуара может выходить самотеком (обычно для сосудов небольшой емкости, типа лабораторных), при передавливании путем подачи газа на зеркало жидкости (газ может быть получен в испарителе резервуара, куда подается для испарения часть жидкости, или со стороны из баллонов) или насосом (обычно центробежным). Вместо паров перевозимого или хранимого жидкого водорода может быть применен гелий, имеющий более низкую температуру кипения, чем жидкий водород. [c.171]

    Газохроматографический метод определения площади поверхности был разработан Нельсеном и Эггертсеном [55]. В этом методе исследуемый образец помещают в трубку, установленную вместо хроматографической колонки. Через эту трубку пропускают ноток смеси азота с гелием известного состава и анализируют газ, выходящий из трубки, с помощью катарометра. Когда трубку погружают в жидкий азот, происходит адсорбция азота, и на ленте самописца появляется отрицательный пик. При установлении равновесия перо самописца возвращается в исходное положение. После извлечения трубки из жидкого азота происходит десорбция азота, и на ленте появляется положительный ник такой же величины, что и ранее полученный отрицательный пик. Повторяя эту процедуру для различных составов газа-носителя, можно получить полную адсорбцнонно-десорбционную изотерму. По этой изотерме с помощью стандартной методики расчета БЭТ (т. е. методом Бру-науэра — Эммета — Теллера) можно определить удельную площадь новерхности исследуемого образца. Теоретические и практические стороны этого метода, а также его различные модификации достаточно хорошо описаны в литературе [56—58]. Применения этого метода не ограничены только изучением адсорбции азота. [c.62]

    Методы, предложенные для определения редких газов в природных, были основаны на применении адсорбции углем при температуре жидкого азота или на химическом поглощении всех газов, кроме редких, с ирименепием низкотемпературной адсорбции для дальнейшего разделения редких газов. В первом случае анализируемый газ вводился в трубку с ах тивированным углем, охланеденным жидким азотом или жидким воздухом. Непоглощенные газы Не и N6 откачивали и объем их измеряли. При анализе выходов природных газов или газов, полученных из скважин, смесь Не и N0 практически состояла из одного гелия. [c.129]


Смотреть страницы где упоминается термин Гелий получение применение жидкий: [c.122]    [c.98]    [c.25]    [c.161]    [c.505]    [c.49]    [c.136]    [c.318]    [c.76]    [c.405]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гелий получение

Гелий применение



© 2025 chem21.info Реклама на сайте