Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация галогенидами металлов

    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]


    Для современного этапа развития химии высокомолекулярных соединений характерно углубленное изучение процессов синтеза полимеров и особенно каталитической полимеризации, вызываемой металлоорганическими соединениями и их комплексами с различными галогенидами металлов. [c.7]

    Сульфоксидные комплексы некоторых металлов проявляют как фотоинициирующие, так и ингибирующие свойства при полимеризации метилметакрилата и стирола. Механизм ингибирования в радикальных реакциях заключается во взаимодействии растущего радикала с галогенидом металла. [c.74]

    Полимеризация олефинов и в особенности изобутилена над кислыми катализаторами и галогенидами металлов явилась предметом классических исследований А. М. Бутлерова, выполненных им еще в 70-годах XIX столетия [4]. [c.101]

    При этом выделяется энергия сопряжения, и суммарный тепловой эффект реакции полимеризации близок к нулю. Поскольку полимеризация сопровождается уменьшением энтропии, то этот процесс термодинамически невыгоден. Образование же комплексов нитрилов с галогенидами металлов сопровождается значительным уменьшением изобарно-изотермического потенциала, что делает возможным проведение процесса. Предполагают, что молекулы в комплексах располагаются благоприятно для образования полимерных цепей. [c.417]

    При инициировании полимеризации галогенидами металлов для образования активного центра необходимо присутствие сокатализатора, в качестве которого чаще всего выступают различные нуклеофильные агенты (вода, спирты, эфиры, галогенированные углеводороды и т. д.). Например, трифторид бора, применяемый в промыщленности для полимеризации изобутилена, в присутствии воды образует комплексное соединение,. способное в условиях полимеризации диссоциировать с образованием протона  [c.144]

    На основании имеющихся экспериментальных данных процесс полимеризации изобутилена в присутствии галогенидов металлов (кислот Льюиса) в сочетании с кислотой Бренстеда включает в общем случае следующие элементарные стадии  [c.108]

    Процесс полимеризации ИБ в присутствии галогенидов металлов (кислот Льюиса) в сочетании с кислотами Бренстеда протекает (на примере катализатора на основе МеХ, и Н2О) по схеме [107, 263, 264] и включает следующие стадии (схема 2.10)  [c.113]

    При полимеризации нитрилов путем нагревания их комплексов с галогенидами металлов используются различные промоторы— неорганические кислоты, бензойная кислота, ее амид, хлорангидрид и альдегид, а также некоторые хлоруглеводороды [c.378]


    Можно также проводить ионную полимеризацию е-капролактама в присутствии галогенидов металлов, активизированных сокатализаторами вследствие низкой энергии активации реакция протекает с большой скоростью..  [c.216]

    Различают быструю и медленную полимеризацию в твердой фазе. Быстрая полимеризация была изучена методом молекулярных пучков , заключающимся в испарении мономера (метилметакрилат, ацетальдегид и др.) и инициатора (галогениды металлов, металлический магний) в вакуум с последующей совместной конденсацией паров их на стенку, охлажденную до [c.257]

    В периодической литературе приводится несколько механизмов низкотемпературной полимеризации изобутилена под действием галогенидов металлов и других каталитических систем. Наиболее широкое признание приобрела ион-карбониевая теория полимеризации изобутилена. Согласно этой теории чистый изобутилен не полимеризуется одними галогенидами металлов в течение длительного времени. Для того чтобы прошла быстрая реакция, необходимо в системе иметь третий компонент — соинициатор, являющийся донором протонов [5]. [c.328]

    Сопоставление результатов исследований по катионной полимеризации изобутилена в присутствии галогенидов металлов и подобных каталитических систем показывает, что при низких температурах, особенно в неполярных растворителях, введение соини-циаторов оказывает существенное влияние на скорость реакции, конверсию мономера и молекулярную массу полученных поли--меров. [c.333]

    По мнению А. Р. Гантмахера и С. С. Медведева [62] каталитическая полимеризация, протекающая под действием BFg, AI I3, Ti l4 и других агентов, по своему механизму отличается от полимеризации под действием света или перекисей, где активными центрами являются свободные радикалы. Галогениды металлов, катализирующие полимеризацию, способствуют возбуждению электро- [c.628]

    В процессах полимеризации углеподородов наиболее широкое распространение в качестве катализаторов получили серная и фосфорная кислоты, галогениды металлов и неметаллов (хлориды алюминия и цинка, фторид бора), оксиды металлов (ванадия, цинка, молибдена), металлоорганические соединения (триэтклалюминий, триизобутилалю-миний) и др. Серная кислота, используемая в качестве катализатора, должна иметь концентрацию 63- 72%. [c.40]

    Экспериментальные данные показывают, что катионная полимеризация происходит под влиянием катализаторов nina МеХ,, (галогениды металлов) с сокаталнзаторами и без соката.лизаторов. В отсутствие сокатализаторов эта реакгигя протекает только при высоких температурах или в среде с высокой диэлектрической постоянной. Для проведения катионной полимеризации при низкой температуре и в среде с низкой диэлектрической постоянной необходимо введение сокатализаторов, снижающих энергию активации реакции полимеризации. Однако присутствие сокатализатора вызывает уменьшение молекулярного веса полимеров, независимо от температуры полимеризации, что указывает па различие механизма процессов обрыва роста макромолекулярных цепей в присутствии п в отсутствие сокатализатора. [c.137]

    Большие успехи в области применения регулируемой анионной полимеризации достигнуты за последние годы и в связи с открытием комплексных катализаторов Циглера—Натта . Под влиянием этих катализаторов были получены кристаллические полимеры этилек а, пропилена и других а-олефипов, обладающие регулярным строением с определенным расположением заместителей в пространстве (изотактические и синдиотактические полимеры, стр. 57 ел.). По типу полимеров, получаемых под воздействием катализаторов Циглера—Натта, последние называют с т е р е о-специфическими к а т а л и з а т о р а. м и. Стерео-специфические катализаторы состоят из смеси металлорганических соединений металлов П и 1Н гру[И1 и галогенидов металлов [ V и VI групп, включая торий и уран. Наибол ,шее распространение приобрел катализатор, получаемый смешением триалкил-алюминия и х. юридов титана при разл гчном молярном соотно-пн нии компонентов. [c.146]

    Второй метод получения полипропилена с высоким молекулярным весом предложен Дж. Натта. Он установил, что в присутствии смеси металлалкилов (металлы 11 и III г )упп) и галогенидов металлов переменной валентности (металлы IV, V и VI групп) происходит полимеризация пропилена с образованием высокомолекулярного полимера. Компоненты катализатора образуют нерастворимый комплекс, на поверхности которого протекает анионная полимеризация пропилена. Получ емый полимер имеет стереорегулярную структуру. В качестве каталитического комплекса применяют смеси 1лкилалюминия (например, триэтил-или трипропилалюминия) и треххлористого титаня. Триэтилалю-мипий применяют в виде раствора в гептане (молярность раствора [c.200]


    Стандартная энтальпия образования ионов Zr H- и Hf + в водном растворе была определена по энтальпии растворения галогенидов металлов в растворах минеральных кислот. Трудности определения энтальпий образования рассматриваемых ионов связаны со сложностью. химического поведения соединений циркония и гафния в водном растворе, их ярко выраженной склонностью к гидролизу, полимеризации и комплексообразованию. Исследование равновесий показало, что при концентрации циркония 10-3 моль/л и менее и концентрации минеральной кислоты (хлорной, соляной или азотной) 2 моль/л и более в растворе доминирует негидролизованный мономерный ион Zr +, практически не образующий устойчивых ассоциатов с перхлорат-, хлорид- и нитрат-ионами. В этих условиях растворение кристаллических Zr U и 2гБг4 в растворе минеральной кислоты можно представить схемой [c.203]

    Ионная форма активированной молекулы мономера может возникнуть только при присоединении положительно или отрицательно заряженного иона к поляризованной им я-связи мономерной молекулы. В зависимости от яаряда присоединяемого иона различают катионную и анионную полимеризацию. Катализаторами катионной полимеризации служат кислоты или галогениды металлов в сочетании с кислотами, спиртами, водой ( сокатализа-торы ), например [c.760]

    Изомеризация алкенов протекает при контакте с различными кислотными катализаторами органическими кислотами, как moho-, ди- или три-хлоруксусная или бензолсульфоновая минеральными кислотами, как плавиковая, хлорная, серная, фосфорная и кремнийфосфорная солями кислотного характера, например бисульфатом калия галогенидами металлов, например хлорным железом или хлорным оловом окислами кислотного характера, как алюмосиликаты и некоторые формы окиси алюминия. Применение концентрированных кислот, например 96%-ной серной кислоты, фтористого водорода или сочетания хлористый алюминий — хлористый водород, нежелательно, так как в этом случае изомеризация в значительной степени сопровождается полимеризацией [109]. Опубликованы [21, 25] обширные обзоры литературы по изомеризации алкенов, из которых видно громадное разнообразие кислот, использующихся для этой цели. [c.85]

    Низкомолекулярный П. с мол. м. (0,3-5)-10 получают катионной полимеризацией изобутилена из углеводородных фракций С4 газов крекинга и пиролиза нефти [кат,- сильные протонные к-ты, галогениды металлов, А1(С2Н5)2С1, мол. сита]. П. с мол. м. (8,7-25)-10 синтезируют так же, как высокомолекулярный П. и бутилкаучук, в среде метилхлорида или этилхлорида, но процесс проводят при более высокой т-ре или в присут. регуляторов мол. массы (диизобутиле-нов). [c.626]

    Полимеризация циклопентадиена описана Вильсоном и Веллсом [3]. Бразон и Штаудингер [4] описали применение в качестве катализатора галогенидов металлов. Каталитическая полимеризация циклопентадиена в присутствии комплексов хлорида алюминия описана также в патентной литературе [5]. [c.87]

    При низкотемпературной полимеризации изобутилена в присутствии галогенидов металлов необходимо вводить в систему третий компонент — соинициатор (спирты, органические кислоты). [c.205]

    Катионную полимеризацию используют для многотоннажного производства технически важных полимеров и олигомеров 2-метилпропена, бутилкаучука, статистического сополимера триокса-на и этиленоксида, поливинилизобутилового эфира. Так, например, низкомолекулярный полиизобутилен с молекулярной массой 300-50(Ю получают полимеризацией 2-метилпропена из углеводородных фракций (С4-газов каталитического крекинга и пиролиза нефтепродуктов) в присутствии сильных кислот Бренстеда, кислот Льюиса (галогениды металлов, А1(СгНд)2С1 и др.). [c.493]

    ГРАФИТА СЛОИСТЫЕ СОЕДИНЕНИЯ (соединения внедрения графита, клатраты графита), подразделяются на соед. донорного и акцепторного типов (первые содержат щел. или щел.-эем. металлы, вторые — к-ты или галогениды металлов) в я-комплексы (содержат переходные металлы). Клатраты донорного типа получают нагреванием графита с расплавом щел. металла или с его парами (в запаянной ампуле) либо воздействием давл. 200 МПа на смесь графита со щел.-зем. металлом. Эти Г. с. с. реагируют с протонсодержащими соед. (напр., водой, спиртами, к-тами). легко окисляются кислородом. Они катализируют гидрирование бензола, олефинов, ацетиленов и др., а также полимеризацию, например стирола, диенов, цяклосилок-саиов. [c.143]

    Клатраты акцепторного типа образуются при электролизе к-т (Н2204, НМОз и др.) на графитовых электродах, нагревании графита с к-тами при 50—90 С в присут. окислителей (КСЮз и др.) или смеси графита с галогенидами металлов (в запаянной ампуле) при 250—400 С, хлорировании смеси графита с металлом при 250—700 °С. Эти Г. с. с. катализируют р-ции, идущие по катионному механизму (зтерификацию, катионную полимеризацию и др.), а также разложение гидроперекисей, эпоксидирование олефинов. [c.143]

    Циглеровские катализаторы выгодны тем, что они позволяют работать в мягких условиях температуры и давления и, применяя их, можно регулировать строение полимера. Они представляют собой смеси металлалкила и галоидной соли металла типичным примером таких катализаторов является смесь триэтилалюминия и четыреххлористого титана. Несмотря на то что подобные добавки [88] уже использовались в реакциях полимеризации до работ Циглера, он первый систематически исследовал [89] функцию металлалкилов и показал, какие галогениды металлов промотиру- [c.435]

    Полимеризация газообразных углеводородов (этилена и пропилена) в жидкие углеводороды при температуре 260— 540° и под давлением 40—120 ат Хлористый алюминий, бромистый алюминий, галогениды металлов мелкораздробленные сплавы, металлы вось-л ой группы периодической системы Силикагель, активный уголь, фуллерова земля 333 [c.469]

    Многие соединения превращаются в по имерные соединения лишь с помощью катализаторсв. Обычно катализаторами процессов полимеризации служат перекиси, галогениды металлов и металлоидов, -имеющие склонность к образованию комплексных соединений, а также кислоты, основания, металлы и активные земли. Полимеризация мсжет вызываться добавлением небольших количеств полимера к мономеру, т. е. введением зародышей (зародышевый катализ [65]). Различные направления полимеризации, обусловленные типом применяемого катализатора, обнаружены [93] у стирола. Стирол посредством определенных катализаторов можно превратить в дистирол, между тем как при самопроизвольной полимеризации или при применении других катализаторов получаются высокомолекулярные полистиролы. То же самое справедливо и для полимеризации бутадиена. Из ненасыщенных соединений, которые полимеризуются только над катализаторами, следует назвать изобутилен, анетол, инден, окись этилена, пропенилбензол и т. д. [c.645]

    При интерпретации механизма полимеризации алифатических и ароматических производных этилена с кислотами и некоторыми галогенидами металлов или металлоидов Шмитц-Думонт, Тёмке и Дибольд [75] обратили внимание на связь между способностью к полимеризации и константами мономеров. [c.647]

    Каталитическая полимеризация кумарона и индена или их гомологов, выделенных из тяжелых бензольных фракций или сольвент-нафты, получаемой при перегонке каменноугольной смолы (обычно в присутствии серной кислоты как катализатора), ведет к образованию соответствующих смол. Этот процесс разработан Крамером и Шпилькером [46]. Смолы были также приготовлены из стирола, который можно получать пиролизом этилбензола. Металлический натрий или калий, безводные галогениды металлов и арилдиазонийфторбораты рекомендованы как катализаторы для технической полимеризации [9]. Из других ненасыщенных веществ для производства смол пригодны сложные виниловые эфиры (катализатор —перекись бария). Томас и Кармоди [99] утверждают, что высоконенасыщенные, мало устойчивые диолефины дают смоло- [c.656]

    Полимеризация смесей изоолефи-нов, например изобутилена и изо-пропилэтилена, с другими олефинами применяется очень низкая температура, вследствие чего до повышения температуры полимеризуются только изоолефины, при повышении температуры может начаться полимеризация других олефинов затем катализатор разлагается добавлением 95% Фтористый бор, хлористый бор, хлористый алюминий (гидролизуемые водой галогениды металлов) 3198 [c.460]

    Полимеризация газообразных углеводородов, например этилена и пропилена, в жидкие углеводороды при 260—540° под давлением 40—120 ат Хлористый алюминий, бромистый алюминий или другие галогениды металлов губчатые палладий и платина мелкораздробленные сплавы или отдельные металлы VIII группы силикагель, активный уголь, фуллерова земля 2756 [c.462]

    Открытие Циглером в 1955 г. инициаторов для полимеризации этилена (галогениды металлов — металлалкилы) произвело подлинную революцию в химии полимеров. Затем Натта и его коллеги в Милане показали, что подобные каталитические системы могут быть использованы для получения полимеров с контролируемой стереохимией из широкого ряда винильных и диеновых мономеров [1,2]. Высокостереорегулярные полимеры способны кристаллизоваться и могут быть изучены рентгенографическим методом. Полимеры с более низкой регулярностью обычно не кристаллизуются (это соблюдается не всегда), однако их свойства могут сильно зависеть от степени стереохимической регулярности. Ранние исследования [3—5] влияния стереорегулярности цепи на кристаллизуемость и другие физические свойства осложнялись тем, что не было прямых экспериментальных измерений конфигурационных последовательностей. Применение спектроскопии ЯМР высокого разрешения [6—8] для исследования этих полимеров открыло возможность проведения таких измерений и позволило сравнить реальные полимерные цепи с теоретическими предсказаниями [9—12]. [c.77]


Смотреть страницы где упоминается термин Полимеризация галогенидами металлов: [c.55]    [c.100]    [c.102]    [c.134]    [c.28]    [c.58]    [c.417]    [c.245]    [c.460]    [c.374]    [c.226]    [c.84]    [c.245]    [c.460]    [c.51]    [c.189]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Галогениды металлов

Катионная виниловая полимеризаци активность галогенидов металло

Металлы, редкоземельные также гадолиний, диспрозий, неодим, празеодим галогениды, полимеризация

Окись изобутилена, полимеризация металлов галогенидами

Окись этилена, полимеризация катализаторами металлов галогенидами



© 2025 chem21.info Реклама на сайте