Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорид-ионы серебра

    Для устранения мешающего влияния хлорид-ионов серебро определяют в аммиачной среде [705] избыток ионов ртути маскируют комплексоном III. При анализе биологических материалов определению 0,25—100 мкг серебра в аммиачной среде не мешают / 450 мг л хлорида натрия, Р1, Си(П), Си(1) и Hg(II) при концентрации <10 г-ион/л. Ошибка определения 2% [705]. [c.102]


    Титрование хлорид-иона серебром следует проводить во всех случаях в присутствии 2—3 капель 0,1%-ного раствора желатины. [c.336]

    ТИТРОВАНИЕ ХЛОРИДА ИОНОМ СЕРЕБРА [c.251]

    Хлор, содержащийся в различных неорганических и органических соединениях, может быть определен данным методом после переведения его в хлорид-ион. Бромид-, иодид-, роданид-ионы также могут быть осаждены количественно нитратом серебра. Ход анализа аналогичен описанному. [c.171]

    Подготовка анионитов. Измельченный и просеянный товарный анионит обрабатывают насыщенным раствором хлорида натрия так же, как и катионит. Затем анионит переносят в делительную воронку и промывают 2%-ным раствором соляной кислоты до полного удаления ионов Ре +, обычно присутствующих в анионите (проба с роданидом аммония). После этого анионит промывают десятикратным объемом дистиллированной воды, сначала 5%-ным, а затем 10%-ным раствором гидроксида натрия до отрицательной реакции в фильтрате на хлорид-ион (проба с нитратом серебра). Заканчивают промывку анионита дистиллированной водой, освобожденной кипячением от диоксида углерода и затем охлажденной. Промывку прекращают после получения в фильтрате нейтральной реакции по фенолфталеину. [c.119]

    Из этих данных следует, что хлорид серебра действительно должен выпасть в осадок раньше бромида серебра. При меньшей разнице в произведениях растворимости осадков изменение в порядке их образования происходит при меньшем различии исходных концентраций осаждаемых ионов. Так, например, если ионами серебра осаждать из раствора хромат- и карбонат-ионы, то порядок расположения осадков изменится уже при различии концентраций исходных ионов в 10 раз. Так, если исходная концентрация хромат-иона [c.163]

    К третьему типу относится ионообменно-осадочная хроматография. В этом случае носителем является ионообменная с.мо-ла, а осадителем — противоион этого ионита. Например, если колонку заполнить катионитом в А +-форме и через его слой пропускать раствор электролита, содержащий хлорид-ион, произойдет многостадийный процесс, конечным результатом которого будет образование осадка хлорида серебра  [c.165]

    Первой стадией этого процесса является ионный обмен, второй — образование осадка. В результате ионного обмена концентрация ионов серебра в растворе возрастает и при достижении произведения растворимости выпадает осадок хлорида серебра. Третьей стадией является закрепление образовавшегося осадка на зернах носителя—ионита. Как показал А. А. Лурье, на ионообменниках с высокой обменной емкостью первые две стадии процесса четко разграничены во времени и пространстве. Сначала происходит вытеснение из ионита иона-осадителя и его диффузия в раствор, затем химическое взаимодействие иона-осадителя с ионом электролита в растворе и выпадение осадка вне матрицы, на поверхности зерна. Последнее объясняется не стерическими факторами, а действием мембранного (доннановского) потенциала (см. гл. П1). Мембранное равновесие приводит в этом случае к почти полному вытеснению электролита из фазы ионита, т. е. матрицы. [c.165]


    К остаткам серебра прибавляют раствор гидроксида натрия до щелочной реакции по фенолфталеину, нагревают на водяной бане и добавляют формалин. Через 5—15 мин выделяется темно-серый рыхлый порошок металлического серебра. Его отсасывают, промывают водой до удаления щелочи и хлорид-ионов и сушат при 100 °С. К навеске высушенного осадка прибавляют избыток азотной кислоты (1 мл азотной кислоты d 1,42 или 1,5 мл d 1,31 на Гг серебра) и нагревают при 50 С до растворения. Жидкость фильтруют и упаривают на водяной бане до появления кристаллической пленки. Если за это время оксида азота не удалились полностью, добавляют воду и упаривают вновь. Упаренный раствор охлаждают, кристаллы нитрата серебра отсасывают, промывают небольшим количеством ледяной воды и сушат при 110 С. Маточный раствор и промывные воды можно упарить и выделить дополнительное количество нитрата серебра или же слить в склянку с остатками серебра. [c.192]

    Некоторые органические красители при адсорбции их на поверхности осадка резко изменяют окраску. Так, если титровать хлориды раствором азотнокислого серебра в присутствии флуоресцеина, наблюдается следующее. При отсутствии осадка флуоресцеин имеет желто-зеленую окраску и не изменяет ее от прибавления хлоридов или введения ионов серебра (в отдельности). До тех пор, пока при титровании в растворе находится избыток ионов хлора, флуоресцеин также не изменяет окраски. Флуоресцеин — соединение кислотного характера и образует окрашенные анионы, которые не адсорбируются на отрицательно заряженных частицах осадка. После точки эквивалентности, вследствие адсорбции ионов Ag+, осадок приобретает положительный заряд это вызывает адсорбцию красителя, причем поверхность осадка окрашивается в яркий розовый цвет. [c.420]

    В гравиметрии применяют различные осадители. Это могут быть неорганические реагенты, например соляная или серная кислоты (для осаждения ионов серебра или бария), хлорид бария (для осаждения сульфат-иона), водный раствор аммиака (для осаждения гидроксидов) и т.п. Большое значение имеют органические осадители, обладающие рядом преимуществ перед неорганическими. Наиболее часто применяют 8-оксихинолин, диметил- [c.25]

    В качестве примера можно привести расчет кривой титрования 0,1 М раствора хлорид-иона 0,1 М раствором нитрата серебра. [c.102]

    Ход изменения растворимости галогенидов серебра можно объяснить и в терминах теории жестких и мягких кислот и оснований. Фторид-ион — более жесткое основание, чем хлорид-ион свойства бромид-иона занимают промежуточное положение при переходе к типично мягкому основанию — иодид-иону. Поскольку ион Ag+ представляет собой мягкую кислоту, силы взаимодействия катиона и аниона возрастают от AgF к Agi, что имеет следствием уменьшение растворимости галогенидов в том же направлении. Различие в растворимости труднорастворимых соединений серебра можно качественно наблюдать а опыте 8. [c.648]

    Для твердых растворов можно сформулировать закон распределения. Например, бромид- и хлорид-ионы могут изоморфно замещать друг друга в солях серебра  [c.205]

    Можно считать, что в данном случае имеет место раздельное осадительное титрование хлорида и хромата ионами серебра. При введении величины произведения растворимости в уравнение (322) получим [c.218]

    Окислительные свойства ионов серебра (1). I. В пробирке приготовьте раствор станнита натрия, слив растворы хлорида олова (II) и гидроксида натрия до полного растворения гидроксида олова. К 2—3 мл раствора станнита натрия добавьте 3—4 капли нитрата серебра. Наблюдайте образование черного порошка серебра. Запишите уравнение реакции. [c.274]

    Сначала происходит осажДение хлоридов ионами серебра Г+Ag ->Ag l (белый осадок). [c.38]

    В одной из последних работ Ланге и Борнера [146] описан новый вариант измерения количества электричества в методике определения хлоридов. Ион серебра генерируют при постоянном токе, а индикацию конечной точки титрования осуществляют с помощью второй пары электродов, помещенной в ту же ячейку. Интегратор объединен со считывающим устройством. Метод использован для определения хлоридов в сыворотке крови. [c.317]

    В начале титрования хлорида ионами серебра по методу Фаянса анионы красителя почти не адсорбируются осадком фактически они отталкиваются поверхностью, заряженной отрицательно вследствие адсорбции хлорид-ионов. За точкой эквивалентности частицы осадка принимают положительный заряд благодаря сильной адсорбции избытка ионов серебра в этих условиях флуо-ресцеинат-ионы входят в слой противоионов. В результате на поверхности осадка появляется красная окраска, характерная для флуоресцеината серебра. Важно подчеркнуть, что изменение окраски происходит в результате процесса адсорбции (а не осаждения), так как произведение растворимости флуоресцеината серебра во время титрования не достигается. Адсорбция обратима краситель десорбируется при обратном титровании хлорид-ионами. [c.205]


    Первоначальная методика использования такого детектора была описана Коулсоном и др. [81. Поток, выходящий из хроматографа, смешивают с кислородом и пропускают через кварцевую трубку для сжигания размером 30 X 1,25 см, нагреваемую до 800° и содержащую три тампона из платиновой сетки длиной 2,5 см. При прохождении через трубку хлорированные углеводородные пестициды сжигаются до воды, углекислого газа и хлористого водорода большинство же природных компонентов растительной ткани будут образовывать только первые два из указанных веществ. Поток газа из трубки для сжигания барботируют затем через титрационную ячейку и содержание хлора определяют кулонометрически. Метод основан на непрерывном автоматическом титровании хлорида ионами серебра, которые генерируются электрически в титрационной ячейке. Электрический ток, необходимый для поддержания постоянной концентрации ионов серебра в ячейке, регистрируется на ленте самописца как функция времени. Как обычно принято, снимают ряд прямых, причем природа пестицида определяется положением пика на ленте, а количество — площадью под пиком. Если нужно определять количество серусодержащего компонента, газ-носитель, входящий в трубку для сжигания, следует смешивать не с кислородом, а с водородом, вследствие чего расложение органических соединений происходит в атмосфере восстановителя. Образуется сероводород, который также может быть определен кулонометрически. Согласно другому методу (более желательному с точки зрения безопасности), пробу сжигают в атмосфере кислорода, а образующийся сернистый газ измеряют в ячейке с золотым электродом для определения окислительно-восстановительного потенциала. [c.578]

    В количественном анализе обычно используют те же самые реакции ионов, которые применяются в качественном анализе. Так, для количественного определения хлора (вернее, хлорид-иона) его ос.шдают из раствора ионом серебра  [c.11]

    Образование осадка Ag l будет наблюдаться всегда, когда в одком рас-творе окажутся в значительной концентрацнн ноны Ag+ и С1 . Поэтому с номощыо йеной серебра можно обнаружить присутствие в растворе ионов С1" и, обратно, с помощью хлорид-нонов — присутствие ионов серебра иои С1 мол<ет служить реактивом на ион Ag+, а ион Ag+ — реактивом на ион С1 . [c.247]

    Хлорид серебра Ag l—-наименее растворимая соль соляной кислоты. Образование осадка Ag l при взаимодействии ионов С1 с нонами Ag+ служит характерной реакцией на хлорид-ионы. Хлорид серебра применяют в фотографической промышленности прн из[отовле1[ии светочувствительных материалов. [c.364]

    В насыщенном растворе хлорида серебра устанавливается динамическое равновесие между ионами Ag+ и С1 и осадком Ag l. Вводимые в раствор молекулы аммиака связываются с ионами серебра в комплексные иопы [Ag(NH3)2]+ и осадок растворяется. Таким образом, в аммиачном растворе серебро находится в виде комплексных катионов [Ag(NH3)2]+. Но наряду с ними в растворе всегда остается и некоторое, хотя и незначительное, количество иоиов серебра вследствие диссоциации комплексного иона согласно уравпепию  [c.578]

    Еслн подействовать иа раствор первого соединения раствором АдЫ0,1, то весь содержащийся в нем хлор осаждается в виде хлорида серебра. Очевидно, что все четыре хлорид-иона находятся во [c.583]

    Вторичная диссоциация характеризуется наличием равновесия между комплексной частицей, центральным ионом и лигаидами. В этом можно убедиться на основании следующих реакций. Если на раствор, содержащий комплексный ион [Ag(NHa)2]+, подействовать раствором какого-нибудь хлорида, то осадка не образуется, хотя из растворов обычных солей серебра при добавлении хлоридов выделяется осадок хлорида серебра. Очевидно, концентрация нонов серебра в аммиачном растворе слишком мала, чтобы при введении в него даже избытка хлорид-ионов можно было бы достигнуть величины произведения растворимости хлорида серебра (nPAg i = 1,8-10- ). Одпако после прибавления к раствору комплекса иодида калия выпадает осадок иодида серебра. Зто доказывает, что ионы серебра все же имеются в растворе. Как ии мала их концентрация, но она оказывается достаточной для образования осадка, так как произведение растворимости иодида серебра Agi составляет только т. е. значительно меньше, чем у хлорида [c.601]

    Ионы серебра Хлорид-ион Хлорид ссребра [c.48]

    Э.д.с. такой цепи равна 0,292В. Вычислите концентрацию ионов серебра в насыщенном растворе хлорида серебра, растворимость и произведение растворимости хлорида серебра. [c.117]

    Данные методы предназначены для определения летучих органических хлоридов в концентрации от 10 до 100 ppm в бутан-бутеновых смесях. Амперометрическое титрование не может быть непосредственно применено в присутствии веществ, которые взаимодействуют с ионом серебра или с хлороксидными ионами в разбавленном растворе кислоты. Бромиды, сульфиды, аммиак, табачный дым и перекись водорода в количестве более 25 мкг в анализируемом растворе мешают спектрофотометрическому определению. [c.24]

    Амперометрическое титрование. - Хлорид-ион в водном растворе оттитровывается амперометрически стандартным раствором нитрата серебра, используя каломельный электрод в качестве электрода сравнения. Строится кривая зависимости диффузионного тока от количества добавленного раствора азотнокислого серебра конечная точка титрования определяется, как точка пересечения двух прямолинейных участков графика. [c.25]

    При титровании только хлоридов или/смеси их с другими галогенидами следует пользоваться мостиком, наполненным насыщенным раствором нитрата или сульфата калия, но не хлорида, во избежание диффундирования ионов С1 из соединительного мостика в титруемый раствор. Так как хлорид-ионы не мешают титрованию других галогенидов, образующих менее растворимые осадки с ионами серебра, то при определении йодидов и бромидов можно без опасения пользоваться мостиками, наполненными насыщенным раствором хлорида калия. [c.176]

    При введении 1% избытка 0,1 я. раствора азотнокислого серебра в раство]зе будет 10 г-ионов серебра. Таким образом, вблизи точки эквивалентности (, 1%) происходит изменение концентраций в 10 10ч =10 раз. Между тем, ири таком же титровании хлоридов образуется значительно более растворимый осадок (nPAg l = 1 1 Э ). т. е. энергия химического сродства между ионами серебра и хлора значительно меньше. Поэтому концентрация вблизи точки эквивалентности изменяется значительно менее резко. Вычислением, аналогично приведенному выше, находим концентрацию лоиов хлора и серебра за 1% до точки эквивалентности  [c.277]

    Титрование хлоридов в кислой среде. Кислые (а также щелочные) растворы хлоридов можно предварительно нейтрализовать и определить хлориды, как указано выше. Однако точная нейтрализация раствора не всегда удобна, в частности — в присутствии солей алюминия, железа и др. Кроме того, наряду с анионами хлора в испытуемом растЕ.оре могут присутствовать и другие анионы (.нанрпмер, СО ), которые также осаждаются ионами серебра. Поэтому иногда необходимо определять содержание хлоридов в кислых растворах. [c.419]

    Реакция осаждения по существу противоположна растворению осадка. Она протекает тем полнее, чем меньше растворимость осадка. Для характеристики растворимости осадка используют константу, называемую произведением растворимости ПР = [А"][К+1. Чем меньше произведение растворимости, тем менее растворим данный осадок. О полноте протекания реакции осаждения тоже можно судить по величине ПР чем меньше ПР, тем полнее смещено равновесие реакции осаждения вправо. На равновесие реакции осаждения влияют факторы, изменяющие концентрации реагирующих ионов. Так, если А — анионы слабой кислоты, то при понижении pH раствора они все более связываются в молекулы НА. Концентрация анионов уменьшается, и равновесие осаждения смещается влево, т. е. уменьшается полнота протекания реакции. Если К — катионы слабого основания, то при повышении pH раствора может образоваться осадок этого основания вместо труднорастворимой соли, в результате чего невозможно получить правильные результаты анализа. Катионы могут образовывать комплексные соединения, в результате чего происходит уменьшение их концентраций в растворе и осаждение становится неполным. Ион серебра, например, образует с аммиаком комплексное соединение [Ag(NHg)2]+. Из аммиачного раствора соли серебра уже не может выпасть осадок хлорида серебра. Таким образом, для проведения титриметрнческих реакций осаждения необходимо создание в растворе оптимального значения pH. Должны отсутствовать вещества, образующие комплексные соединения с взаимодействующими нонами. [c.122]

    С реакцией осажцения могут конкурировать реакции комплек-сообрааования, в которые вступают катионы, образующие осадок. Например, при осаждении серебра хлорид-ионом [c.10]

    Рассуждая аналогично предыдущему, можно при расчетах пренебречь концентрацией ионов серебра, получаемых при аиссоциа-шш хлорида серебра. [c.103]

    Например, при титровании хлорид-иона раствором нитрата серебра применяют натриевую соль флуоресцеина флуоресцеин является слабой кислотой, анион этой кислоты обладает индикаторными свойствами ( Зп ), В процессе титрования осадок Ag l [c.104]

    Пример. Рассчитайте молярную концентрацию ионов серебра в насыщен- ых растворах хлорида и хромата серебра. Произведения растворимости веществ при 25°С равны для Ag l Пр=ЫО- моль л и для АдгСгО Пр = 2-10- 2 мольЗ/л . [c.372]


Смотреть страницы где упоминается термин Хлорид-ионы серебра: [c.616]    [c.578]    [c.209]    [c.334]    [c.177]    [c.290]    [c.163]    [c.136]    [c.655]    [c.102]    [c.217]   
Основы аналитической химии Издание 2 (1965) -- [ c.347 ]




ПОИСК





Смотрите так же термины и статьи:

Серебро хлорид

Хлорид-ионы



© 2024 chem21.info Реклама на сайте