Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель кобальте и его соединения

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    Аммиакатами называют чрезвычайно обширный класс комплексных соединений, образуемых присоединением аммиака к положительным ионам металлов — серебра, меди, никеля, кобальта, цинка, кадмия и др. [c.523]

    Комплексные соединения имеют большое значение в химической промышленности. Они применяются для получения и очистки платиновых металлов, золота, серебра, никеля, кобальта, меди. Широко используются в процессах разделения редкоземельных элементов, в гальваностегии для электролитического получения плотных и прочных покрытий, а также в области химического анализа для обнаружения и количественного определения многих элементов. [c.207]

    Исследования ряда авторов показали, что нанесением никеля, кобальта, палладия и платины на носители, обладающие кислотными свойствами, можно синтезировать катализаторы изомеризации парафиновых углеводородов [36]. В наших исследованиях была изучена реакция изомеризации парафиновых углеводородов на алюмоплатиновых и алюмо-палладиевых катализаторах, промотированных фтором. Было показано, что платиновые катализаторы отличаются большой устойчивостью к действию ядов (сернистых и азотистых соединений) и лучшей регенерационной способностью (табл. 2.6). На основании проведенной работы в качестве металлического компонента катализатора была рекомендована платина. [c.52]

    Однако наиболее эффективными катализаторами являются соединения никеля, кобальта, железа, родия, рутения и палладия. Эти элементы вводятся в реакционную зону в виде карбонилов, галогенидов или комплексных солей. В ка- [c.270]

    Из сульфидов металлов используют, в основном, серный и медный колчеданы (халькопирит). Помимо основного компонента колчеданы содержат примеси соединений меди, цинка, свинца, мышьяка, никеля, кобальта, селена, висмута, теллура, кадмия, карбонаты и сульфаты кальция и магния, небольшие количества золота и серебра и т. п. Содержание серы в серном колчедане, пригодном для непосредственного использования, колеблется от 32 до 52%, в чистом ГеЗа оно равно 53,5% (табл. 13). [c.35]


    Промышленные катализаторы гидрирования представляют собой высокодисперсные металлы, обычно нанесенные на пористые носители. Высокой гидрирующей активностью отличаются металлы УП1 и I групп периодической системы элементов (никель, кобальт, платина, палладий, родий, медь и др.). В качестве носителей этих металлов наиболее часто используются окиси алюминия, кремния, цинка, хрома, активный уголь, диатомиты. Находят применение в промышленности и сплавные катализаторы [46, 55]. Готовят катализаторы пропиткой носителя растворами легкоразлагающихся соединений активного металла или же методом их совместного осаждения с носителем [56]. Как правило, перед использованием в процессе катализаторы предварительно восстанавливают. [c.411]

    Возможно гидрирование фенолов в ароматические углеводороды с удалением кислорода, что имеет важное значение при переработке сланцев н каменноугольных смол, которые содержат большое количество малоценных фенолов. Реакции протекают с большим трудом и требуют высокого давления (10—30 МПа) и температуры 300—600 °С, катализаторов, стойких к сернистым соединениям и неактивных по отношению к ароматическому кольцу., Эти катализаторы представлены главным образом сульфидами, например, никеля, кобальта, молибдена и вольфрама в различных сочетаниях. [c.45]

    Способность водорода присоединяться по месту кратных углеродных связей известна уже давно. Еще в середине XIX в. М. Фарадей, проведя реакцию взаимодействия водорода с этиленом над платиной, осуществил превращение этилена в этан. Однако долгое время разрозненные наблюдения отдельных авторов казались лишенными интереса. Лишь после того, как было открыто замечательное свойство некоторых восстановленных металлов, например никеля, кобальта, меди [1], способствовать гидрированию, т. е. насыщению водородом алифатических и ароматических кратных связей, каталитическое гидрирование начало быстро развиваться. В настоящее время им широко пользуются в исследовательской работе для изучения числа и характера насыщенных связей, определения строения неизвестных соединений, например природных веществ. Внедрение гидрирования в технику явилось стимулом для грандиозного развития процессов деструктивного гидрирования, синтезов из окислов углерода, облагораживания топлива и многочисленных реакций восстановления. [c.338]

    Химически стойкие и термически устойчивые полимеры получаются при сочетании в металлорганических соединениях ковалентных и координационных связей. Такие полимеры названы клешневидными металлорганическими полимер а-м и. Исходными мономерами могут служить ацетилацетонаты цинка, магния, меди, никеля, кобальта, бериллия и других металлов. Ацетилацетонаты взаимодействуют с тетракетонами с отщеплением [c.506]

    КАРБОНИЛЫ МЕТАЛЛОВ — химические соединения оксида углерода СО с металлами, например, карбонил никеля N1 (С0)4, открытый первым в 1890 г. В настоящее время получены карбонилы многих металлов и некоторых неметаллов. К- м. бывают одноядерными и многоядерными, в зависимости от количества атомов металла в молекуле, а также смешанные, например [Ре (СО)4) Hg. Большинство К. м. при обычных условиях кристаллические, кроме N1 (С0)4, Ре (СО) Ни (СО),, 05 (С0)5. к. м. хорошо растворяются в органических растворителях, летучи, сильно ядовиты. Наибольшее значение в технике имеют К- м.— никеля, кобальта, железа. К. м. применяют для получения чистых металлов, для покрытия поверхности металлами, как ката- [c.120]

    Хлор и ш,елочь применяются в целом ряде областей промышленности. Особенно быстро растет потребность в хлоре в связи с бурным развитием хлорорганического синтеза. В технологии неорганических хлоропродуктов широкое распространение получило производство синтетического хлористого водорода сжиганием водорода в хлоре, производство четыреххлористого кремния, хлоридов цинка и алюминия, хлорной извести, гипохлорита и ряда других соединений. В металлургии некоторых цветных металлов (никель, кобальт и др.) хлор применяется в качестве сильного окислителя. [c.373]

    Окрашенными соединениями являются все соли катионов третьей аналитической группы, образуемые кислотами с окрашенными анионами, все соли меди (И), кобальта и никеля, иодид ртути (II), гидроксиды меди (II), никеля, кобальта и все сульфиды, за исключением ZnS, который имеет белый цвет. [c.61]

    Обжиг сернистых соединений (при получении свинца, ртути, никеля, кобальта) или прокаливание карбонатов с целью получения окислов металла  [c.228]

    Этот вариант был применен для анализа смесн никеля, кобальта и меди в виде их комплексонатов 1401. Электронные спектры поглощения соединений этих элементов с комплексоном 1Н представлены на [c.74]

    Регенерация олефинов осуществляется либо реакциями замещения, либо термическим путем с одновременным образованием диборана или алкилборгидрида. Для ускорения регенерации могут быть применены катализаторы соли никеля, кобальта, соединения других переходных металлов (хромдибензол, ферроцен, циклопентадие-нил никеля, неорганические соли переходных металлов, амины, этиловый эфир, тетрагидрофуран). [c.253]


    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    Процесс Фишера—Тропша состоит в получении алифатических углеводородов, соответствующих бензину, а также некоторых кислородсодержащих соединений из смесей водорода и окиси углерода. В качестве катализаторов используют никель, кобальт и железо. Приготовление стандартного катализатора, применявшегося несколько лет тому назад, описано на стр. 318. Рабочее давление от 1 до 10 ат, температура 177—199 °С, объемная скорость 150 чг . [c.335]

    В самом деле, если гидрирование протекает через образование л-комплексов, то катализаторами этой реакции должны быть все переходные металлы. Было показано что в присутствии коицлексов никеля, кобальта, железа, марганца, хрома и ванадия, активированных алюмоорганическими соединениями, олефины гидрируются с высокими скоростями, т. е. эти комплексы достаточно хорошо активируют водород. Основываясь на этом, удалось показать что бензол гидрируется в присутствии комплексных металлоорганических катализаторов на основе всех переходных металлов четвертого периода. [c.137]

    Выделение п-ксилола с помощью клатратных соединений. В последние годы был открыт класс неорганических комплексных соединений, которые способны образовывать молекулярные соединения с углеводородами [105]. Они получили название клатратных соединений [106]. Наиболее пригодны для образования клатратных соединений с углеводородами комплексы общей формулы МР4Х2, где М — элемент переменной валентности Р — пиридиновый остаток X — анион. Из ионов металлов наилучпше результаты дают двухвалентные никель, кобальт, марганец и железо. Наиболее пригодные азотистые основания — замещенные в 3- или 4-положении пиридины, а также хинолины. Анионом может быть простой одноатомный ион — хлор или бром, или многоатомный ион — тиоцианат, формиат, цианат, или нитрат [76, с. 235—298, 107]. [c.129]

    Наиболее употребительные катализаторы этих процессов — никель на носителях, медь и медь-хромитиые контакть ,., Ес,1Н исходные вещества содержат сернистые соединения, можно использовать смешанные катализаторы из оксидов или сульфидов никеля, кобальта, вольфрама. [c.501]

    Параллельно образуются шпинельные фазы типа алюминатов кобальта (никеля) и молибдата алюминия, в которых гидрирующие металлы связаны прочно, не сульфидируются и не принимают участия в гидрогенолизе соединений серы и азота. При увеличении общего содержания Ni( o)Mo в составе катализатора, синтезируемого методом соэкструзии, происходит насыщение носителя (М2О3) металлами, входящими в состав шпинельных фаз, и растет относительное содержание никель(кобальт)молибдатов и алюмоникель(кобальт)молибда-тов. [c.175]

    Вначале при гидрировании ароматических углеводородов использовали металлические катализаторы никель, кобальт, медь, платину и палладий, полученные восстановлением соответствующих окислов водородом [1, 187, 188]. В настоящее время среди катализаторов гидрирования органических соединений, в частности ароматических углеводородов, наиболее известны никель Ренея [8], окись платины Адамса, никель, кобальт и [c.83]

    Весьма вредное влияние на алюмосиликатные катализаторы <жа ,ывают тяжелые металлы (ванадий, никель, кобальт). Этн металлы содержатся в нефтях в виде металлорганических соединений. Концентрация металлорганических соединений повышается по мере утяжеления фракций я соответственно повышается их смолистость так, для мазута ромашкинской нефти большая часть ванадия концен- [c.162]

    Соли хлор-, бром- и нитробепзолсульфокислот дают плохо растворимые в воде комплексные соединения с аммиакатами никеля, кобальта, меди и других металлов [17]. Не содержащие аммиака соли растворяются значительно лучше, однако комплексные аммиачные соли сульфокислот с другими замещающими группами растворимы лучше, чем простые соли. [c.199]

    В качестве катализаторов гидрогенизационных процессов применяются окислы и сульфиды таких металлов, как никель, кобальт, молибден, вольфрам на кислотных носителях — алюмосиликате, окиси алюминия и др. Все эти катализаторы должны быть устойчивы по отношению к катализаториым ядам и особенно к сернистым соединениям. [c.264]

    Очень трудно получить чистые металлы железной группы и марганец, вполне свободные от углерода. Даже при особо тщательном соблюдений условий, предотвращающих попадание соединений углерода в растворы, осадки никеля кобальта и оообенио Ж елша содержат от 1 10 до 1 10- /о угл1е-рода. [c.80]

    При растворении анодов, которые являются многокомпонентными сплавами, поведение металлов-примесей в зависимости от их электрохимической активности и химических свойств их соединений различно. Такие металоты, как цинк, железо, никель, кобальт, равновесные потенциалы которых намного отрицательнее равновесного потенциала меди, при условиях электролиза переходят в раствор, но не осаждаются на катоде. Накопление солей этих металлов в электролите, однако, при- [c.122]

    Анализ исследуемого раствора. Исследуемый раствор может содержать либо индивидуальное соединение -соль кальция, железа, никеля, кобальта, либо смесь двух компонентов - соли железа и никеля, соли железа и кобальта. Анализируемый раствор помещают в мерную колбу вместимостью 50 мл и доводят до метки водой. Пипеткой переносят аликвоту (5-10 мл) полученного раствора в стакан для титрования, добавляют воду до нужного уровня и выполняют титрование так, как описано в п. 1. Титрование продолжают до тех пор, пока по показаниям прибора не обнаружат один или два излома на кривой - в зависимости от числа определяемых компонентов. Строят кривые титрования в координатах показание прибора -объем титранта, мл, находят объемы, соответствующие точкам эквивалентности, и рассчитывают массу определяемого элемента (или элементов) в растворе в миллифаммах. [c.233]

    I. Микрокристаллоскопическое исследование и определение цвета. Мелко измельченную пробу твердого веп1ества распределяют тонким слоем на предметном стекле так, чтобы можно было под микроскопом установить различие или обш,ность форм отдельных мельчайших частичек и их цвет, по которому можно приближенно установить состав соединения. Так, в черный цвет окрапдены, например, сульфиды железа, никеля, кобальта, меди (II), ртути, серебра, свинца, висмута и оксиды меди и никеля в коричневый цвет — оксид кадмия и диоксиды свинца и марганца в зеленый — оксиды и соли хрома (III), соли железа (И), карбонат гидроксомеди, некоторые соли никеля в желтый — оксид ртути (II) и свинца (И), сульфиды кадмия, олова (IV), мышьяка (ИГ) и (V), мно- [c.329]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    В основу метода положено предварительное выделение железа экстракцией дибутиловым эфиром б виде HFe l , реэкстракцией этого соединения в водную фазу с последующим определением железа в виде ферроин-иодида. Для повыщения чувствительности метода можно вместо иодид-иона использовать сульфофталеиновые красители, например бромфеноловый синий. При этом образуется ионный ассоциат (Vax 610 нм, е = 5,9 10 ). Но этот последний метод при непосредственном определении железа в солях кобальта имеет два недостатка 1) очень узкий интервал значений pH прн экстракции ассоциата (pH 8,7—8,9) 2) малую избирательность, так как следы никеля, кобальта и меди при замене иодида на бромфеноловый синий дают интенсивно окращепные, экстрагирующиеся ионные ассоциаты. [c.158]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    В 1841 г. знаменитый немецкий химик К. Р. Фрезениус в книге Руководство по качественному хш1ическому анализу предложил более совершенную схему систематического качественного химического анализа многих элементов. Для построения своей схемы он выбрал систему, содержавшую наиболее важные, по его мнению, металлы или их соединения, которые он разбил на шесть групп первая группа — калий, натрий, аммоний вторая группа — барит, стронцианит, известь, магнезия третья группа — глинозем и оксид хрома четвертая группа — оксиды цинка, марганца, никеля, кобальта и железа пятая группа — оксиды серебра, ртути, свинца, висмута, меди, кадмия шестая группа — оксиды золота, платины, сурьмы, олова, мышьяковая и мышьяковистая кислоты. [c.35]

    Карбиды. С углеродом индий не взаимодействует, и карбид индия до сих пор не получен. Но известен ряд тройных карбидов индия с никелем, кобальтом, титаном и другими металлами, как,например, 2г21пС [73]. Соединения индия с кремнием и бором не получены. [c.297]

    Электролизом водных растворов (гидроэлектрометаллургический путь) рафинируют медь, серебро, золото, никель, кобальт, свинец, электроэкстрагируют цинк, кадмий, марганец, хром. Электролизом водных растворов получают промышленные количества водорода, кислорода, пероксида водорода и надсернокислых соединений, ш,елочи, гипохлорита натрия, хлорной кислоты, перманганата калия, свинцовых белил, гидросульфата натрия. Большое значение имеют электрохимические способы синтеза различных органических соединений. [c.163]


Смотреть страницы где упоминается термин Никель кобальте и его соединения: [c.628]    [c.11]    [c.178]    [c.244]    [c.491]    [c.185]    [c.668]    [c.628]    [c.105]    [c.269]    [c.250]    [c.229]   
Полярографический анализ (1959) -- [ c.363 , c.364 , c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальта идо-соединения

Никель соединения



© 2025 chem21.info Реклама на сайте